Standard Power MOSFETs IRF840, IRF841, IRF842, IRF843 File Number 2312 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 7 Aand 8 A, 450 V - 500 V rpstom = 0.85 Q and 1.1 Q Features: m SOA is power-dissipation limited w Nanosecond switching speeds Linear transfer characteristics a High input impedance a Majority carrier device The IRF840, IRF841, IRF842, and IRF843 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- N-CHANNEL ENHANCEMENT MODE Dd G $s 92Cs-3374) TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE ing high speed and low gate-drive power. These types can brain jd be operated directly from integrated circuits. (FLANGE) "| O DRAIN The IRF-types are supplied in the JEDEC TO-220AB plastic ackage. p ig TOP VIEW 92CS-39528 JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF840 IRF841 IRF842 IRF843 Units Vos Drain - Source Voltage 500 450 500 450 Vv VpGR Drain - Gate Voltage (Rgs = 20 k0) 500 450 500 450 v Ip @Tc = 25C Continuous Drain Current 8.0 8.0 7.0 7.0 A Ip @ Te = 100C Continuous Drain Current 5.0 5.0 4.0 4.0 A lpm Pulsed Drain Current @ 32 32 28 28 A Ves Gate - Source Voltage +20 v Pp @Tc = 25C Max. Power Dissipation 125 (See Fig. 14} Ww Linear Derating Factor 1.0 (See Fig. 14) w/t 'LM Inductive Current, Clamped (See Fig. (5 and T6}L = 100nH A 32 l 32 | 28 ] 28 Ty Operating Junction and _ Tstg Storage Temperature Range 55 to 150 ; c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} c 3-204Standard Power MOSFETs IRF840, IRF841, IRF842, IRF843 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF840 _ IRF842 500 - _~ v Ves = OV IRF841 IRF843 450 _ - v Ip = 250nA Vesith) Gate Threshold Voltage ALL 2.0 - 4.0 v Vos = Ves. Ip = 250nA less Gate-Source Leakage Forward ALL - - 500 nA Vgs = 20V less Gate-Source Leakage Reverse ALL = |-500 nA Vgs = -20V loss Zero Gate Voltage Drain Current ALL = ~ 250 pA Vos = Max. Rating. Vag = OV - = |1000[ 4A Vps = Max. Rating x 0.8, Vgg = OV, Tc = 125C IDton) On-State Drain Current @ (RF840 8.0 - - A IRFa41 Vos? pion) X8 Veg = 10V DS * Dion) * DS(on) max." GS ~ IRF842 | 24 _ _ A IRF843 . Rps{on) Static Drain-Source On-State IRF840 _ Resistance IRF841 0.8 | 0.85 2 Vv 10.1 4.0A nre42 [| ag | a4 os Soups IRF843 Its Forward Transconductance @) ALL 4.0 6.5 = Sa) Vos ? !piont * Fpsion) max. 'p = 4.04 Ciss Input Capacitance ALL - 1225) pF Vag = OV, Vpg = 25V, f = 1.0 MHz Coss Output Capacitance ALL _ 200 _ pF See Fig. 10 Crss Reverse Transfer Capacitance ALL = 85 pF tdion) Turn-On Delay Time ALL = 17 35 ns Vop = 200V, Ip = 4.0A, Z, = 4.70 ty Rise Time ALL = 5 15 ns See Fig. 17 tafoff) Turn-Off Delay Time ALL - 42 90 ns (MOSFET switching times are essentially tf Fall Time ALL _ 14 30 ns independent of operating temperature.) Q, Total Gate Charge _ Veg = 10V. Ip = 10A, Vog = 0.8 Max. Rating. 8 (Gate-Source Plus Gate-Drain} ALL 42 60 ne See Fig. 18 for test circuit. (Gate charge is essentially Ogs Gate-Source Charge ALL _ 20 30. nc independent of operating temperature.) Qga Gate-Drain (Miller) Charge ALL - 22 33 nc Lp internal Drain tnductance ~_ 3.5 - nH Measured from the Modified MOSFET contact screw on tab symbol shawing the to center of die. internat device ALL inductances. - 4.5 - oH Measured from the drain lead, 6mm (0.25 in.) from package to 0 center of die. lg internal Source Inductance ALL - 7.5 - nH Measured from the source lead, 6mm (0.25 in.) from % package to source bonding pad. Thermal Resistance Rinuc Junction-to-Case ALL ~ = 1.0 C/W Rthcs _ Case-to-Sink ALL = 1.0 = C/W Mounting surface flat, smooth, and greased. RihyA tunctiun-to-Ambient ALL = = 80 Cc/w Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF840 Modified MOSFET symbol (Body Diode) IRF841 7 7 8.0 A showing the integral IRF942 reverse P-N junction rectifier. meaaa | ~ {| ~ | 7%] A 'sm Pulse Source Current IRF840 _ _ 32 A (Body Diode) @ IRF841 3 IRF842 iaraga | ~ | ~ | 28 A Ysp Diode Forward Voltage @ IRF840 _ _ 20 Vv Te = 25C, Ig = 8.04, Vag = 100A/us IRF841 WRF642 | _ - | 4.9 v Te = 25C, ig = 7.04, Vgg = 100A/us IRF843 ter Reverse Recovery Time ALL - 1100] ns Ty = 150C, Ip = 8.0A, dip/dt = 100 A/us Qar Reverse Recovered Charge ALL _ 6.4 - 2c Ty = 150C, lp = 8.0A, dip/dt = 100 A/us ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controtled by Lg + Lp. @ Ty = 25C to 150C. @ Puise Test: Pulse width < 300ys, Duty Cycle < 2%. @ Repetitive Rating: Puise width limited by max. junction temperature. See Transient Thermal Impedance Curve (Fig. 5). 3-205Standard Power MOSFETs IRF840, IRF841, IRF842, IRF843 Zenaclt/Rinuc, NORMALIZED EFFECTIVE TRANSIENT THERMAL {MPEDANCE (PER UNIT} a wv. v us PULSE 16 @ c a = = 12 na 2 iv?) c e > o zB < = a = 4 0 20 40 60 80 100 Vos, ORAIN-TO-SGUACE VOLTAGE (VOLTS} Fig. 1 Typical Output Characteristics 10 80 is PULSE TEST 8 @ c = <6 ia =z a = e > ow z4 < ao 2 Zz 0 2 4 6 8 10 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics 2 10 0.5 0.2 0.1 0.05 SINGLE PULSE (TRANSIENT THERMAL IMPEOANCE) a.oz 6.01 10-8 2 5 10-4 2 5 103 2 5 10-2 4g, DRAIN CURRENT (AMPERES) 2 !p. DRAIN CURRENT {AMPERES} BSPULSE , 1 Vos > (p(on) x 2 Vas, GATE-TO-SOURCE VOLTAGE (VOLTS) 4 6 Ty = -650C i I Ty = 2500 Ty = 1250 Fig. 2 Typical Transfer Characteristics Te = 26C Ty = 150C MAX, Renuc = 1.0 KW SINGLE PULSE 2 5 10 Vos. DRAIN-TO-SOUACE VOLTAGE (VQLTS} OPERATION IN THIS AREA(S LIMITE BY Ros(on) 0 20 50 = 100 200 $00 Fig. 4 Maximum Safe Operating Ares 10-1 ty, SQUARE WAVE PULSE DURATION (SECONDS) 2 fe ty om l- 2 2. PER UNIT BASE = Aynyc = 1.0 DEG. CW. ] 1. DUTY FACTOR, D= z . 3. Ty - Te = Pom Zinsett)- 5 1.0 Fig. 5 ~ Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-206 2 L 1016.0 us PULSE 1 i V Vos > !o(an) * Rosion) 2 2 s mz & 94,. TRANSCONDUCTANCE (SIEMENS} 2 nm 8 2 Ip, ORAIN CURRENT (AMPERES) 16 20 Fig. 6 Typical Transconductance Vs. Drain Current 1.25 1.15 (NORMALIZED) z 2 wo a 0.85 BVngs, DRAIN-TO-SQURCE BREAKDOWN VOLTAGE 0.75 -40 40 80 Ty, JUNCTION TEMPERATURE (C) 120 Fig. 8 Breakdown Voltage Vs. Temperature 2000 Cigg = Cy + Cog, Cys SHORTED Cress = Cog Cos Cod 1600 Coss = Cas + Tye # Cyd = Cds + via = 1200 wo 3 =z =< & 3 z = 800 oo 400 Coss Crss 10 15 20 25 30 35 40 Vos, DRAIN-TO-SQURCE VOLTAGE (VOLTS) 45 Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 160 Standard Power MOSFETs IRF840, IRF841, IRF842, IRF843 lpr. REVERSE DRAIN CURRENT (AMPERES) t 2 3 4 Vgp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) a a . 7 Typical Source-Drain Diode Forward Voltage 25 2.0 (NORMALIZED) an o 05 Roston). DRAIN-TO-SOURCE ON-STATE RESISTANCE 0 -40 0 40 80 Ty, JUNCTION TEMPERATURE (C) 126 160 Fig. 9 Normalized On-Resistance Vs. Temperature Vpg = 250V Vig = 400V \p = 10A Vg, GATE-T0-SOURCE VOLTAGE (VOLTS) FOR TEST CIRCUIT SEE FIGURE 18 50 20 40 60 80 Q,, TOTAL GATE CHARGE {nC} Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage 3-207Standard Power MOSFETs IRF840, IRF841, IRF842, IRF843 35 3 Rogion) MEASURED WITH CURRENT PULSE OF z 2.0 us DURATION. INITIAL Ty = 25C. (HEATING S 20 Fereecr OF 2.0 us PULSE 1S MINIMAL) at o : |_| = 2: 2 Ves 4h c Zz 20 4 77 ss 20V e 2 is LZ 2g Yr e = aA = 1.0 3 05 oe 0 5 10 15 20 28 30 35 Ip, ORAIN CURRENT (AMPERES) Fig. 12 Typical On-Resistance Vs. Drain Current Pg, POWER DISSIPATION (WATTS) 0 20 40 60 80 100 120 140 Tp, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve 200V ADJUST Ry TO OBTAIN SPECIFIED Ip 452 Vos Vos puise | GENERATOR 4. { Source J] | IMPEDANCE Fig. 17 Switching Time Test Circuit 3-208, BATTERY Ip. DRAIN CURRENT (AMPERES} 0 26 50 75 100 125 150 To, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK |, Vgg 7 10V ty i Ey, =O05BVpss Ec = 0.76 BVgss Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms 6 Vos (ISQLATED SUPPLY) CURRENT REGULATOR SAME TYPE Vos CURRENT = CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit