Rev. 1.4 6/12 Copyright © 2012 by Silicon Laboratories Si8640/41/42/45
Si8640/41/42/45
LOW-POWER QUAD-CHANNEL DIGITAL ISOLATOR
Features
Applications
Safety Regulatory Approvals
Description
Silicon Lab's family of ultra-low-power digital isolators are CMOS devices
offering substantial data rate, propagation delay, power, size, reliability, and
external BOM advantages over legacy isolation technologies. The operating
parameters of these products remain stable across wide temperature ranges
and throughout device service life for ease of design and highly uniform
performance. All device versions have Schmitt trigger inputs for high noise
immunity and only require VDD bypass capacitors.
Data rates up to 150 Mbps are supported, and all devices achieve propagation
delays of less than 10 ns. Enable inputs provide a single point control for
enabling and disabling output drive. Ordering options include a choice of
isolation ratings (3.75 and 5 kV) and a selectable fail-safe operating mode to
control the default output state during power loss. All products >1 kVRMS are
safety certified by UL, CSA, and VDE, and products in wide-body packages
support reinforced insul ation withstanding up to 5 kVRMS.
High-speed operation
DC to 150 Mbps
No start-up initialization required
Wide Operating Supply Voltage
2.5–5.5 V
Up to 5000 VRMS isolation
60-year life at rated working voltage
High electromagnetic immunity
Ultra low power (typical)
5 V Operation
1.6 mA per channel at 1 Mbps
5.5 mA per channel at 100 Mbps
2.5 V Operation
1.5 mA per channel at 1 Mbps
3.5 mA per channel at 100 Mbps
Tri-state outputs with ENABLE
Schmitt trigger inputs
Selectable fail-safe mode
Default high or low output
(ordering option)
Precise timing (typical)
10 ns propagation delay
1.5 ns pulse width distortion
0.5 ns channel-channel skew
2 ns propagation delay skew
5 ns minimum pulse width
Transient Immunity 50 kV/µs
AEC-Q100 qualification
Wide temperature range
–40 to 125 °C
RoHS-compliant packages
SOIC-16 wide body
SOIC-16 narrow body
QSOP-16
Industrial automation systems
Medical electronics
Hybrid electric vehicles
Isolated switch mode supplies
Isolated ADC, DAC
Motor control
Power inverters
Communications systems
UL 1577 recognized
Up to 5000 VRMS for 1 minute
CSA component notice 5A approval
IEC 60950-1, 61010-1, 60601-1
(reinforced insulation)
VDE certification conformity
IEC 60747-5-2
(VDE0884 Part 2)
EN60950-1
(reinforced insulation)
Ordering Information:
See page 26.
2 Rev. 1.4
Si8640/41/42/45
Rev. 1.4 3
Si8640/41/42/45
TABLE OF CONTENTS
Section Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
2.2. Eye Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
3. Device Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
3.1. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.2. Undervoltage Lockout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
3.3. Layout Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.4. Fail-Safe Operating Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
3.5. Typical Performance Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
4. Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
5. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
6. Package Outline: 16-Pin Wide Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
7. Land Pattern: 16-Pin Wide-Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
8. Package Outline: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
9. Land Pattern: 16-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
10. Package Outline: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
11. Land Pattern: 16-Pin QSOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
12. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
12.1. Top Marking (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
12.2. Top Marking Explanation (16-Pin Wide Body SOIC) . . . . . . . . . . . . . . . . . . . . . . .36
12.3. Top Marking (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
12.4. Top Marking Explanation (16-Pin Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . .37
12.5. Top Marking (16-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
12.6. Top Marking Explanation (16-Pin QSOP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Document Change List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
4 Rev. 1.4
Si8640/41/42/45
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter Symbol Test Condition Min Typ Max Unit
Ambient Operating Temperature* TA150 Mbps, 15 pF, 5 V –40 25 125 ºC
Supply Voltage VDD1 2.5 5.5 V
VDD2 2.5 5.5 V
*Note: The maximum ambient temperature is dependent on data frequency, output loading, number of operating channels,
and supply voltage.
Table 2. Electrical Characteristics
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA=–40 to 12C)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDU V– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Negative-Going Locko ut
Hysteresis VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input
Threshold VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteres is VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL ——0.8V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 –0.4 4.8 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakag e Curr en t IL——±10µA
Output Impedance1ZO—50
Enable Input High Current IENH VENx =V
IH —2.0µA
Enable Input Low Current IENL VENx =V
IL —2.0µA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measu re d between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.4 5
Si8640/41/42/45
DC Supply Current (All inputs 0 V or at Supply)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
VDD1
VDD2
VI= 0(Bx), 1(Ex)
VI= 0(Bx), 1(Ex)
VI= 1(Bx), 0(Ex)
VI= 1(Bx), 0(Ex)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si8641Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI= 0(Bx), 1(Ex)
VI= 0(Bx), 1(Ex)
VI= 1(Bx), 0(Ex)
VI= 1(Bx), 0(Ex)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI= 0(Bx), 1(Ex)
VI= 0(Bx), 1(Ex)
VI= 1(Bx), 0(Ex)
VI= 1(Bx), 0(Ex)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
2.9 5.0
4.0 mA
Si8641Bx, Ex
VDD1
VDD2
3.4
3.3 4.8
4.6 mA
Si8642Bx, Ex
VDD1
VDD2
3.3
3.3 4.6
4.6 mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
4.0 5.0
5.6 mA
Si8641Bx, Ex
VDD1
VDD2
3.7
4.1 5.2
5.8 mA
Si8642Bx, Ex
VDD1
VDD2
3.9
3.9 5.4
5.4 mA
Table 2. Electrical Characteristics (Continued)
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA=–40 to 12C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measu re d between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
6 Rev. 1.4
Si8640/41/42/45
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
17.5 5.0
22.8 mA
Si8641Bx, Ex
VDD1
VDD2
7.3
14.3 9.8
18.5 mA
Si8642Bx, Ex
VDD1
VDD2
11
11 14.3
14.3 mA
Timing Characteristics
Si864xBx, Ex
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 5.0 ns
Propagation Delay tPHL, tPLH See Figure 2 5.0 8.0 13 ns
Pulse Width Distortion
|tPLH tPHL|PWD See Fig ure 2 0.2 4.5 ns
Propagation Delay Skew2tPSK(P-P) —2.04.5ns
Channel-Channel Skew tPSK —0.42.5ns
All Models
Output Rise Time trCL=15pF
See Figure 2 2.5 4.0 ns
Output Fall Time tfCL=15pF
See Figure 2 2.5 4.0 ns
Peak Eye Diagram Jitter tJIT(PK) See Figure 7 350 ps
Common Mode
Transient Immunity CMTI VI=V
DD or 0 V 35 50 kV/µs
Enable to Data Valid ten1 See Figure 1 6.0 11 ns
Enable to Data Tri-State ten2 See Figure 1 8.0 12 ns
Startup T ime3tSU —1540µs
Table 2. Electrical Characteristics (Continued)
(VDD1 = 5 V ±10%, VDD2 = 5 V ±10%, TA=–40 to 12C)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measu re d between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.4 7
Si8640/41/42/45
Figure 1. ENABLE Timing Diagram
Figure 2. Propagation Delay Timing
ENABLE
OUTPUTS
ten1 ten2
Typical
Input tPLH tPHL
Typical
Output trtf
90%
10%
90%
10%
1.4 V
1.4 V
8 Rev. 1.4
Si8640/41/42/45
Table 3. Electrical Characteristics
(VDD1 =3.3V ±10%, V
DD2 = 3.3 V ±10%, TA= –40 to 125 ºC)
Parameter Symbol Test Condition Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Negative-Going Lockout
Hysteresis VDDHYS 50 70 95 mV
Positive-Goin g In pu t Th re sh o ld VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteresis VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL ——0.8V
High Level Output Voltage VOH loh = –4 mA VDD1,VDD2 –0.4 3.1 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakage Current IL——±10µA
Output Impedance1ZO—50
Enable Input High Current IENH VENx =V
IH —2.0µA
Enable Input Low Current IENL VENx =V
IL —2.0µA
DC Supply Current (All inputs 0 V or at supply)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
VDD1
VDD2
VI=0(Bx), 1(Ex)
VI=0(Bx), 1(Ex)
VI=1(Bx), 0(Ex)
VI=1(Bx), 0(Ex)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si8641Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI=0(Bx), 1(Ex)
VI=0(Bx), 1(Ex)
VI=1(Bx), 0(Ex)
VI=1(Bx), 0(Ex)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI=0(Bx), 1(Ex)
VI=0(Bx), 1(Ex)
VI=1(Bx), 0(Ex)
VI=1(Bx), 0(Ex)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the differe nce in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.4 9
Si8640/41/42/45
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
2.9 5.0
4.0 mA
Si8641Bx, Ex
VDD1
VDD2
3.4
3.3 4.8
4.6 mA
Si8642Bx, Ex
VDD1
VDD2
3.3
3.3 4.6
4.6 mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
3.4 5.0
4.7 mA
Si8641Bx, Ex
VDD1
VDD2
3.5
3.6 4.9
5.1 mA
Si8642Bx, Ex
VDD1
VDD2
3.6
3.6 5.0
5.0 mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
12.3 5.0
15.9 mA
Si8641Bx, Ex
VDD1
VDD2
5.9
10.3 7.9
13.4 mA
Si8642Bx, Ex
VDD1
VDD2
8.2
8.2 10.7
10.7 mA
Table 3. Electrical Characteristics (Continued)
(VDD1 =3.3V ±10%, V
DD2 = 3.3 V ±10%, TA= –40 to 125 ºC)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the differe nce in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
10 Rev. 1.4
Si8640/41/42/45
Timing Characteristics
Si864xBx, Ex
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 5.0 ns
Propagation Delay tPHL, tPLH See Figure 2 5.0 8.0 13 ns
Pulse Width Distortion
|tPLH tPHL|PWD See Figure 2 0.2 4.5 ns
Propagation Delay Skew2tPSK(P-P) —2.04.5ns
Channel-Channel Skew tPSK —0.42.5ns
All Models
Output Rise Time trCL=15pF
See Figure 2 2.5 4.0 ns
Output Fall Time tfCL=15pF
See Figure 2 2.5 4.0 ns
Peak eye diagram jitter tJIT(PK) See Figure 7 3 50 ps
Common Mode Transient
Immunity at Logic Low Output CMTI VI=V
DD or 0 V 35 50 kV/µs
Enable to Data Valid ten1 See Figure 1 6.0 11 ns
Enable to Data Tri-State ten2 See Figure 1 8.0 12 ns
Startup Time3tSU —1540µs
Table 3. Electrical Characteristics (Continued)
(VDD1 =3.3V ±10%, V
DD2 = 3.3 V ±10%, TA= –40 to 125 ºC)
Parameter Symbol Test Condition Min Typ Max Unit
Notes:
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the differe nce in propagation delay times measured between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.4 11
Si8640/41/42/45
Table 4. Electrical Characteristics
(VDD1 =2.5V ±5%, V
DD2 = 2.5 V ±5%, TA= –40 to 125 ºC)
Parameter Symbol Test Cond i tio n Min Typ Max Unit
VDD Undervoltage Threshold VDDUV+ VDD1, VDD2 rising 1.95 2.24 2.375 V
VDD Undervoltage Threshold VDDUV– VDD1, VDD2 falling 1.88 2.16 2.325 V
VDD Negative-Going Locko ut
Hysteresis VDDHYS 50 70 95 mV
Positive-Going Input Threshold VT+ All inputs rising 1.4 1.67 1.9 V
Negative-Going Input Threshold VT– All inputs falling 1.0 1.23 1.4 V
Input Hysteres is VHYS 0.38 0.44 0.50 V
High Level Input Voltage VIH 2.0 V
Low Level Input Voltage VIL ——0.8V
High Level Output Voltage VOH loh = –4 mA VDD1,
VDD2 –0.4 2.3 V
Low Level Output Voltage VOL lol = 4 mA 0.2 0.4 V
Input Leakag e Curr en t IL——±10µA
Output Impedance1ZO—50
Enable Input High Current IENH VENx =V
IH —2.0µA
Enable Input Low Current IENL VENx =V
IL —2.0µA
DC Supply Current (All inputs 0 V or at supply)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
VDD1
VDD2
VI= 0(Bx), 1(Ex)
VI= 0(Bx), 1(Ex)
VI= 1(Bx), 0(Ex)
VI= 1(Bx), 0(Ex)
1.0
2.4
6.1
2.5
1.6
3.8
9.2
4.0
mA
Si8641Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI= 0(Bx), 1(Ex)
VI= 0(Bx), 1(Ex)
VI= 1(Bx), 0(Ex)
VI= 1(Bx), 0(Ex)
1.4
2.3
5.2
3.6
2.2
3.7
7.8
5.4
mA
Si8642Bx, Ex
VDD1
VDD2
VDD1
VDD2
VI= 0(Bx), 1(Ex)
VI= 0(Bx), 1(Ex)
VI= 1(Bx), 0(Ex)
VI= 1(Bx), 0(Ex)
1.8
1.8
4.4
4.4
2.9
2.9
6.6
6.6
mA
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measu re d between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
12 Rev. 1.4
Si8640/41/42/45
1 Mbps Supply Current (All inputs = 500 kHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
2.9 5.0
4.0 mA
Si8641Bx, Ex
VDD1
VDD2
3.4
3.3 4.8
4.6 mA
Si8642Bx, Ex
VDD1
VDD2
3.3
3.3 4.6
4.6 mA
10 Mbps Supply Current (All inputs = 5 MHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Si8645Bx
VDD1
VDD2
3.6
3.1 5.0
4.3 mA
Si8641Bx, Ex
VDD1
VDD2
3.5
3.4 4.8
4.8 mA
Si8642Bx, Ex
VDD1
VDD2
3.4
3.4 4.8
4.8 mA
100 Mbps Supply Current (All inputs = 50 MHz square wave, CI = 15 pF on all outputs)
Si8640Bx, Ex, Si8645Bx
VDD1
VDD2
3.6
9.9 5.0
12.8 mA
Si8641Bx, Ex
VDD1
VDD2
5.2
8.5 7.0
11.1 mA
Si8642Bx, Ex
VDD1
VDD2
6.9
6.9 9.0
9.0 mA
Table 4. Electrical Characteristics (Continued)
(VDD1 =2.5V ±5%, V
DD2 = 2.5 V ±5%, TA= –40 to 125 ºC)
Parameter Symbol Test Cond i tio n Min Typ Max Unit
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measu re d between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
Rev. 1.4 13
Si8640/41/42/45
Timing Characteristics
Si864xBx, Ex
Maximum Data Rate 0 150 Mbps
Minimum Pulse Width 5.0 ns
Propagation Delay tPHL, tPLH See Figure 2 5.0 8.0 14 ns
Pulse Width Distortion
|tPLH tPHL|PWD See Figure 2 0.2 5.0 ns
Propagation Delay Skew2tPSK(P-P) —2.05.0ns
Channel-Channel Skew tPSK —0.42.5ns
All Models
Output Rise Time trCL=15pF
See Figure 2 2.5 4.0 ns
Output Fall Time tfCL=15pF
See Figure 2 2.5 4.0 ns
Peak Eye Diagram Jitter tJIT(PK) See Figure 7 350 ps
Common Mode Transient
Immunity at Logic Low Output CMTI VI=V
DD or 0 V 35 50 kV/µs
Enable to Data Valid ten1 See Figure 1 6.0 11 ns
Enable to Data Tri-State ten2 See Figure 1 8.0 12 ns
Startup T ime3tSU —1540µs
Table 4. Electrical Characteristics (Continued)
(VDD1 =2.5V ±5%, V
DD2 = 2.5 V ±5%, TA= –40 to 125 ºC)
Parameter Symbol Test Cond i tio n Min Typ Max Unit
1. The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination of the
value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads
where transmission line effects will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
2. tPSK(P-P) is the magnitude of the difference in propagation delay times measu re d between different units operating at
the same supply voltages, load, and ambient temperature.
3. Start-up time is the time period from the application of power to valid data at the output.
14 Rev. 1.4
Si8640/41/42/45
Table 5. Regulatory Information*
CSA
The Si864x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working volt-
age.
60601-1: Up to 125 VRMS reinforced insulation working voltage; up to 380 VRMS basic insulation working voltage.
VDE
The Si864x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.
60747-5-2: Up to 1200 Vpeak for basic insulation working voltage.
60950-1: Up to 600 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working volt-
age.
UL
The Si864x is certified under UL1577 component recognition program. For more details, see File E257455.
Rated up to 5000 VRMS isolation voltage for basic protection.
*Note: Regu latory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kV RMS for 1 sec.
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.
For more information, see "5. Ordering Guide" on page 26.
Table 6. Insulation and Safety-Related Specifications
Parameter Symbol Test Condition Value Unit
WB
SOIC-16 NB
SOIC-16 QSOP-16
Nominal Air Gap (Clearance)1L(IO1) 8.0 4.9 3.6 mm
Nominal External Tracking
(Creepage)1L(IO2) 8.0 4.01 3.6 mm
Minimum Internal Gap
(Internal Clearance) 0.014 0.011 0.008 mm
Tracking Resistance
(Proof Tracking Index) PTI IEC60112 600 600 600 VRMS
Erosion Depth ED 0.019 0.019 0.031 mm
Resistance (Input-Output)2RIO 1012 1012 1012
Capacitance (Input-Output)2CIO f = 1 MHz 2.0 2.0 2.0 pF
Input Capacitance3CI4.0 4.0 4.0 pF
Notes:
1. The values in this table correspond to the nominal creepage and clearance values. VDE certifie s the clearance and
creepage limits as 4.7 mm minimum for the NB SOIC-16 and QSOP-16 packages and 8.5 mm minimum for the WB
SOIC-16 package. UL does not impose a clearance and creepage minimum for component-level certifications. CSA
certifies the clearance and creepage limits as 3.9 mm minimum for the NB SOIC-16, 3.6 mm for QSOP-16 packages
and 7.6 mm minimum for the WB SOIC-16 package.
2. To determine resistance and capacitance, the Si86xx is converted into a 2-terminal device. Pins 1–8 are shorted
together to form the first terminal and pins 9–16 are shorted together to form the second terminal. The parameters are
then measured between these two terminals.
3. Measured from input pin to ground.
Rev. 1.4 15
Si8640/41/42/45
Table 7. IEC 60664-1 (VDE 0844 Part 2) Ratings
Parameter Test Conditions Specification
NB SOIC-16 WB SOIC-16
Basic Isolation Group Material Group I I
Installation Classification
Rated Mains Volt ages < 150 VRMS I-IV I-IV
Rated Mains Volt ages < 300 VRMS I-III I-IV
Rated Mains Volt ages < 400 VRMS I-II I-III
Rated Mains Volt ages < 600 VRMS I-II I-III
Table 8. IEC 60747-5-2 Insulation Characteristics for Si86xxxx*
Parameter Symbol Test Condition Characteristic Unit
WB
SOIC-16 NB
SOIC-16
Maximum Working
Insulation Voltage VIORM 1200 630 Vpeak
Input to Output Test Voltage VPR
Method b1
(VIORM x1.875=V
PR, 100%
Production Test, tm= 1 sec,
Partial Discharge < 5 pC)
2250 1182
Transient Overvoltage VIOTM t = 60 sec 6000 6000 Vpeak
Pollution Degree
(DIN VDE 0110, Table 1) 22
Insulation Resistance at TS,
VIO =500V RS>109>109
*Note: Maintenance of the safety data is ensured by protective circuits. The Si86xxxx provides a climate classification of
40/125/21.
Table 9. IEC Safety Limiting Values1
Parameter Symbol Test Condition Min Typ Max Unit
WB
SOIC-16 NB
SOIC-16
Case Temperature TS 150 150 °C
Safety Input,
Output, or Supply
Current IS
JA = 100 °C/W (WB SOIC-16),
105 °C/W (NB SOIC-16, QSOP-16),
VI= 5.5 V, TJ=15C, T
A=2C 220 210 mA
Device Power
Dissipation2PD 275 275 mW
Notes:
1. Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 3 and 4.
2. The Si86xx is tested with VDD1 = VDD2 = 5.5 V, TJ = 150 ºC, CL = 15 pF, input a 150 Mbps 50% duty cycle square
wave.
16 Rev. 1.4
Si8640/41/42/45
Figure 3. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Te mperature per DIN EN 60747-5-2
Figure 4. (NB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Te mperature per DIN EN 60747-5-2
Table 10. Thermal Characteristics
Parameter Symbol Test Condition WB SOIC-16 NB SOIC-16
QSOP-16 Unit
IC Junction-to- Air T herm a l
Resistance JA 100 105 ºC/W
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
450
300
370
220
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
0 20015010050
500
400
200
100
0
Temperature (ºC)
Safety-Limiting Current (mA)
430
300
360
210
VDD1, VDD2 = 2.70 V
VDD1, VDD2 = 3.6 V
VDD1, VDD2 = 5.5 V
Rev. 1.4 17
Si8640/41/42/45
Table 11. Absolute Maximum Ratings1
Parameter Symbol Min Typ Max Unit
Storage Temperature2TSTG –65 150 ºC
Ambient Temper a tur e Unde r Bia s TA–40 125 ºC
Junction Temperature TJ——150°C
Supply Voltage VDD1, VDD2 –0.5 7.0 V
Input Voltage VI–0.5 VDD + 0.5 V
Output Voltage VO–0.5 VDD + 0.5 V
Output Current Drive Channel IO——10mA
Lead Solder Temperature (10 s) 260 ºC
Maximum Isolation (Input to Output) (1 sec)
NB SOIC-16, QSOP-16 4500 VRMS
Maximum Isolation (Input to Output) (1 sec)
WB SOIC-16 6500 VRMS
Notes:
1. Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation
should be restricted to conditions as specified in the operational sections of this data sheet. Exposure to absolute
maximum ratings for extended period s may degrade performance.
2. VDE certifies storage temperature from –40 to 150 °C.
18 Rev. 1.4
Si8640/41/42/45
2. Functional Description
2.1. Theory of Operation
The operation of an Si864x channel is analogous to that of an opto coupler, except an RF carrier is modulated
instead of light. This simple architecture provides a robust isolated data path and requires no special
considerations or initialization at start-up. A simplified block diagram for a single Si864x channel is shown in
Figure 5.
Figure 5. Simplified Channel Diagram
A channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier.
Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The
Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the
result to output B via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it
provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See
Figure 6 for more details.
Figure 6. Modulation Scheme
RF
OSCILLATOR
MODULATOR DEMODULATOR
A B
Semiconductor-
Based Isolation
Barrier
Transmitter Receiver
Input Signal
Output Signal
Modulation Signal
Rev. 1.4 19
Si8640/41/42/45
2.2. Eye Diagram
Figure 7 illustrates an eye-diagram taken on an Si8640. For the data source, the test used an Anritsu (MP1763C)
Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8640 were
captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of
150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.
Figure 7. Eye Diagram
20 Rev. 1.4
Si8640/41/42/45
3. Device Operation
Device behavior during start-up, normal operation, and shutdown is shown in Figure 8, where UVLO+ and UVLO-
are the positive-going and negative-going thresholds respectively. Refer to Table 12 to determine outputs when
power supply (VDD) is not present. Additionally, refer to Table 13 for logic conditions when enable pins are used.
Table 12. Si86xx Logic Operation
VI
Input1,2 EN
Input1,2,3,4 VDDI
State1,5,6 VDDO
State1,5,6 VO Output1,2 Comments
HH or NC P P H Enabled, normal operation.
LH or NC P P L
X7L P P Hi-Z8Disabled.
X7H or NC UP P L9
H9Upon transition of VDDI from unpowered to pow-
ered, VO returns to the same state as VI in less
than 1 µs.
X7L UP P Hi-Z8Disabled.
X7X7P UP Undetermined
Upon transition of VDDO from unpowered to p ow-
ered, VO returns to the same state as VI within
1 µs, if EN is in either the H or NC state. Upon
transition of VDDO from unpowered to powered,
VO returns to Hi-Z within 1 µs if EN is L.
Notes:
1. VDDI and VDDO are the input and output power supplies. VI and VO are the respective input and output terminals. EN
is the enable control input located on the same output side.
2. X = not applicable; H = Logic High; L = Logic Low; Hi-Z = High Impedance.
3. It is recommended that the enable inputs be connected to an external logic high or low level when the Si86xx is
operating in noisy environments.
4. No Connect (NC) replaces EN1 on Si8640/45. No Connect replaces EN2 on the Si8645. No Connects are not internally
connected and can be left floating, tied to VDD, or tied to GND.
5. “Powered” state (P) is defined as 2.5 V < VDD < 5.5 V.
6. “Unpowered” state (UP) is defined as VDD = 0 V.
7. Note that an I/O can power the die for a given side through an internal diode if its source has adequate current.
8. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is
disabled (EN = 0).
9. See "5. Ordering Guide" on page 26 for details. This is the selectable fail-safe operating mode (ordering option). Some
devices have default output state = H, and some have default output state = L, depending on the ordering part number
(OPN). For default high devices, the data channels have pull-ups on inputs/outputs. For default low devices, the data
channels have pull-downs on inputs/outputs.
Rev. 1.4 21
Si8640/41/42/45
Table 13. Enable Input Truth1
P/N EN11,2 EN21,2 Operation
Si8640 H Outputs B1, B2, B3, B4 are enabled and follow the input state.
L Outputs B1, B2, B3, B4 are disabled and in high impedance state.3
Si8641 H X Output A4 enabled and follows the input state.
L X Output A4 disabled and in high impedance state.3
X H Outputs B1, B2, B3 are enabled and follow the input state.
X L Outputs B1, B2, B3 are disabled and in high impedance state.3
Si8642 H X Outputs A3 and A4 are enabled and follow the input state.
L X Outputs A3 and A4 are disabled and in high impedance state.3
X H Outputs B1 and B2 are enabled and follow the input state.
X L Outputs B1 and B2 are disabled and in high impedance state.3
Si8645 Outputs B1, B2, B3, B4 are enabled and follow the input state.
Notes:
1. Enable inputs EN1 and EN2 can be used for multiplexing, for clock sync, or other output control. EN1, EN2 logic
operation is summarized for each isolator product in Table 13. Thes e inputs are internally pulled-up to local VDD by a
2 µA current source allowing them to be connected to an external logic level (high or low) or left floating. To minimize
noise coupling, do not connect circuit traces to EN1 or EN2 if they are left floating. If EN1, EN2 are unused, it is
recommended they be connected to an external logic level, especially if the Si86xx is operating in a noisy environment.
2. X = not applicable; H = Logic High; L = Logic Low.
3. When using the enable pin (EN) function, the output pin state is driven into a high-impedance state when the EN pin is
disabled (EN = 0).
22 Rev. 1.4
Si8640/41/42/45
3.1. Device Startup
Outputs are held low during powerup until VDD is above the UVLO threshold for time period tSTART. Following
this, the outputs follow the states of inputs.
3.2. Undervoltage Lockout
Undervoltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or
when VDD is below its specified operating circuits range. Both Side A and Side B each have their own
undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A
unconditionally enters UVLO when VDD1 falls below VDD1(UVLO–) and exits UVLO when VDD1 rises above
VDD1(UVLO+). Side B operates the same as Side A with respect to its VDD2 supply.
Figure 8. Device Behavior during Normal Operation
INPUT
VDD1
UVLO-
VDD2
UVLO+
UVLO-
UVLO+
OUTPUT
tSTART tSTART tSTART tPHL tPLH
tSD
Rev. 1.4 23
Si8640/41/42/45
3.3. Layout Recommendations
To ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 VAC) must be physically
separated from the safety extra-low voltage circuits (SELV is a circuit with <30 VAC) by a certain distance
(creepage/clear ance). I f a com ponent, such as a digital isolator, straddles this isolation barrier, it must meet those
creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating
(commonly referred to as working voltage protection). Table 5 on page 14 and Table 6 on page 14 detail the
working voltage and creepage/clearance capabilities of the Si86xx. These tables also detail the component
standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for
end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.)
requirements before starting an y des ign tha t uses a digital isolator.
3.3.1. Supply Bypass
The Si864x family requires a 0.1 µF bypass capacitor between VDD1 and GND1 and VDD2 and GND2. The
capacitor should be placed as close as possible to the package. To enhance the robustness of a design, the user
may also include resistors (50–300 ) in series with the inputs and outputs if the system is excessively noisy.
3.3.2. Output Pin Termination
The nominal output impedance of an isolator driver channel is approximately 50 , ±40%, which is a combination
of the value of the on-chip series termination resistor and cha nnel resist ance of the output driver FET. When driving
loads where transmission line effect s will be a factor, output pins should be appropriately terminated with controlled
impedance PCB traces.
3.4. Fail-Safe Operating Mode
Si86xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input
supply is unpowered) can either be a logic high or logic lo w when the outp ut supply is powere d. See Table 12 on
page 20 and "5. Ordering Guide" on page 26 for more information.
24 Rev. 1.4
Si8640/41/42/45
3.5. Typical Performance Characteristics
The typical performance ch ar acteristics depicted in the following diag ra ms are for info rmatio n p urpose s only. Refer
to Tables 2, 3, and 4 for actual specification limits.
Figure 9. Si8640/45 Typical VDD1 Supply
Current vs. Data Rate 5, 3.3, and 2.5 V
Operation
Figure 10. Si8641 Typical VDD1 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
Figure 11. Si8642 Typical VDD1 or VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.5 V
Operation (15 pF Load)
Figure 12. Si8640/45 Typical VDD2 Supply
Current vs. Data Rate 5, 3.3, and 2.5 V
Figure 13. Si8641 Typical VDD2 Supply Current
vs. Data Rate 5, 3.3, and 2.5 V Operation
(15 pF Load)
Figure 14. Propagation Delay vs. Temperature
0.0
5.0
10.0
15.0
20.0
25.0
30.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Data Rate (Mbps)
5V
3.3V
2.5V
0.0
5.0
10.0
15.0
20.0
25.0
30.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Current (mA)
Data Rate (Mbps)
5V
3.3V
2.5V
0.0
5.0
10.0
15.0
20.0
25.0
30.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Current (mA)
Data Rate (Mbps)
5V
3.3V
2.5V
0.0
5.0
10.0
15.0
20.0
25.0
30.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Current (mA)
Data Rate (Mbps)
5V
3.3V
2.5V
0.0
5.0
10.0
15.0
20.0
25.0
30.0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
Current (mA)
Data Rate (Mbps)
5V
3.3V
2.5V
5.0
6.0
7.0
8.0
9.0
10.0
-40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100110120
Delay (ns)
Temperature (Degrees C)
Rev. 1.4 25
Si8640/41/42/45
4. Pin Descriptions
Name SOIC-16 Pin# Type Description
VDD1 1 Supply Side 1 power supply.
GND1 21Ground Side 1 ground.
A1 3 Digital Input Side 1 digital input.
A2 4 Digital Input Side 1 digital input.
A3 5 Digital I/O Side 1 digital input or output.
A4 6 Digital I/O Side 1 digital input or output.
EN1/NC27 Digital Input Side 1 active high enable. NC on Si8640/45.
GND1 81Ground Side 1 ground.
GND2 91Ground Side 2 ground.
EN2/NC210 Digital Input Side 2 active high enable. NC on Si8645.
B4 11 Digital I/O Side 2 digital input or output.
B3 12 Digital I/O Side 2 digital input or output.
B2 13 Digital Output Side 2 digital output.
B1 14 Digital Output Side 2 digital output.
GND2 151Ground Side 2 ground.
VDD2 16 Supply Side 2 power supply.
Notes:
1. For narrow-body devices, Pin 2 and Pin 8 GND must be externally connected to respective ground. Pin 9 and Pi n 15
must also be connected to external ground.
2. No Connect. These pins are not internally connected. They can be left floating, tied to VDD or tied to GND.
VDD1
GND1
A1
A3
A4
EN1
GND1
A2
VDD2
GND2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR
RF
RCVR
Si8641
VDD1
GND1
A1
A3
A4
NC
GND1
A2
VDD2
GND2
B2
B1
B4
B3
GND2
EN2/NC
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
Si8640/45
VDD1
GND1
A1
A3
A4
EN1
GND1
A2
VDD2
GND2
B2
B1
B4
B3
GND2
EN2
I
s
o
l
a
t
i
o
n
RF
XMITR RF
RCVR
RF
XMITR RF
RCVR
RF
RCVR
RF
XMITR
RF
RCVR
RF
XMITR
RF
RCVR
Si8642
26 Rev. 1.4
Si8640/41/42/45
5. Ordering Guide
Table 14. Ordering Guide for Valid OPNs1,2
Ordering Part
Number (OPN) Number
of Inputs
VDD1
Side
Number
of Inputs
VDD2
Side
Max Data
Rate
(Mbps)
Default
Output
State
Isolation
rating (kV) Temp (°C) Package
Si8640BC-B-IS1 4 0 150 Low 3.75 –40 to 125 °C NB SOIC-16
Si8640EC-B-IS1 4 0 150 High 3.75 –40 to 125 °C NB SOIC-16
Si8641BC-B-IS1 3 1 150 Low 3.75 –40 to 125 °C NB SOIC-16
Si8641EC-B-IS1 3 1 150 High 3.75 –40 to 125 °C NB SOIC-16
Si8642BC-B-IS1 2 2 150 Low 3.75 –40 to 125 °C NB SOIC-16
Si8642EC-B-IS1 2 2 150 High 3.75 –40 to 125 °C NB SOIC-16
Si8642BA-C-IU 2 2 150 Low 1.0 –40 to 125 °C QSOP-16
Si8645BA-C-IU 4 0 150 Low 1.0 –40 to 125 °C QSOP-16
Si8641BA-C-IU 3 1 150 Low 1.0 –40 to 125 °C QSOP-16
Si8645BC-B-IS1 4 0 150 Low 3.75 –40 to 125 °C NB SOIC-16
Si8640BD-B-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8640ED-B-IS 4 0 150 High 5.0 –40 to 125 °C WB SOIC-16
Si8641BD-B-IS 3 1 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8641ED-B-IS 3 1 150 High 5.0 –40 to 125 °C WB SOIC-16
Si8642BD-B-IS 2 2 150 Low 5.0 –40 to 125 °C WB SOIC-16
Si8642ED-B-IS 2 2 150 High 5.0 –40 to 125 °C WB SOIC-16
Si8645BD-B-IS 4 0 150 Low 5.0 –40 to 125 °C WB SOIC-16
Notes:
1. All packages are RoHS-compliant with peak reflow temperatures of 260 °C according to the JEDEC industry standard
classifications and peak so lder temperatures.
Moisture sensitivity level is MSL3 for wide-body SOIC-16 packages.
Moisture sensitivity level is MSL2A for narrow-body SOIC-16 packages.
Moisture sensitivity level is MSL2A for QSOP-16 packages.
2. All devices >1 kVRMS are AEC-Q100 qualified.
Rev. 1.4 27
Si8640/41/42/45
6. Package Outline: 16-Pin Wide Body SOIC
Figure 15 illustrates the package details for the Si864x Digital Isolator. Table 15 lists the values for the dimensions
shown in the illustration.
Figure 15. 16-Pin Wide Body SOIC
28 Rev. 1.4
Si8640/41/42/45
Table 15. Package Diagram Dimensions
Dimension Min Max
A 2.65
A1 0.10 0.30
A2 2.05
b 0.31 0.51
c 0.20 0.33
D 10.30 BSC
E 10.30 BSC
E1 7.50 BSC
e1.27 BSC
L 0.40 1.27
h 0.25 0.75
aaa —0.10
bbb 0.33
ccc 0.10
ddd 0.25
eee 0.10
fff 0.20
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to JEDEC Outline MS-013, Variation AA.
4. Recommended reflow profile per JEDEC J-STD-020C specification for
small body, lead-free components.
Rev. 1.4 29
Si8640/41/42/45
7. Land Pattern: 16-Pin Wide-Body SOIC
Figure 16 illustrates the recommended land pattern details for the Si864x in a 16-pin wide-body SOIC. Table 16
lists the values for the dimensions shown in the illustration.
Figure 16. 16-Pin SOIC Land Pattern
Table 16. 16-Pin Wide Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 9.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.90
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P1032X265-16AN
for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
30 Rev. 1.4
Si8640/41/42/45
8. Package Outline: 16-Pin Narrow Body SOIC
Figure 17 illustrates the package details for the Si864x in a 16-pin narrow-body SOIC (SO-16). Table 17 lists the
values for the dimensions shown in the illustration.
Figure 17. 16-pin Small Outline Integrated Circuit (SOIC) Package
Rev. 1.4 31
Si8640/41/42/45
Table 17. Package Diagram Dimensions
Dimension Min Max
A 1.75
A1 0.10 0.25
A2 1.25
b0.310.51
c0.170.25
D 9.90 BSC
E 6.00 BSC
E1 3.90 BSC
e 1.27 BSC
L0.401.27
L2 0.25 BSC
h0.250.50
θ
aaa 0.10
bbb 0.20
ccc 0.10
ddd 0.25
Notes:
1. All dimensions shown are in millimeters (mm) unl ess otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MS-012, Variation
AC.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
32 Rev. 1.4
Si8640/41/42/45
9. Land Pattern: 16-Pin Narrow Body SOIC
Figure 18 illustrates the recommended land pattern details for the Si864x in a 16-pin narrow-body SOIC. Table 18
lists the values for the dimensions shown in the illustration.
Figure 18. 16-Pin Narrow Body SOIC PCB Land Pattern
Table 18. 16-Pin Narrow Body SOIC Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 1.27
X1 Pad Width 0.60
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X165-16N
for Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
Rev. 1.4 33
Si8640/41/42/45
10. Package Outline: 16-Pin QSOP
Figure 19 illustrates the package details for the Si864x in a 16-pin QSOP package. Table 19 lists the values for the
dimensions shown in the illustration.
Figure 19. 16-pin QSOP Package
34 Rev. 1.4
Si8640/41/42/45
Table 19. Package Diagram Dimensions
Dimension Min Max
A 1.75
A1 0.10 0.25
A2 1.25
b 0.20 0.30
c 0.17 0.25
D 4.89 BSC
E 6.00 BSC
E1 3.90 BSC
e 0.635 BSC
L 0.40 1.27
L2 0.25 BSC
h 0.25 0.50
θ
aaa 0.10
bbb 0.20
ccc 0.10
ddd 0.25
Notes:
1. All dimensions shown are in millimeters (mm) unl ess otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. This drawing conforms to the JEDEC Solid State Outline MO-137, Variation AB.
4. Recommended card reflow profile is per the JEDEC/IPC J-STD-020D specification
for Small Body Components.
Rev. 1.4 35
Si8640/41/42/45
11. Land Pattern: 16-Pin QSOP
Figure 20 illustrates the recommended land pattern details for the Si864x in a 16-pin narrow-body SOIC. Table 20
lists the values for the dimensions shown in the illustration.
Figure 20. 16-Pin QSOP PCB Land Pattern
Table 20. 16-Pin QSOP Land Pattern Dimensions
Dimension Feature (mm)
C1 Pad Column Spacing 5.40
E Pad Row Pitch 0.635
X1 Pad Width 0.40
Y1 Pad Length 1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOP63P602X173-16N for
Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05mm is assumed.
36 Rev. 1.4
Si8640/41/42/45
12. Top Markings
12.1. Top Marking (16-Pin Wide Body SOIC)
12.2. Top Marking Explanation (16-Pin Wide Body SOIC)
Line 1 Marking: Base Pa rt Number
Ordering Options
(See Ordering Gui de fo r mo re
information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)*
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default ou tp ut = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default ou tp ut = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3.75 kV; D = 5.0 kV
Line 2 Marking: YY = Year
WW = Workweek Assigned by assembly subcontractor. Corresponds to the
year and workweek of the mold date.
RTTTTT = Mfg Code Manufacturing code from assembly house
“R” indicates revision
Line 3 Marking: Circle = 1.5 mm Diameter
(Center-Justified) “e3” Pb-Free Symbol
Country of Origin ISO Code
Abbreviation TW = Taiwan
*Note: Si8645 has 0 reverse channels.
Si86XYSV
YYWWRTTTTT
TW
e3
Rev. 1.4 37
Si8640/41/42/45
12.3. Top Marking (16-Pin Narrow Body SOIC)
12.4. Top Marking Explanation (16-Pin Narrow Body SOIC)
Line 1 Marking: Base Part Number
Ordering Options
(See Ordering Guide for more
information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (4 , 3, 2, 1)
Y = # of reverse channels (2, 1, 0)*
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default output = low)
D = 1 Mbps (default output = high)
E = 150 Mbp s (default output = high)
V = Insulation rating
A = 1 kV; B = 2.5 kV; C = 3. 75 kV
Line 2 Marking: Circle = 1.2 mm Diameter “e3” Pb-Free Symbol
YY = Year
WW = Work Week Assigned by th e Assembly House. Corresponds to the year
and work week of the mold date.
RTTTTT = Mfg Code Manufacturing code from assembly house
“R” indicates revision
Circle = 1.2 mm diameter “e3” Pb-Free Symbol.
*Note: Si8645 has 0 reverse channels.
Si86XYSV
YYWWRTTTTT
e3
38 Rev. 1.4
Si8640/41/42/45
12.5. Top Marking (16-Pin QSOP)
12.6. Top Marking Explanation (16-Pin QSOP)
Line 1 Marking: Base Part Number
Ordering Options
(See Ordering Guide for more
information).
Si86 = Isolator product series
XY = Channel Configuration
X = # of data channels (4, 3, 2, 1)
Y = # of reverse channels (2, 1, 0)*
S = Speed Grade (max data rate) and operating mode:
A = 1 Mbps (default output = low)
B = 150 Mbps (default ou tp ut = low)
D = 1 Mbps (default output = high)
E = 150 Mbps (default ou tp ut = high)
V = Insulation rating
A=1kV; B=2.5kV; C=3.75kV
Line 2 Marking: Circle = 1.2 mm Diameter “e3” Pb-Free Symbol
YY = Year
WW = Work Week Assigned by the Assembly House. Correspo nds to the year
and work week of the mold date.
RTTTTT = Mfg Code Manufacturing code from assembly house
“R” indicates revision
Circle = 1.2 mm diameter “e3” Pb-Free Symbol.
*Note: Si8645 has 0 reverse channels.
Si86XYSV
YYWWRTTTTT
e3
Rev. 1.4 39
Si8640/41/42/45
DOCUMENT CHANGE LIST
Revision 0.1 to Revision 0.2
Added chip graphics on page 1.
Moved Tables 1 and 11 to page 17.
Updated Table 6, “Insulation and Safety-Related
Specifications,” on page 14.
Updated Table 8, “IEC 60747-5-2 Insulation
Characteristics for Si86xxxx*,” on page 15.
Moved Table 12 to page 20.
Moved Table 13 to page 21.
Moved “Typical Performance Characteristics” to
page 24.
Updated "4. Pin Descriptions" on page 25.
Updated "5. Ordering Guide" on page 26.
Revision 0.2 to Revision 1.0
Reordered spec tables to conform to new
convention.
Removed “pending” throughout document.
Revision 1.0 to Revision 1.1
Updated High Leve l Out pu t Voltage VOH to 3.1 V in
Table 3, “Electrical Characteristics,” on page 8.
Updated High Leve l Out pu t Voltage VOH to 2.3 V in
Table 4, “Electrical Characteristics,” on page 11.
Revision 1.1 to Revision 1.2
Updated Table 14, “Ordering Guide for Valid
OPNs1,2,” on page 26.
Updated Note 1 with MSL2A.
Updated Current Revision Devices.
Revision 1.2 to Revision 1.3
Updated "5. Ordering Guide" on page 26 to include
MSL2A.
Revision 1.3 to Revision 1.4
Updated Table 11 on page 17.
Added junction temperature spec.
Updated "3.3.1. Supply Bypass" on page 23.
Removed “3.3.2 Pin Connections” on page 23.
Updated "4. Pin Descriptions" on page 25.
Updated table notes.
Updated "5. Ordering Guide" on page 26.
Removed Rev A devices.
Updated "6. Package Outline: 16-Pin Wide Body
SOIC" on page 27.
Updated Top Marks.
Added revision description.
40 Rev. 1.4
Si8640/41/42/45
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademar ks of their respective holders.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features
or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, rep-
resentation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation conse-
quential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to
support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where per-
sonal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized ap-
plication, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.