MC14093B Quad 2-Input "NAND" Schmitt Trigger The MC14093B Schmitt trigger is constructed with MOS P-channel and N-channel enhancement mode devices in a single monolithic structure. These devices find primary use where low power dissipation and/or high noise immunity is desired. The MC14093B may be used in place of the MC14011B quad 2-input NAND gate for enhanced noise immunity or to "square up" slowly changing waveforms. Features * Supply Voltage Range = 3.0 Vdc to 18 Vdc * Capable of Driving Two Low-Power TTL Loads or One Low-Power * * * * * Schottky TTL Load Over the Rated Temperature Range Triple Diode Protection on All Inputs Pin-for-Pin Compatible with CD4093 Can be Used to Replace MC14011B Independent Schmitt-Trigger at each Input These Devices are Pb-Free and are RoHS Compliant Parameter VDD Value Unit V Input or Output Current (DC or Transient) per Pin 10 mA PD Power Dissipation, per Package (Note 1) 500 mW TA Ambient Temperature Range -55 to +125 C Tstg Storage Temperature Range -65 to +150 C TL Lead Temperature (8-Second Soldering) 260 C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Temperature Derating: Plastic "P and D/DW" Packages: - 7.0 mW/_C From 65_C To 125_C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, Vin and Vout should be constrained to the range VSS v (Vin or Vout) v VDD. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or VDD). Unused outputs must be left open. (c) Semiconductor Components Industries, LLC, 2011 June, 2011 - Rev. 8 1 14093BG AWLYWW 14 V Input or Output Voltage Range (DC or Transient) MC14093BCP AWLYYWWG 1 -0.5 to +18.0 Iin, Iout DC Supply Voltage Range 14 PDIP-14 P SUFFIX CASE 646 14 -0.5 to VDD + 0.5 Vin, Vout MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A MAXIMUM RATINGS (Voltages Referenced to VSS) Symbol http://onsemi.com 1 14 093B ALYW G G TSSOP-14 DT SUFFIX CASE 948G 1 14 SOEIAJ-14 F SUFFIX CASE 965 MC14093B ALYWG 1 A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or G = Pb-Free Package (Note: Microdot may be in either location) ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. Publication Order Number: MC14093B/D MC14093B PIN ASSIGNMENT IN 1A 1 14 VDD IN 2A 2 13 IN 2D OUTA 3 12 IN 1D OUTB 4 11 OUTD IN 1B 5 10 OUTC IN 2B 6 9 IN 2C VSS 7 8 IN 1C LOGIC DIAGRAM 1 2 3 5 6 4 8 9 10 12 13 11 VDD = PIN 14 VSS = PIN 7 EQUIVALENT CIRCUIT SCHEMATIC (1/4 OF CIRCUIT SHOWN) ORDERING INFORMATION Package Shipping MC14093BCPG PDIP-14 (Pb-Free) 500 Units / Rail MC14093BDG SOIC-14 (Pb-Free) 55 Units / Rail MC14093BDR2G SOIC-14 (Pb-Free) 2500 Units / Tape & Reel MC14093BDTR2G TSSOP-14* 2500 Units / Tape & Reel MC14093BFELG SOEIAJ-14 (Pb-Free) 2000 Units / Tape & Reel Device For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *This package is inherently Pb-Free. http://onsemi.com 2 MC14093B IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIII IIIIIIIII IIIII IIII IIIIIIIIIIIII IIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIIIIIIIIIIIII IIIIIII IIIIII IIIIII IIIIIII IIIIIII IIIIIII IIIIIII IIIIII IIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III IIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII III IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIII IIII III III III IIII III IIII III III III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII ELECTRICAL CHARACTERISTICS (Voltages Referenced to VSS) Characteristic Output Voltage Vin = VDD or 0 Symbol - 55_C 25_C 125_C VDD Vdc Min Max Min Typ (2) Max Min Max Unit "0" Level VOL 5.0 10 15 - - - 0.05 0.05 0.05 - - - 0 0 0 0.05 0.05 0.05 - - - 0.05 0.05 0.05 Vdc "1" Level VOH 5.0 10 15 4.95 9.95 14.95 - - - 4.95 9.95 14.95 5.0 10 15 - - - 4.95 9.95 14.95 - - - Vdc 5.0 5.0 10 15 - 3.0 - 0.64 - 1.6 - 4.2 - - - - - 2.4 - 0.51 - 1.3 - 3.4 - 4.2 - 0.88 - 2.25 - 8.8 - - - - - 1.7 - 0.36 - 0.9 - 2.4 - - - - IOL 5.0 10 15 0.64 1.6 4.2 - - - 0.51 1.3 3.4 0.88 2.25 8.8 - - - 0.36 0.9 2.4 - - - mAdc Input Current Iin 15 - 0.1 - 0.00001 0.1 - 1.0 mAdc Input Capacitance (Vin = 0) Cin - - - - 5.0 7.5 - - pF Quiescent Current (Per Package) IDD 5.0 10 15 - - - 0.25 0.5 1.0 - - - 0.0005 0.0010 0.0015 0.25 0.5 1.0 - - - 7.5 15 30 mAdc IT 5.0 10 15 Hysteresis Voltage VH 5.0 10 15 0.3 1.2 1.6 2.0 3.4 5.0 0.3 1.2 1.6 1.1 1.7 2.1 2.0 3.4 5.0 0.3 1.2 1.6 2.0 3.4 5.0 Threshold Voltage Positive-Going VT+ 5.0 10 15 2.2 4.6 6.8 3.6 7.1 10.8 2.2 4.6 6.8 2.9 5.9 8.8 3.6 7.1 10.8 2.2 4.6 6.8 3.6 7.1 10.8 VT- 5.0 10 15 0.9 2.5 4.0 2.8 5.2 7.4 0.9 2.5 4.0 1.9 3.9 5.8 2.8 5.2 7.4 0.9 2.5 4.0 2.8 5.2 7.4 Vin = 0 or VDD Output Drive Current (VOH = 2.5 Vdc) (VOH = 4.6 Vdc) (VOH = 9.5 Vdc) (VOH = 13.5 Vdc) (VOL = 0.4 Vdc) (VOL = 0.5 Vdc) (VOL = 1.5 Vdc) Source Sink Total Supply Current (3) (4) (Dynamic plus Quiescent, Per Package) (CL = 50 pF on all outputs, all buffers switching) Negative-Going IOH mAdc IT = (1.2 mA/kHz) f + IDD IT = (2.4 mA/kHz) f + IDD IT = (3.6 mA/kHz) f + IDD mAdc Vdc Vdc 2. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. 3. The formulas given are for the typical characteristics only at 25_C. 4. To calculate total supply current at loads other than 50 pF: IT(CL) = IT(50 pF) + (CL - 50) Vfk where: IT is in mA (per package), CL in pF, V = (VDD - VSS) in volts, f in kHz is input frequency, and k = 0.004. http://onsemi.com 3 Vdc MC14093B IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIII IIIII IIII IIII IIII IIII III IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII SWITCHING CHARACTERISTICS (CL = 50 pF, TA = 25_C) Characteristic Symbol VDD Vdc Min Typ (5) Max Unit Output Rise Time tTLH 5.0 10 15 - - - 100 50 40 200 100 80 ns Output Fall Time tTHL 5.0 10 15 - - - 100 50 40 200 100 80 ns tPLH, tPHL 5.0 10 15 - - - 125 50 40 250 100 80 ns Propagation Delay Time 5. Data labeled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. VDD 20 ns 14 PULSE GENERATOR INPUT OUTPUT 20 ns VDD 90% 50% 10% tPHL INPUT 7 VSS CL tPLH 90% 50% 10% OUTPUT tTHL VSS VOH VOL tTLH Figure 1. Switching Time Test Circuit and Waveforms VH VDD VH Vin VDD Vin VSS VSS VDD VDD Vout Vout VSS VSS (a) Schmitt Triggers will square up (a) inputs with slow rise and fall times. (b) A Schmitt trigger offers maximum (b) noise immunity in gate applications. Figure 2. Typical Schmitt Trigger Applications http://onsemi.com 4 MC14093B 14 14 IOH VGS Vout All unused inputs connected to ground. -4.0 VGS 10 c b VGS = -5.0 Vdc a aTA = -55C bTA = +25C bTA = +125C c -6.0 -10 Vdc b c -8.0 -10 -10 IOL , DRAIN CURRENT (mAdc) -2.0 -15 Vdc b a -8.0 -6.0 -4.0 VDS, DRAIN VOLTAGE (Vdc) a b c 8.0 VGS = 10 Vdc b c 6.0 aTA = -55C bTA = +25C cTA = +125C 4.0 a 2.0 b 5.0 Vdc c a -2.0 0 0 0 2.0 4.0 6.0 VDS, DRAIN VOLTAGE (Vdc) 8.0 Figure 4. Typical Output Sink Characteristics Test Circuit VDD 0 7 15 Vdc a Figure 3. Typical Output Source Characteristics Test Circuit 0 Vout All unused inputs connected to ground. Vout , OUTPUT VOLTAGE (Vdc) IOH, DRAIN CURRENT (mAdc) 0 7 IOL VT- VT+ VH Vin, INPUT VOLTAGE (Vdc) Figure 5. Typical Transfer Characteristics http://onsemi.com 5 VDD 10 MC14093B PACKAGE DIMENSIONS PDIP-14 CASE 646-06 ISSUE P 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F L N C -T- SEATING PLANE H G D 14 PL J K 0.13 (0.005) M M http://onsemi.com 6 DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --- 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --- 10 _ 0.38 1.01 MC14093B PACKAGE DIMENSIONS SOIC-14 NB CASE 751A-03 ISSUE K D A B 14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S e DETAIL A h A X 45 _ M A1 C SEATING PLANE DIM A A1 A3 b D E e H h L M MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 7 INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ MC14093B PACKAGE DIMENSIONS TSSOP-14 CASE 948G-01 ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U M T U V S S N 2X 14 L/2 0.25 (0.010) 8 M B -U- L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S S DETAIL E K A -V- EEE CCC CCC EEE K1 J J1 DIM A B C D F G H J J1 K K1 L M SECTION N-N -W- C 0.10 (0.004) -T- SEATING PLANE D H G DETAIL E SOLDERING FOOTPRINT* 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 8 MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 --- 1.20 --- 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ MC14093B PACKAGE DIMENSIONS SOEIAJ-14 CASE 965-01 ISSUE B 14 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS AND ARE MEASURED AT THE PARTING LINE. MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 5. THE LEAD WIDTH DIMENSION (b) DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE LEAD WIDTH DIMENSION AT MAXIMUM MATERIAL CONDITION. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE FOOT. MINIMUM SPACE BETWEEN PROTRUSIONS AND ADJACENT LEAD TO BE 0.46 ( 0.018). LE 8 Q1 E HE M_ L 7 1 DETAIL P Z D VIEW P A e A1 b 0.13 (0.005) c M 0.10 (0.004) DIM A A1 b c D E e HE L LE M Q1 Z MILLIMETERS MIN MAX --2.05 0.05 0.20 0.35 0.50 0.10 0.20 9.90 10.50 5.10 5.45 1.27 BSC 7.40 8.20 0.50 0.85 1.10 1.50 10 _ 0_ 0.70 0.90 --1.42 INCHES MIN MAX --0.081 0.002 0.008 0.014 0.020 0.004 0.008 0.390 0.413 0.201 0.215 0.050 BSC 0.291 0.323 0.020 0.033 0.043 0.059 10 _ 0_ 0.028 0.035 --0.056 ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 http://onsemi.com 9 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC14093B/D