Product
Folder
Sample &
Buy
Technical
Documents
Tools &
Software
Support &
Community
Reference
Design
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
AM437x Sitara™ Processors
1 Device Overview
1
1.1 Features
1
Highlights
Sitara™ ARM®Cortex®-A9 32-Bit RISC
Processor With Processing Speed up to
1000 MHz
NEON™ SIMD Coprocessor and Vector
Floating Point (VFPv3) Coprocessor
32KB of Both L1 Instruction and Data Cache
256KB of L2 Cache or L3 RAM
32-Bit LPDDR2, DDR3, and DDR3L Support
General-Purpose Memory Support (NAND,
NOR, SRAM) Supporting up to 16-Bit ECC
SGX530 Graphics Engine
Display Subsystem
Programmable Real-Time Unit Subsystem and
Industrial Communication Subsystem (PRU-
ICSS)
Real-Time Clock (RTC)
Up to Two USB 2.0 High-Speed Dual-Role
(Host or Device) Ports With Integrated PHY
10, 100, and 1000 Ethernet Switch Supporting
up to Two Ports
Serial Interfaces:
Two Controller Area Network (CAN) Ports
Six UARTs, Two McASPs, Five McSPIs,
Three I2C Ports, One QSPI, and One HDQ
or 1-Wire
Security
Crypto Hardware Accelerators (AES, SHA,
RNG, DES, and 3DES)
Secure Boot (Avaliable Only on AM437x
High-Security [AM437xHS] Devices)
Two 12-Bit Successive Approximation Register
(SAR) ADCs
Up to Three 32-Bit Enhanced Capture (eCAP)
Modules
Up to Three Enhanced Quadrature Encoder
Pulse (eQEP) Modules
Up to Six Enhanced High-Resolution PWM
(eHRPWM) Modules
MPU Subsystem
ARM Cortex-A9 32-Bit RISC Microprocessor
With Processing Speed up to 1000 MHz
32KB of Both L1 Instruction and Data Cache
256KB of L2 Cache (Option to Configure as L3
RAM)
256KB of On-Chip Boot ROM
64KB of On-Chip RAM
Secure Control Module (SCM) (Avaliable Only
on AM437xHS Devices)
Emulation and Debug
JTAG
Embedded Trace Buffer
Interrupt Controller
On-Chip Memory (Shared L3 RAM)
256KB of General-Purpose On-Chip Memory
Controller (OCMC) RAM
Accessible to All Masters
Supports Retention for Fast Wakeup
Up to 512KB of Total Internal RAM
(256KB of ARM Memory Configured as L3 RAM
+ 256KB of OCMC RAM)
External Memory Interfaces (EMIFs)
DDR Controllers:
LPDDR2: 266-MHz Clock (LPDDR2-533
Data Rate)
DDR3 and DDR3L: 400-MHz Clock (DDR-
800 Data Rate)
32-Bit Data Bus
2GB of Total Addressable Space
Supports One x32, Two x16, or Four x8
Memory Device Configurations
General-Purpose Memory Controller (GPMC)
Flexible 8- and 16-Bit Asynchronous Memory
Interface With up to Seven Chip Selects (NAND,
NOR, Muxed-NOR, and SRAM)
Uses BCH Code to Support 4-, 8-, or 16-Bit
ECC
Uses Hamming Code to Support 1-Bit ECC
Error Locator Module (ELM)
Used With the GPMC to Locate Addresses of
Data Errors From Syndrome Polynomials
Generated Using a BCH Algorithm
Supports 4-, 8-, and 16-Bit Per 512-Byte Block
Error Location Based on BCH Algorithms
Programmable Real-Time Unit Subsystem and
Industrial Communication Subsystem (PRU-ICSS)
Supports Protocols such as EtherCAT®,
PROFIBUS®, PROFINET®, and EtherNet/IP™,
EnDat 2.2, and More
Two Programmable Real-Time Units (PRUs)
Subsystems With Two PRU Cores Each
Each Core is a 32-Bit Load and Store RISC
Processor Capable of Running at 200 MHz
2
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device Overview Copyright © 2014–2016, Texas Instruments Incorporated
12KB (PRU-ICSS1), 4KB (PRU-ICSS0) of
Instruction RAM With Single-Error Detection
(Parity)
8KB (PRU-ICSS1), 4KB (PRU-ICSS0) of
Data RAM With Single-Error Detection
(Parity)
Single-Cycle 32-Bit Multiplier With 64-Bit
Accumulator
Enhanced GPIO Module Provides Shift-In
and Shift-Out Support and Parallel Latch on
External Signal
12KB (PRU-ICSS1 Only) of Shared RAM With
Single-Error Detection (Parity)
Three 120-Byte Register Banks Accessible by
Each PRU
Interrupt Controller Module (INTC) for Handling
System Input Events
Local Interconnect Bus for Connecting Internal
and External Masters to the Resources Inside
the PRU-ICSS
Peripherals Inside the PRU-ICSS
One UART Port With Flow Control Pins,
Supports up to 12 Mbps
One eCAP Module
Two MII Ethernet Ports that Support
Industrial Ethernet, such as EtherCAT
One MDIO Port
Industrial Communication is Supported by Two
PRU-ICSS Subsystems
Power, Reset, and Clock Management (PRCM)
Module
Controls the Entry and Exit of Deep-Sleep
Modes
Responsible for Sleep Sequencing, Power
Domain Switch-Off Sequencing, Wake-Up
Sequencing, and Power Domain Switch-On
Sequencing
Clocks
Integrated High-Frequency Oscillator Used
to Generate a Reference Clock (19.2, 24, 25,
and 26 MHz) for Various System and
Peripheral Clocks
Supports Individual Clock Enable and
Disable Control for Subsystems and
Peripherals to Facilitate Reduced Power
Consumption
Five ADPLLs to Generate System Clocks
(MPU Subsystem, DDR Interface, USB, and
Peripherals [MMC and SD, UART, SPI, I2C],
L3, L4, Ethernet, GFX [SGX530], and LCD
Pixel Clock)
Power
Two Nonswitchable Power Domains (RTC
and Wake-Up Logic [WAKE-UP])
Three Switchable Power Domains (MPU
Subsystem, SGX530 [GFX], Peripherals and
Infrastructure [PER])
Dynamic Voltage Frequency Scaling (DVFS)
Real-Time Clock (RTC)
Real-Time Date (Day, Month, Year, and Day of
Week) and Time (Hours, Minutes, and Seconds)
Information
Internal 32.768-kHz Oscillator, RTC Logic, and
1.1-V Internal LDO
Independent Power-On-Reset
(RTC_PWRONRSTn) Input
Dedicated Input Pin (RTC_WAKEUP) for
External Wake Events
Programmable Alarm Can Generate Internal
Interrupts to the PRCM for Wakeup or Cortex-
A9 for Event Notification
Programmable Alarm Can Be Used With
External Output (RTC_PMIC_EN) to Enable the
Power-Management IC to Restore Non-RTC
Power Domains
Peripherals
Up to Two USB 2.0 High-Speed Dual-Role
(Host or Device) Ports With Integrated PHY
Up to Two Industrial Gigabit Ethernet MACs
(10, 100, and 1000 Mbps)
Integrated Switch
Each MAC Supports MII, RMII, and RGMII
and MDIO Interfaces
Ethernet MACs and Switch Can Operate
Independent of Other Functions
IEEE 1588v2 Precision Time Protocol (PTP)
Up to Two CAN Ports
Supports CAN Version 2 Parts A and B
Up to Two Multichannel Audio Serial Ports
(McASPs)
Transmit and Receive Clocks up to 50 MHz
Up to Four Serial Data Pins Per McASP Port
With Independent TX and RX Clocks
Supports Time Division Multiplexing (TDM),
Inter-IC Sound (I2S), and Similar Formats
Supports Digital Audio Interface
Transmission (SPDIF, IEC60958-1, and
AES-3 Formats)
FIFO Buffers for Transmit and Receive
(256 Bytes)
Up to Six UARTs
All UARTs Support IrDA and CIR Modes
All UARTs Support RTS and CTS Flow
Control
UART1 Supports Full Modem Control
Up to Five Master and Slave McSPIs
McSPI0–McSPI2 Support up to Four Chip
Selects
3
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device OverviewCopyright © 2014–2016, Texas Instruments Incorporated
McSPI3 and McSPI4 Support up to Two
Chip Selects
Up to 48 MHz
One Quad-SPI
Supports eXecute In Place (XIP) from Serial
NOR FLASH
One Dallas 1-Wire®and HDQ Serial Interface
Up to Three MMC, SD, and SDIO Ports
1-, 4-, and 8-Bit MMC, SD, and SDIO Modes
1.8- or 3.3-V Operation on All Ports
Up to 48-MHz Clock
Supports Card Detect and Write Protect
Complies With MMC4.3 and SD and SDIO
2.0 Specifications
Up to Three I2C Master and Slave Interfaces
Standard Mode (up to 100 kHz)
Fast Mode (up to 400 kHz)
Up to Six Banks of General-Purpose I/O (GPIO)
32 GPIOs per Bank (Multiplexed With Other
Functional Pins)
GPIOs Can be Used as Interrupt Inputs (up
to Two Interrupt Inputs per Bank)
Up to Three External DMA Event Inputs That
Can Also be Used as Interrupt Inputs
Twelve 32-Bit General-Purpose Timers
DMTIMER1 is a 1-ms Timer Used for
Operating System (OS) Ticks
DMTIMER4–DMTIMER7 are Pinned Out
One Public Watchdog Timer
One Free-Running, High-Resolution 32-kHz
Counter (synctimer32K)
One Secure Watchdog Timer (Avaliable Only on
AM437xHS Devices)
SGX530 3D Graphics Engine
Tile-Based Architecture Delivering up to 20M
Poly/sec
Universal Scalable Shader Engine is a
Multithreaded Engine Incorporating Pixel and
Vertex Shader Functionality
Advanced Shader Feature Set in Excess of
Microsoft VS3.0, PS3.0, and OGL2.0
Industry Standard API Support of Direct3D
Mobile, OGL-ES 1.1 and 2.0, and OpenVG
1.0
Fine-Grained Task Switching, Load
Balancing, and Power Management
Advanced Geometry DMA-Driven Operation
for Minimum CPU Interaction
Programmable High-Quality Image Anti-
Aliasing
Fully Virtualized Memory Addressing for OS
Operation in a Unified Memory Architecture
Display Subsystem
Display Modes
Programmable Pixel Memory Formats
(Palletized: 1-, 2-, 4-, and 8-Bits Per
Pixel; RGB 16- and 24-Bits Per Pixel; and
YUV 4:2:2)
256- × 24-Bit Entries Palette in RGB
Up to 2048 × 2048 Resolution
Display Support
Four Types of Displays Are Supported:
Passive and Active Colors; Passive and
Active Monochromes
4- and 8-Bit Monochrome Passive Panel
Interface Support (15 Grayscale Levels
Supported Using Dithering Block)
RGB 8-Bit Color Passive Panel Interface
Support (3,375 Colors Supported for
Color Panel Using Dithering Block)
RGB 12-, 16-, 18-, and 24-Bit Active
Panel Interface Support (Replicated or
Dithered Encoded Pixel Values)
Remote Frame Buffer (Embedded in the
LCD Panel) Support Through the RFBI
Module
Partial Refresh of the Remote Frame
Buffer Through the RFBI Module
Partial Display
Multiple Cycles Output Format on 8-, 9-,
12-, and 16-Bit Interface (TDM)
Signal Processing
Overlay and Windowing Support for One
Graphics Layer (RGB or CLUT) and Two
Video Layers (YUV 4:2:2, RGB16, and
RGB24)
RGB 24-Bit Support on the Display
Interface, Optionally Dithered to RGB
18Bit Pixel Output Plus 6-Bit Frame Rate
Control (Spatial and Temporal)
Transparency Color Key (Source and
Destination)
Synchronized Buffer Update
Gamma Curve Support
Multiple-Buffer Support
Cropping Support
Color Phase Rotation
Two 12-Bit SAR ADCs (ADC0, ADC1)
867K Samples Per Second
Input Can Be Selected from Any of the Eight
Analog Inputs Multiplexed Through an 8:1
Analog Switch
ADC0 Can Be Configured to Operate as a
4, 5-, or 8-Wire Resistive Touch Screen
Controller (TSC)
Up to Three 32-Bit eCAP Modules
Configurable as Three Capture Inputs or
Three Auxiliary PWM Outputs
Up to Six Enhanced eHRPWM Modules
4
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device Overview Copyright © 2014–2016, Texas Instruments Incorporated
Dedicated 16-Bit Time-Base Counter With
Time and Frequency Controls
Configurable as Six Single-Ended, Six Dual-
Edge Symmetric, or Three Dual-Edge
Asymmetric Outputs
Up to Three 32-Bit eQEP Modules
Device Identification
Factory Programmable Electrical Fuse Farm
(FuseFarm)
Production ID
Device Part Number (Unique JTAG ID)
Device Revision (Readable by Host ARM)
Security Keys (Avaliable Only on AM437xHS
Devices)
Feature Identification
Debug Interface Support
JTAG and cJTAG for ARM (Cortex-A9 and
PRCM) and PRU-ICSS Debug
Supports Real-Time Trace Pins (for Cortex-A9)
64-KB Embedded Trace Buffer (ETB)
Supports Device Boundary Scan
Supports IEEE 1500
DMA
On-Chip Enhanced DMA Controller (EDMA) Has
Three Third-Party Transfer Controllers (TPTCs)
and One Third-Party Channel Controller
(TPCC), Which Supports up to 64
Programmable Logical Channels and Eight
QDMA Channels
EDMA is Used for:
Transfers to and from On-Chip Memories
Transfers to and from External Storage
(EMIF, GPMC, and Slave Peripherals)
InterProcessor Communication (IPC)
Integrates Hardware-Based Mailbox for IPC and
Spinlock for Process Synchronization Between
the Cortex-A9, PRCM, and PRU-ICSS
Boot Modes
Boot Mode is Selected Through Boot
Configuration Pins Latched on the Rising Edge
of the PWRONRSTn Reset Input Pin
Camera
Dual Port 8- and 10-Bit BT656 Interface
Dual Port 8- and 10-Bit Including External Syncs
Single Port 12-Bit
YUV422/RGB422 and BT656 Input Format
RAW Format
Pixel Clock Rate up to 75 MHz
Package
491-Pin BGA Package (17-mm × 17-mm) (ZDN
Suffix), 0.65-mm Ball Pitch With Via Channel
Array Technology to Enable Low-Cost Routing
1.2 Applications
Patient Monitoring
Navigation Equipment
Industrial Automation
Portable Data Terminals
Bar Code Scanners
Point of Service
Portable Mobile Radios
Test and Measurement
5
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device OverviewCopyright © 2014–2016, Texas Instruments Incorporated
(1) For more information, see Section 7,Mechanical, Packaging, and Orderable Information.
1.3 Description
The TI AM437x high-performance processors are based on the ARM Cortex-A9 core.
The processors are enhanced with 3D graphics acceleration for rich graphical user interfaces, as well as a
coprocessor for deterministic, real-time processing including industrial communication protocols, such as
EtherCAT, PROFIBUS, EnDat, and others. The devices support high-level operating systems (HLOS).
Linux®is available free of charge from TI. Other HLOSs are available from TI's Design Network and
ecosystem partners.
These devices offer an upgrade to systems based on lower performance ARM cores and provide updated
peripherals, including memory options such as QSPI-NOR and LPDDR2.
The processors contain the subsystems shown in Figure 1-1, and a brief description of each follows.
The processor subsystem is based on the ARM Cortex-A9 core, and the PowerVR SGX™ graphics
accelerator subsystem provides 3D graphics acceleration to support display and advanced user interfaces.
The programmable real-time unit subsystem and industrial communication subsystem (PRU-ICSS) is
separate from the ARM core and allows independent operation and clocking for greater efficiency and
flexibility. The PRU-ICSS enables additional peripheral interfaces and real-time protocols such as
EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink, Sercos, EnDat, and others. The
PRU-ICSS enables EnDat and another industrial communication protocol in parallel. Additionally, the
programmable nature of the PRU-ICSS, along with their access to pins, events and all system-on-chip
(SoC) resources, provides flexibility in implementing fast real-time responses, specialized data handling
operations, custom peripheral interfaces, and in off-loading tasks from the other processor cores of the
SoC.
High-performance interconnects provide high-bandwidth data transfers for multiple initiators to the internal
and external memory controllers and to on-chip peripherals. The device also offers a comprehensive
clock-management scheme.
One on-chip analog to digital converter (ADC0) can couple with the display subsystem to provide an
integrated touch-screen solution. The other ADC (ADC1) can combine with the pulse width module to
create a closed-loop motor control solution.
The RTC provides a clock reference on a separate power domain. The clock reference enables a battery-
backed clock reference.
The camera interface offers configuration for a single- or dual-camera parallel port.
Cryptographic acceleration is available in every AM437x device. Secure boot is available only on
AM437xHS devices for anticloning and illegal software update protection. For more information about
secure boot and HS devices, contact your TI sales representative.
Table 1-1. Device Information(1)
PART NUMBER PACKAGE BODY SIZE
AM4372ZDN NFBGA (491) 17.0 mm × 17.0 mm
AM4376ZDN NFBGA (491) 17.0 mm × 17.0 mm
AM4377ZDN NFBGA (491) 17.0 mm × 17.0 mm
AM4378ZDN NFBGA (491) 17.0 mm × 17.0 mm
AM4379ZDN NFBGA (491) 17.0 mm × 17.0 mm
ARM
Cortex-A9
Up to 1000 MHz
32KB, 32KB L1
256KB L2, L3 RAM
64KB RAM
Graphics
PowerVR
SGX
3D GFX
20 MTri/s
Crypto
256KB
L3 RAM
Touch Screen Controller (TSC)(A)
Display
Quad Core
PRU-ICSS
EtherCAT,
PROFINET,
EtherNet/IP,
EnDat
and more
L3 and L4 Interconnect
I C x3
2
UART x6
System Interface
EDMA
Timers x12
WDT
RTC
eHRPWM x6
eQEP, eCAP x3
JTAG, ETB
EMAC
2-port switch
10, 100, 1G
with 1588
(MII, RMII,
RGMII
and MDIO)
32b LPDDR2, DDR3, DDR3L(B)
NAND, NOR, Async
(16-bit ECC)
Memory Interface
Processing: Overlay,
Resizing,Color Space
Conversion, and more
SPI x5
QSPI
CAN x2
HDQ, 1-Wire
ADC0 (8 inputs)
12-bit SAR(A)
GPIO
Camera Interface
(2x Parallel)
MMC, SD,
SDIO x3
USB 2.0 Dual-Role
+ PHY x2
McASP x2
(4ch)
24-bit LCDCtrl (WXGA)
Simplified Power
Sequencing
ADC1 (8 inputs)
12-bit SAR
Copyright © 2016, Texas Instruments Incorporated
Secure Boot
(HS device only)
6
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device Overview Copyright © 2014–2016, Texas Instruments Incorporated
1.4 Functional Block Diagram
A. Use of TSC limits available ADC0 inputs.
B. Maximum clock: LPDDR2 = 266 MHz; DDR3/DDR3L = 400 MHz.
Figure 1-1. Functional Block Diagram
7
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Table of ContentsCopyright © 2014–2016, Texas Instruments Incorporated
Table of Contents
1 Device Overview ......................................... 1
1.1 Features .............................................. 1
1.2 Applications........................................... 4
1.3 Description............................................ 5
1.4 Functional Block Diagram ............................ 6
2 Revision History ......................................... 8
3 Device Comparison ..................................... 9
3.1 Related Products.................................... 10
4 Terminal Configuration and Functions ............ 11
4.1 Pin Diagrams........................................ 11
4.2 Pin Attributes........................................ 21
4.3 Signal Descriptions.................................. 65
5 Specifications ......................................... 103
5.1 Absolute Maximum Ratings........................ 103
5.2 ESD Ratings ....................................... 105
5.3 Power-On Hours (POH) ........................... 105
5.4 Operating Performance Points .................... 106
5.5 Recommended Operating Conditions ............. 107
5.6 Power Consumption Summary .................... 109
5.7 DC Electrical Characteristics ...................... 110
5.8 ADC0: Touch Screen Controller and Analog-to-
Digital Subsystem Electrical Parameters .......... 113
5.9 ADC1: Analog-to-Digital Subsystem Electrical
Parameters......................................... 115
5.10 VPP Specifications for One-Time Programmable
(OTP) eFuses...................................... 118
5.11 Thermal Resistance Characteristics............... 119
5.12 External Capacitors ................................ 121
5.13 Timing and Switching Characteristics.............. 124
5.14 Emulation and Debug.............................. 254
6 Device and Documentation Support.............. 255
6.1 Device Nomenclature.............................. 255
6.2 Tools and Software ................................ 256
6.3 Documentation Support............................ 258
6.4 Related Links ...................................... 260
6.5 Community Resources............................. 260
6.6 Trademarks ........................................ 260
6.7 Electrostatic Discharge Caution ................... 260
6.8 Glossary............................................ 260
7 Mechanical, Packaging, and Orderable
Information............................................. 261
7.1 Via Channel........................................ 261
7.2 Packaging Information ............................. 261
8
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Revision History Copyright © 2014–2016, Texas Instruments Incorporated
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision C (April 2015) to Revision D Page
Added AM4372 device information to document ................................................................................. 1
Added AM4372ZDN Part Number to Table 1-1, Device Information .......................................................... 5
Added Table 3-1, Device Features Comparison ................................................................................. 9
Added AM4372 Device and 600-MHz Device Speed Range to Figure 6-1, Device Nomenclature .................... 256
Updated Design Kits and Evaluation Modules list in Section 6.2, Tools and Software................................... 256
Updated notification alert paragraph in Section 6.3, Documentation Support............................................. 258
Added AM4372 part number information to Table 6-1, Related Links...................................................... 260
9
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device ComparisonCopyright © 2014–2016, Texas Instruments Incorporated
3 Device Comparison
Table 3-1 shows the features supported across different AM437x devices.
Table 3-1. Device Features Comparison
FUNCTION AM4372 AM4376 AM4377 AM4378 AM4379
ARM Cortex-A9 Yes Yes Yes Yes Yes
Frequency 600 MHz
800 MHz
300 MHz
800 MHz
1000 MHz
800 MHz
1000 MHz 800 MHz
1000 MHz 800 MHz
1000 MHz
MIPS 1500
2000
750
2000
2500
2000
2500 2000
2500 2000
2500
On-chip L1 cache 64KB 64KB 64KB 64KB 64KB
On-chip L2 cache 256KB 256KB 256KB 256KB 256KB
Graphics accelerator (SGX530) 3D 3D
Hardware acceleration Crypto accelerator Crypto accelerator Crypto accelerator Crypto accelerator Crypto accelerator
Programmable real-time unit
subsystem and industrial
communication subsystem (PRU-
ICSS)
Features including
basic Industrial
protocols
Features including all
Industrial protocols
Features including
basic Industrial
protocols
Features including all
Industrial protocols
On-chip memory 256KB 256KB 256KB 256KB 256KB
Display options DSS DSS DSS DSS DSS
General-purpose memory 1 16-bit (GPMC,
NAND flash, NOR
flash, SRAM)
1 16-bit (GPMC,
NAND flash, NOR
flash, SRAM)
1 16-bit (GPMC,
NAND flash, NOR
flash, SRAM)
1 16-bit (GPMC,
NAND flash, NOR
flash, SRAM)
1 16-bit (GPMC,
NAND flash, NOR
flash, SRAM)
DRAM(1) 1 32-bit (DDR3-800,
DDR3L-800,
LPDDR2-532)
1 32-bit (DDR3-800,
DDR3L-800,
LPDDR2-532)
1 32-bit (DDR3-800,
DDR3L-800,
LPDDR2-532)
1 32-bit (DDR3-800,
DDR3L-800,
LPDDR2-532)
1 32-bit (DDR3-800,
DDR3L-800,
LPDDR2-532)
Universal serial bus (USB) 2 ports 2 ports 2 ports 2 ports 2 ports
Ethernet media access controller
(EMAC) with 2-port switch 10/100/1000
2 ports 10/100/1000
2 ports 10/100/1000
2 ports 10/100/1000
2 ports 10/100/1000
2 ports
Multimedia card (MMC) 3 3 3 3 3
Controller-area network (CAN) 2 2 2 2 2
Universal asynchronous receiver
and transmitter (UART) 6 6 6 6 6
Analog-to-digital converter (ADC) 2 8-ch 12-bit 2 8-ch 12-bit 2 8-ch 12-bit 2 8-ch 12-bit 2 8-ch 12-bit
Enhanced high-resolution PWM
modules (eHRPWM) 6 6 6 6 6
Enhanced capture modules (eCAP) 3 3 3 3 3
Enhanced quadrature encoder
pulse (eQEP) 3 3 3 3 3
Real-time clock (RTC) 1 1 1 1 1
Inter-integrated circuit (I2C) 3 3 3 3 3
Multichannel audio serial port
(McASP) 2 2 2 2 2
Multichannel serial port interface
(McSPI) 5 5 5 5 5
Enhanced direct memory access
(EDMA) 64-Ch 64-Ch 64-Ch 64-Ch 64-Ch
Camera (VPFE) 12-bit 12-bit 12-bit 12-bit 12-bit
Sync timer (32K) 1 1 1 1 1
HDQ/1-Wire 1 1 1 1 1
QSPI 1 1 1 1 1
10
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device Comparison Copyright © 2014–2016, Texas Instruments Incorporated
Table 3-1. Device Features Comparison (continued)
FUNCTION AM4372 AM4376 AM4377 AM4378 AM4379
Timers 12 12 12 12 12
DEV_FEATURE register value(2) 0x020000EF 0x020000EF 0x020300EF 0x220000EF 0x220300EF
Input/output (I/O) supply 1.8 V, 3.3 V 1.8 V, 3.3 V 1.8 V, 3.3 V 1.8 V, 3.3 V 1.8 V, 3.3 V
Operating temperature range 0 to 90°C
–40 to 105°C
0 to 90°C
–40 to 105°C
–40 to 90°C
–40 to 105°C
–40 to 90°C
0 to 90°C
–40 to 105°C
–40 to 90°C –40 to 105°C
(1) DRAM speeds listed are data rates.
(2) For more details about the DEV_FEATURE register, see the AM437x Sitara Processors Technical Reference Manual.
3.1 Related Products
For information about other devices in this family of products or related products, see the following links:
Sitara Processors Scalable processors based on ARM Cortex-A cores with flexible peripherals,
connectivity and unified software support perfect for sensors to servers.
Sitara AM437x Processors Scalable ARM Cortex-A9 from 300 MHz up to 1 GHz. 3D graphics option for
enhanced user interface. Quad core PRU-ICSS for industrial Ethernet protocols and position
feedback control. Dual camera support for barcode scanning, preview and still pictures.
Customer programmable secure boot option.
Companion Products for AM437x Devices Review products that are frequently used in conjunction with
this product.
Reference Designs for AM437x Devices TI Designs Reference Design Library is a robust reference
design library spanning analog, embedded processor and connectivity. Created by TI experts
to help you jump start your system design, all TI Designs include schematic or block
diagrams, BOMs and design files to speed your time to market. Search and download
designs at ti.com/tidesigns.
11
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4 Terminal Configuration and Functions
4.1 Pin Diagrams
NOTE
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An
attempt is made to use "ball" only when referring to the physical package.
12
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-1. ZDN Ball Map [Section Top Left - Top View]
A B C D E F G H
25 VSS XTALOUT XTALIN gpio5_8 gpio5_12 USB1_DRVVBUS EXTINTn uart3_rxd
24 dss_ac_bias_en VSS_OSC xdma_event_intr1 xdma_event_intr0 gpio5_13 gpio5_9 eCAP0_in_PWM0_o
ut uart3_txd
23 dss_hsync dss_vsync VDDS_OSC VDDS_CLKOUT gpio5_11 mcasp0_axr0
22 dss_pclk dss_data0 VDDSHV5 WARMRSTn uart3_ctsn
21 dss_data1 dss_data2 dss_data3 USB0_DRVVBUS Reserved
20 dss_data4 dss_data5 dss_data6 vdd_mpu_mon VDDS gpio5_10 clkreq
19 dss_data8 dss_data9 dss_data12 dss_data13 dss_data7 CAP_VBB_MPU Reserved
18 dss_data10 dss_data11 VSS
Ball Map Position
123
456
789
13
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-2. ZDN Ball Map [Section Top Middle - Top View]
J K L M N P R T
25 uart0_rtsn uart0_rxd uart0_ctsn mcasp0_axr1 spi4_cs0 spi4_sclk spi0_cs1 USB1_VBUS
24 uart0_txd uart3_rtsn mcasp0_ahclkx mcasp0_ahclkr mcasp0_aclkx spi4_d1 spi4_d0 EMU1
23 mcasp0_fsr mcasp0_aclkr EMU0 spi0_sclk spi2_cs0
22 uart1_ctsn uart1_rtsn mcasp0_fsx spi2_d0 spi0_d0
21 uart1_rxd uart1_txd VDDS_PLL_CORE_
LCD VPP spi0_d1
20 VDD_MPU VDD_MPU spi2_sclk spi2_d1 spi0_cs0
19 VDD_MPU VDD_MPU VDDSHV3 VDDS VDD_CORE
18 VDDSHV3 VDDSHV3 VSS VDD_MPU VDDSHV3 VDDSHV3 VSS VDD_CORE
Ball Map Position
123
456
789
14
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-3. ZDN Ball Map [Section Top Right - Top View]
U V W Y AA AB AC AD AE
25 USB1_ID USB1_DM USB0_DP nTRST TCK cam1_wen cam1_field cam1_hd VSS
24 USB0_ID USB1_DP USB0_DM TMS TDO I2C0_SDA cam1_data9 cam1_data8 cam1_data7
23 USB0_VBUS VSSA_USB PWRONRSTn VSS cam1_vd cam1_data6 cam1_data5
22 USB1_CE USB0_CE I2C0_SCL cam1_data4 cam1_data3
21 VDDA1P8V_USB1 VDDA1P8V_USB0 cam1_data1 cam1_data2 cam1_pclk
20 VDDA3P3V_USB1 VDDA3P3V_USB0 TDI cam1_data0 cam0_pclk cam0_data7 cam0_data6
19 VSS VDDS cam0_data9 cam0_data8 cam0_data5 cam0_data4
18 VSS VSS VDDSHV3 cam0_data2 cam0_data3 cam0_data1 cam0_field cam0_vd cam0_data0
Ball Map Position
123
456
789
15
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-4. ZDN Ball Map [Section Middle Left - Top View]
A B C D E F G H
17 mdio_data mdio_clk dss_data14 dss_data15 VDDS_PLL_MPU mii1_rxd0 VDDSHV6 VDDSHV6
16 rmii1_ref_clk mii1_rxd1 mii1_txd3 mii1_col mii1_rxd2 VDDSHV7 VDDSHV6 VDD_MPU
15 mii1_rx_dv mii1_txd0 VSS
14 mii1_txd1 mii1_crs mii1_rxd3 mii1_tx_clk CAP_VDD_SRAM_
MPU VDDS_SRAM_MPU
_BB VDDSHV8 VDD_MPU
13 mii1_tx_en mii1_rx_er mii1_txd2 mii1_rx_clk CAP_VDD_SRAM_C
ORE VDDS_SRAM_COR
E_BG VDDSHV8 VDD_MPU
12 gpmc_clk gpmc_csn3 VDDS
11 gpmc_ad15 gpmc_ad14 gpmc_ad13 gpmc_ad11 gpmc_ad12 gpmc_ad10 VDDSHV9 VDDSHV9
10 gpmc_ad9 gpmc_ad8 gpmc_be0n_cle gpmc_wen gpmc_oen_ren gpmc_csn2 VDDSHV10 VDDSHV10
Ball Map Position
123
456
789
16
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-5. ZDN Ball Map [Section Middle Middle - Top View]
J K L M N P R T
17 VSS VDDSHV3 VSS VDD_MPU VDD_CORE VDD_CORE VSS VSS
16 VDD_MPU VSS VDD_CORE VDD_CORE
15 VSS VSS VSS VSS VSS VSS VSS VSS
14 VDD_MPU VSS VDD_CORE VDD_CORE VSS VSS VDD_CORE VDD_CORE
13 VDD_MPU VSS VSS VSS
12 VSS VSS VDD_CORE VDD_CORE VSS VSS VSS VSS
11 VDD_CORE VSS VSS VSS VSS VSS VDD_CORE VDD_CORE
10 VDD_CORE VSS VSS VSS
Ball Map Position
123
456
789
17
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-6. ZDN Ball Map [Section Middle Right - Top View]
U V W Y AA AB AC AD AE
17 VSS VDDSHV2 cam0_wen cam0_hd
16 VSS VDDSHV2 VDDSHV2 VDDA_ADC1 ADC1_AIN2 ADC1_AIN1 ADC1_AIN0 ADC1_AIN7 ADC1_AIN6
15 VDD_CORE VDD_CORE VDDS ADC1_AIN5 ADC1_AIN4 ADC1_AIN3 VSSA_ADC ADC1_VREFN ADC1_VREFP
14 VSS VSS ADC0_VREFP ADC0_VREFN
13 VSS VSS VDD_CORE ADC0_AIN2 ADC0_AIN3 ADC0_AIN4 ADC0_AIN5 ADC0_AIN6 ADC0_AIN7
12 VSS VSS VDD_CORE ADC0_AIN1 ADC0_AIN0 VDDA_ADC0 Reserved VDDS Reserved
11 VSS VSS Reserved Reserved
10 VSS VSS Reserved Reserved Reserved Reserved Reserved Reserved VSS
Ball Map Position
123
456
789
18
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-7. ZDN Ball Map [Section Bottom Left - Top View]
A B C D E F G H
9gpmc_advn_ale gpmc_csn1 VDDSHV11
8gpmc_csn0 gpmc_ad7 gpmc_ad6 gpmc_a11 gpmc_a6 VDDS3P3V_IOLDO gpmc_a10 VDDSHV11
7gpmc_ad5 gpmc_ad4 gpmc_a4 gpmc_a5 gpmc_a8
6gpmc_ad3 gpmc_ad2 gpmc_a2 CAP_VDDS1P8V_IO
LDO gpmc_a7 VDDS
5gpmc_ad1 gpmc_ad0 gpmc_a1 VDDS_PLL_DDR
4gpmc_a3 gpmc_a9 ddr_dqm0 ddr_d4
3gpmc_be1n gpmc_wpn gpmc_a0 ddr_d0 ddr_d3 ddr_d5
2gpmc_wait0 mmc0_dat2 mmc0_dat1 mmc0_cmd ddr_d1 ddr_dqs0 ddr_d6 ddr_dqm1
1VSS mmc0_dat3 mmc0_dat0 mmc0_clk ddr_d2 ddr_dqsn0 ddr_d7 ddr_d8
Ball Map Position
123
456
789
19
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-8. ZDN Ball Map [Section Bottom Middle - Top View]
J K L M N P R T
9VSS VSS VSS VDD_CORE VDD_CORE VSS VDD_CORE VDD_CORE
8VDDSHV1 VDDS_DDR VSS VDDS_DDR VDDS_DDR VSS VDDS_DDR VDDS_DDR
7VDDSHV1 VDDS_DDR VDDS_DDR VDDS_DDR VDDS_DDR VDDS_DDR
6ddr_d9 ddr_d13 ddr_a10 ddr_cke1 VDDS_DDR ddr_vref
5ddr_d10 ddr_d14 ddr_csn0 ddr_a13 ddr_a5 ddr_a11
4ddr_d11 ddr_d15 ddr_csn1 ddr_wen ddr_a6 ddr_a12
3ddr_d12 ddr_ba2 ddr_cke0 ddr_casn ddr_a7 ddr_a14
2ddr_dqs1 ddr_ba1 ddr_a2 ddr_ck ddr_rasn ddr_a3 ddr_a8 ddr_a15
1ddr_dqsn1 ddr_ba0 ddr_a1 ddr_nck ddr_a0 ddr_a4 ddr_a9 ddr_resetn
Ball Map Position
123
456
789
20
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-9. ZDN Ball Map [Section Bottom Right - Top View]
U V W Y AA AB AC AD AE
9VSS VSS Reserved Reserved Reserved VDD_CORE Reserved
8VSS VDDS_DDR VDDS VSS
7VDDS_DDR Reserved Reserved Reserved Reserved Reserved VSS
6ddr_dqm2 ddr_d23 Reserved Reserved Reserved RTC_PMIC_EN RTC_PWRONRST
n
5ddr_d16 ddr_d22 Reserved VDDS_RTC RTC_XTALIN
4ddr_d17 ddr_d21 ddr_d26 VSS_RTC RTC_XTALOUT
3ddr_d18 ddr_d25 ddr_d27 ddr_vtp CAP_VDD_RTC RTC_WAKEUP
2ddr_odt1 ddr_d19 ddr_dqsn2 ddr_d24 ddr_dqsn3 ddr_d28 ddr_d31 Reserved RTC_KALDO_EN
n
1ddr_odt0 ddr_d20 ddr_dqs2 ddr_dqm3 ddr_dqs3 ddr_d29 ddr_d30 Reserved VSS
Ball Map Position
123
456
789
21
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.2 Pin Attributes
1. BALL NUMBER: Package ball numbers associated with each signals.
2. PIN NAME: The name of the package pin.
Note: The table does not take into account subsystem terminal multiplexing options.
3. SIGNAL NAME: The signal name for that pin in the mode being used.
4. MODE: Multiplexing mode number.
(a) Mode 0 is the primary mode; this means that when mode 0 is set, the function mapped on the
terminal corresponds to the name of the terminal. There is always a function mapped on the
primary mode. Notice that primary mode is not necessarily the default mode.
Note: The default mode is the mode at the release of the reset; also see the RESET REL. MODE
column.
(b) Modes 1 to 7 are possible modes for alternate functions. On each terminal, some modes are
effectively used for alternate functions, while some modes are not used and do not correspond to a
functional configuration.
5. TYPE: Signal direction
I = Input
O = Output
IO = Input and Output
D = Open drain
DS = Differential
A = Analog
PWR = Power
GND = Ground
Note: In the safe_mode, the buffer is configured in high-impedance.
6. BALL RESET STATE: State of the terminal while the active low PWRONRSTn terminal is low.
0: The buffer drives VOL (pulldown or pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor
1: The buffer drives VOH (pulldown or pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor
Z or OFF: High-impedance
L: High-impedance with an active pulldown resistor
H : High-impedance with an active pullup resistor
7. BALL RESET REL. STATE: State of the terminal after the active low PWRONRSTn terminal
transitions from low to high.
0: The buffer drives VOL (pulldown or pullup resistor not activated)
0(PD): The buffer drives VOL with an active pulldown resistor
1: The buffer drives VOH (pulldown or pullup resistor not activated)
1(PU): The buffer drives VOH with an active pullup resistor
Z or OFF: High-impedance.
L: High-impedance with an active pulldown resistor
H : High-impedance with an active pullup resistor
8. RESET REL. MODE: The mode is automatically configured after the active low PWRONRSTn terminal
transitions from low to high.
9. POWER: The voltage supply that powers the terminal’s IO buffers.
10. HYS: Indicates if the input buffer is with hysteresis.
11. BUFFER STRENGTH: Drive strength of the associated output buffer.
12. PULLUP OR PULLDOWN TYPE: Denotes the presence of an internal pullup or pulldown resistor.
Pullup and pulldown resistors can be enabled or disabled via software.
13. IO CELL: IO cell information.
22
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Note: Configuring two terminals to the same input signal is not supported as it can yield unexpected
results. This can be easily prevented with the proper software configuration.
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
23
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AA12 ADC0_AIN0 ADC0_AIN0 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
Y12 ADC0_AIN1 ADC0_AIN1 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
Y13 ADC0_AIN2 ADC0_AIN2 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
AA13 ADC0_AIN3 ADC0_AIN3 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
AB13 ADC0_AIN4 ADC0_AIN4 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
AC13 ADC0_AIN5 ADC0_AIN5 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
AD13 ADC0_AIN6 ADC0_AIN6 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
AE13 ADC0_AIN7 ADC0_AIN7 0x0 A Z Z Mode0 VDDA_ADC0 NA 25 NA Analog
AE14 ADC0_VREFN ADC0_VREFN 0x0 AP Z Z Mode0 VDDA_ADC0 NA NA NA Analog
AD14 ADC0_VREFP ADC0_VREFP 0x0 AP Z Z Mode0 VDDA_ADC0 NA NA NA Analog
AC16 ADC1_AIN0 ADC1_AIN0 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AB16 ADC1_AIN1 ADC1_AIN1 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AA16 ADC1_AIN2 ADC1_AIN2 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AB15 ADC1_AIN3 ADC1_AIN3 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AA15 ADC1_AIN4 ADC1_AIN4 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
Y15 ADC1_AIN5 ADC1_AIN5 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AE16 ADC1_AIN6 ADC1_AIN6 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AD16 ADC1_AIN7 ADC1_AIN7 0x0 A Z Z Mode0 VDDA_ADC1 NA 25 NA Analog
AD15 ADC1_VREFN ADC1_VREFN 0x0 AP Z Z Mode0 VDDA_ADC1 NA NA NA Analog
AE15 ADC1_VREFP ADC1_VREFP 0x0 AP Z Z Mode0 VDDA_ADC1 NA NA NA Analog
AE18 cam0_data0 cam0_data0 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
cam1_data9 0x2 I
I2C1_SDA 0x3 IOD
pr0_pru1_gpo16 0x4 O
pr0_pru1_gpi16 0x5 I
ehrpwm0_synco 0x6 O
gpio5_19 0x7 IO
AB18 cam0_data1 cam0_data1 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
cam1_data8 0x2 I
I2C1_SCL 0x3 IOD
pr0_pru1_gpo17 0x4 O
pr0_pru1_gpi17 0x5 I
ehrpwm3_synco 0x6 O
gpio5_20 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
24
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
Y18 cam0_data2 cam0_data2 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
mmc1_clk 0x1 IO
cam1_data10 0x2 I
qspi_clk 0x3 IO
gpio4_24 0x7 IO
AA18 cam0_data3 cam0_data3 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
mmc1_cmd 0x1 IO
cam1_data11 0x2 I
qspi_csn 0x3 O
gpio4_25 0x7 IO
AE19 cam0_data4 cam0_data4 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
mmc1_dat0 0x1 IO
cam1_wen 0x2 I
qspi_d0 0x3 IO
ehrpwm3A 0x6 O
gpio4_26 0x7 IO
AD19 cam0_data5 cam0_data5 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
mmc1_dat1 0x1 IO
qspi_d1 0x3 I
ehrpwm3B 0x6 O
gpio4_27 0x7 IO
AE20 cam0_data6 cam0_data6 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
mmc1_dat2 0x1 IO
qspi_d2 0x3 I
ehrpwm1A 0x6 O
gpio4_28 0x7 IO
AD20 cam0_data7 cam0_data7 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
mmc1_dat3 0x1 IO
qspi_d3 0x3 I
ehrpwm1B 0x6 O
gpio4_29 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
25
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AB19 cam0_data8 cam0_data8 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data18 0x2 O
pr0_pru0_gpo15 0x3 O
spi2_cs2 0x4 IO
pr0_pru0_gpi15 0x5 I
EMU7 0x6 IO
gpio4_5 0x7 IO
I2C2_SCL 0x8 IOD
AA19 cam0_data9 cam0_data9 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data17 0x2 O
pr0_pru0_gpo16 0x3 O
spi2_cs3 0x4 IO
pr0_pru0_gpi16 0x5 I
EMU8 0x6 IO
gpio4_6 0x7 IO
AC18 cam0_field cam0_field 0x0 IO PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data21 0x2 O
cam0_data10 0x3 I
spi2_sclk 0x4 IO
cam1_data10 0x5 I
EMU4 0x6 IO
gpio4_2 0x7 IO
AE17 cam0_hd cam0_hd 0x0 IO PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data23 0x2 O
pr1_edio_sof 0x3 O
spi2_cs1 0x4 IO
EMU10 0x5 IO
EMU2 0x6 IO
gpio4_0 0x7 IO
AC20 cam0_pclk cam0_pclk 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data19 0x2 O
pr0_pru0_gpo14 0x3 O
spi2_cs0 0x4 IO
pr0_pru0_gpi14 0x5 I
EMU6 0x6 IO
gpio4_4 0x7 IO
I2C2_SDA 0x8 IOD
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
26
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AD18 cam0_vd cam0_vd 0x0 IO PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data22 0x2 O
pr1_edio_outvalid 0x3 O
spi2_d1 0x4 IO
EMU11 0x5 IO
EMU3 0x6 IO
gpio4_1 0x7 IO
AD17 cam0_wen cam0_wen 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data20 0x2 O
cam0_data11 0x3 I
spi2_d0 0x4 IO
cam1_data11 0x5 I
EMU5 0x6 IO
gpio4_3 0x7 IO
AB20 cam1_data0 cam1_data0 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_rxd 0x1 IO
spi3_d0 0x2 IO
I2C2_SDA 0x3 IOD
ehrpwm0_tripzone_input 0x6 I
gpio4_14 0x7 IO
AC21 cam1_data1 cam1_data1 0x0 I PU PU Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_txd 0x1 IO
spi3_d1 0x2 IO
I2C2_SCL 0x3 IOD
ehrpwm0_synci 0x6 I
gpio4_15 0x7 IO
AD21 cam1_data2 cam1_data2 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_ctsn 0x1 IO
spi3_cs0 0x2 IO
mmc2_clk 0x3 IO
pr0_pru1_gpo10 0x4 O
pr0_pru1_gpi10 0x5 I
ehrpwm1_tripzone_input 0x6 I
gpio4_16 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
27
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AE22 cam1_data3 cam1_data3 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_rtsn 0x1 O
spi3_sclk 0x2 IO
mmc2_cmd 0x3 IO
pr0_pru1_gpo11 0x4 O
pr0_pru1_gpi11 0x5 I
pr1_edc_latch0_in 0x6 I
gpio4_17 0x7 IO
AD22 cam1_data4 cam1_data4 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_rin 0x1 I
uart2_rxd 0x2 IO
mmc2_dat0 0x3 IO
pr0_pru1_gpo12 0x4 O
pr0_pru1_gpi12 0x5 I
pr1_edc_latch1_in 0x6 I
gpio4_18 0x7 IO
uart0_dcdn 0x8 I
AE23 cam1_data5 cam1_data5 0x0 I PU PU Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_dsrn 0x1 I
uart2_txd 0x2 IO
mmc2_dat1 0x3 IO
pr0_pru1_gpo13 0x4 O
pr0_pru1_gpi13 0x5 I
pr1_edio_latch_in 0x6 I
gpio4_19 0x7 IO
AD23 cam1_data6 cam1_data6 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_dcdn 0x1 I
uart2_ctsn 0x2 IO
mmc2_dat2 0x3 IO
pr0_pru1_gpo14 0x4 O
pr0_pru1_gpi14 0x5 I
pr1_edio_data_in0 0x6 I
gpio4_20 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
28
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AE24 cam1_data7 cam1_data7 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
uart1_dtrn 0x1 O
uart2_rtsn 0x2 O
mmc2_dat3 0x3 IO
pr0_pru1_gpo15 0x4 O
pr0_pru1_gpi15 0x5 I
pr1_edio_data_in1 0x6 I
gpio4_21 0x7 IO
AD24 cam1_data8 cam1_data8 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
xdma_event_intr3 0x1 I
spi0_cs2 0x2 IO
pr0_pru1_gpo0 0x3 O
spi2_d0 0x4 IO
pr0_pru1_gpi0 0x5 I
EMU10 0x6 IO
gpio4_8 0x7 IO
uart0_rtsn 0x8 O
AC24 cam1_data9 cam1_data9 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
dss_data16 0x2 O
pr0_pru0_gpo17 0x3 O
spi2_cs3 0x4 IO
pr0_pru0_gpi17 0x5 I
EMU9 0x6 IO
gpio4_7 0x7 IO
uart0_ctsn 0x8 I
AC25 cam1_field cam1_field 0x0 IO PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
xdma_event_intr7 0x1 I
ext_hw_trigger 0x2 I
cam0_data10 0x3 I
spi2_cs1 0x4 IO
cam1_data10 0x5 I
ehrpwm1B 0x6 O
gpio4_12 0x7 IO
ehrpwm3A 0x8 O
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
29
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AD25 cam1_hd cam1_hd 0x0 IO PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
xdma_event_intr4 0x1 I
spi0_cs3 0x2 IO
pr0_pru1_gpo1 0x3 O
spi2_cs0 0x4 IO
pr0_pru1_gpi1 0x5 I
ehrpwm0A 0x6 O
gpio4_9 0x7 IO
AE21 cam1_pclk cam1_pclk 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
xdma_event_intr6 0x1 I
spi1_cs3 0x2 IO
pr0_pru1_gpo3 0x3 O
spi2_sclk 0x4 IO
pr0_pru1_gpi3 0x5 I
ehrpwm1A 0x6 O
gpio4_11 0x7 IO
AC23 cam1_vd cam1_vd 0x0 IO PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
xdma_event_intr5 0x1 I
spi1_cs2 0x2 IO
pr0_pru1_gpo2 0x3 O
spi2_cs2 0x4 IO
pr0_pru1_gpi2 0x5 I
ehrpwm0B 0x6 O
gpio4_10 0x7 IO
AB25 cam1_wen cam1_wen 0x0 I PD PD Mode7 VDDSHV2 Yes 6 PU/PD LVCMOS
xdma_event_intr8 0x1 I
pr1_edio_sof 0x2 O
cam0_data11 0x3 I
spi2_d1 0x4 IO
cam1_data11 0x5 I
EMU11 0x6 IO
gpio4_13 0x7 IO
ehrpwm3B 0x8 O
F19 CAP_VBB_MPU CAP_VBB_MPU NA A NA NA NA NA NA NA NA NA
D6 CAP_VDDS1P8V_IOLDO CAP_VDDS1P8V_IOLDO NA POWER NA NA NA NA NA NA NA NA
AD3 CAP_VDD_RTC CAP_VDD_RTC NA A NA NA NA NA NA NA NA NA
E13 CAP_VDD_SRAM_CORE CAP_VDD_SRAM_CORE NA A NA NA NA NA NA NA NA NA
E14 CAP_VDD_SRAM_MPU CAP_VDD_SRAM_MPU NA A NA NA NA NA NA NA NA NA
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
30
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
H20 clkreq clkreq 0x0 O OFF PU Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio0_24 0x7 IO
N1 ddr_a0 ddr_a0 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
L1 ddr_a1 ddr_a1 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
L2 ddr_a2 ddr_a2 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
P2 ddr_a3 ddr_a3 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
P1 ddr_a4 ddr_a4 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
R5 ddr_a5 ddr_a5 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
R4 ddr_a6 ddr_a6 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
R3 ddr_a7 ddr_a7 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
R2 ddr_a8 ddr_a8 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
R1 ddr_a9 ddr_a9 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
M6 ddr_a10 ddr_a10 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
T5 ddr_a11 ddr_a11 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
T4 ddr_a12 ddr_a12 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
N5 ddr_a13 ddr_a13 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
T3 ddr_a14 ddr_a14 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
T2 ddr_a15 ddr_a15 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
K1 ddr_ba0 ddr_ba0 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
K2 ddr_ba1 ddr_ba1 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
K3 ddr_ba2 ddr_ba2 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
N3 ddr_casn ddr_casn 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
M2 ddr_ck ddr_ck 0x0 O PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
M3 ddr_cke0 ddr_cke0 0x0 O PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
31
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
N6 ddr_cke1 ddr_cke1 0x0 O PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
M5 ddr_csn0 ddr_csn0 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
M4 ddr_csn1 ddr_csn1 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
E3 ddr_d0 ddr_d0 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
E2 ddr_d1 ddr_d1 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
E1 ddr_d2 ddr_d2 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
F3 ddr_d3 ddr_d3 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
G4 ddr_d4 ddr_d4 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
G3 ddr_d5 ddr_d5 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
G2 ddr_d6 ddr_d6 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
G1 ddr_d7 ddr_d7 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
H1 ddr_d8 ddr_d8 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
J6 ddr_d9 ddr_d9 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
J5 ddr_d10 ddr_d10 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
J4 ddr_d11 ddr_d11 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
J3 ddr_d12 ddr_d12 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
K6 ddr_d13 ddr_d13 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
K5 ddr_d14 ddr_d14 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
K4 ddr_d15 ddr_d15 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
V5 ddr_d16 ddr_d16 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
V4 ddr_d17 ddr_d17 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
V3 ddr_d18 ddr_d18 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
V2 ddr_d19 ddr_d19 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
32
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
V1 ddr_d20 ddr_d20 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
W4 ddr_d21 ddr_d21 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
W5 ddr_d22 ddr_d22 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
W6 ddr_d23 ddr_d23 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
Y2 ddr_d24 ddr_d24 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
Y3 ddr_d25 ddr_d25 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
Y4 ddr_d26 ddr_d26 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
AA3 ddr_d27 ddr_d27 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
AB2 ddr_d28 ddr_d28 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
AB1 ddr_d29 ddr_d29 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
AC1 ddr_d30 ddr_d30 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
AC2 ddr_d31 ddr_d31 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
F4 ddr_dqm0 ddr_dqm0 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
H2 ddr_dqm1 ddr_dqm1 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
V6 ddr_dqm2 ddr_dqm2 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
Y1 ddr_dqm3 ddr_dqm3 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
F2 ddr_dqs0 ddr_dqs0 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
J2 ddr_dqs1 ddr_dqs1 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
W1 ddr_dqs2 ddr_dqs2 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
AA1 ddr_dqs3 ddr_dqs3 0x0 IO PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
F1 ddr_dqsn0 ddr_dqsn0 0x0 IO PU Mode0 VDDS_DDR Yes 8 PU/PD LVCMOS/HST
L/HSUL_12
J1 ddr_dqsn1 ddr_dqsn1 0x0 IO PU Mode0 VDDS_DDR Yes 8 PU/PD LVCMOS/HST
L/HSUL_12
W2 ddr_dqsn2 ddr_dqsn2 0x0 IO PU Mode0 VDDS_DDR Yes 8 PU/PD LVCMOS/HST
L/HSUL_12
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
33
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AA2 ddr_dqsn3 ddr_dqsn3 0x0 IO PU Mode0 VDDS_DDR Yes 8 PU/PD LVCMOS/HST
L/HSUL_12
M1 ddr_nck ddr_nck 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
U1 ddr_odt0 ddr_odt0 0x0 O PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
U2 ddr_odt1 ddr_odt1 0x0 O PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
N2 ddr_rasn ddr_rasn 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
T1 ddr_resetn ddr_resetn 0x0 O PD Mode0 VDDS_DDR YES 8 PU/PD LVCMOS
T6 ddr_vref ddr_vref 0x0 AP (19) NA NA Mode0 VDDS_DDR NA NA NA Analog
AC3 ddr_vtp ddr_vtp 0x0 I (20) NA NA Mode0 VDDS_DDR NA NA NA Analog
N4 ddr_wen ddr_wen 0x0 O PU Mode0 VDDS_DDR YES 8 PU/PD LVCMOS/HST
L/HSUL_12
A24 dss_ac_bias_en dss_ac_bias_en 0x0 O OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a11 0x1 O
gpmc_a4 0x2 O
pr1_edio_data_in5 0x3 I
pr1_edio_data_out5 0x4 O
pr0_pru1_gpo9 0x5 O
pr0_pru1_gpi9 0x6 I
gpio2_25 0x7 IO
B22 dss_data0 (4) dss_data0 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a0 0x1 O
pr1_mii_mt0_clk 0x2 I
ehrpwm2A 0x3 O
pr1_pru0_gpo0 0x5 O
pr1_pru0_gpi0 0x6 I
gpio2_6 0x7 IO
A21 dss_data1 (4) dss_data1 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a1 0x1 O
pr1_mii0_txen 0x2 O
ehrpwm2B 0x3 O
pr1_pru0_gpo1 0x5 O
pr1_pru0_gpi1 0x6 I
gpio2_7 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
34
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B21 dss_data2 (4) dss_data2 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a2 0x1 O
pr1_mii0_txd3 0x2 O
ehrpwm2_tripzone_input 0x3 I
pr1_pru0_gpo2 0x5 O
pr1_pru0_gpi2 0x6 I
gpio2_8 0x7 IO
C21 dss_data3 (4) dss_data3 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a3 0x1 O
pr1_mii0_txd2 0x2 O
ehrpwm0_synco 0x3 O
pr1_pru0_gpo3 0x5 O
pr1_pru0_gpi3 0x6 I
gpio2_9 0x7 IO
A20 dss_data4 (4) dss_data4 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a4 0x1 O
pr1_mii0_txd1 0x2 O
eQEP2A_in 0x3 I
pr1_pru0_gpo4 0x5 O
pr1_pru0_gpi4 0x6 I
gpio2_10 0x7 IO
B20 dss_data5 (4) dss_data5 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a5 0x1 O
pr1_mii0_txd0 0x2 O
eQEP2B_in 0x3 I
pr1_pru0_gpo5 0x5 O
pr1_pru0_gpi5 0x6 I
gpio2_11 0x7 IO
C20 dss_data6 (4) dss_data6 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a6 0x1 O
pr1_edio_data_in6 0x2 I
eQEP2_index 0x3 IO
pr1_edio_data_out6 0x4 O
pr1_pru0_gpo6 0x5 O
pr1_pru0_gpi6 0x6 I
gpio2_12 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
35
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
E19 dss_data7 (4) dss_data7 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a7 0x1 O
pr1_edio_data_in7 0x2 I
eQEP2_strobe 0x3 IO
pr1_edio_data_out7 0x4 O
pr1_pru0_gpo7 0x5 O
pr1_pru0_gpi7 0x6 I
gpio2_13 0x7 IO
A19 dss_data8 (4) dss_data8 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a12 0x1 O
ehrpwm1_tripzone_input 0x2 I
mcasp0_aclkx 0x3 IO
uart5_txd 0x4 O
pr1_mii0_rxd3 0x5 I
uart2_ctsn 0x6 IO
gpio2_14 0x7 IO
B19 dss_data9 (4) dss_data9 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a13 0x1 O
ehrpwm0_synco 0x2 O
mcasp0_fsx 0x3 IO
uart5_rxd 0x4 I
pr1_mii0_rxd2 0x5 I
uart2_rtsn 0x6 O
gpio2_15 0x7 IO
A18 dss_data10 (4) dss_data10 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a14 0x1 O
ehrpwm1A 0x2 O
mcasp0_axr0 0x3 IO
pr1_mii0_rxd1 0x5 I
uart3_ctsn 0x6 IO
gpio2_16 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
36
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B18 dss_data11 (4) dss_data11 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a15 0x1 O
ehrpwm1B 0x2 O
mcasp0_ahclkr 0x3 IO
mcasp0_axr2 0x4 IO
pr1_mii0_rxd0 0x5 I
uart3_rtsn 0x6 O
gpio2_17 0x7 IO
spi3_cs1 0x8 IO
C19 dss_data12 (4) dss_data12 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a16 0x1 O
eQEP1A_in 0x2 I
mcasp0_aclkr 0x3 IO
mcasp0_axr2 0x4 IO
pr1_mii0_rxlink 0x5 I
uart4_ctsn 0x6 I
gpio0_8 0x7 IO
spi3_sclk 0x8 IO
D19 dss_data13 (4) dss_data13 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a17 0x1 O
eQEP1B_in 0x2 I
mcasp0_fsr 0x3 IO
mcasp0_axr3 0x4 IO
pr1_mii0_rxer 0x5 I
uart4_rtsn 0x6 O
gpio0_9 0x7 IO
spi3_d0 0x8 IO
C17 dss_data14 (4) dss_data14 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a18 0x1 O
eQEP1_index 0x2 IO
mcasp0_axr1 0x3 IO
uart5_rxd 0x4 I
pr1_mii_mr0_clk 0x5 I
uart5_ctsn 0x6 I
gpio0_10 0x7 IO
spi3_d1 0x8 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
37
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
D17 dss_data15 (4) dss_data15 0x0 IO OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a19 0x1 O
eQEP1_strobe 0x2 IO
mcasp0_ahclkx 0x3 IO
mcasp0_axr3 0x4 IO
pr1_mii0_rxdv 0x5 I
uart5_rtsn 0x6 O
gpio0_11 0x7 IO
spi3_cs0 0x8 IO
A23 dss_hsync (5) dss_hsync 0x0 O OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a9 0x1 O
gpmc_a2 0x2 O
pr1_edio_data_in3 0x3 I
pr1_edio_data_out3 0x4 O
pr0_pru1_gpo7 0x5 O
pr0_pru1_gpi7 0x6 I
gpio2_23 0x7 IO
A22 dss_pclk dss_pclk 0x0 O OFF PD Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a10 0x1 O
gpmc_a3 0x2 O
pr1_edio_data_in4 0x3 I
pr1_edio_data_out4 0x4 O
pr0_pru1_gpo8 0x5 O
pr0_pru1_gpi8 0x6 I
gpio2_24 0x7 IO
B23 dss_vsync (6) dss_vsync 0x0 O OFF OFF Mode7 VDDSHV6 Yes 6 PU/PD LVCMOS
gpmc_a8 0x1 O
gpmc_a1 0x2 O
pr1_edio_data_in2 0x3 I
pr1_edio_data_out2 0x4 O
pr0_pru1_gpo6 0x5 O
pr0_pru1_gpi6 0x6 I
gpio2_22 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
38
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
G24 eCAP0_in_PWM0_out eCAP0_in_PWM0_out 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
uart3_txd 0x1 IO
spi1_cs1 0x2 IO
pr1_ecap0_ecap_capin_apwm_o 0x3 IO
spi1_sclk 0x4 IO
mmc0_sdwp 0x5 I
xdma_event_intr2 0x6 I
gpio0_7 0x7 IO
ehrpwm2B 0x8 O
timer1 0x9 IO
N23 EMU0 EMU0 0x0 IO PU PU Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio3_7 0x7 IO
T24 EMU1 EMU1 0x0 IO PU PU Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio3_8 0x7 IO
G25 EXTINTn nNMI 0x0 I OFF PU Mode0 VDDSHV3 Yes NA PU/PD LVCMOS
D25 gpio5_8 pr1_mii0_col 0x5 I OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio5_8 0x7 IO
F24 gpio5_9 pr1_mii1_col 0x5 I OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio5_9 0x7 IO
G20 gpio5_10 I2C1_SCL 0x1 IOD OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
pr1_mii0_crs 0x5 I
gpio5_10 0x7 IO
F23 gpio5_11 pr1_mii1_crs 0x5 I OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio5_11 0x7 IO
E25 gpio5_12 I2C1_SDA 0x1 IOD OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
pr1_mii0_rxlink 0x5 I
gpio5_12 0x7 IO
E24 gpio5_13 pr1_mii1_rxlink 0x5 I OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio5_13 0x7 IO
C3 gpmc_a0 gpmc_a0 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_txen 0x1 O
rgmii2_tctl 0x2 O
rmii2_txen 0x3 O
gpmc_a16 0x4 O
pr1_mii1_txen 0x5 O
ehrpwm1_tripzone_input 0x6 I
gpio1_16 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
39
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
C5 gpmc_a1 gpmc_a1 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxdv 0x1 I
rgmii2_rctl 0x2 I
mmc2_dat0 0x3 IO
gpmc_a17 0x4 O
pr1_mii1_rxdv 0x5 I
ehrpwm0_synco 0x6 O
gpio1_17 0x7 IO
C6 gpmc_a2 gpmc_a2 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_txd3 0x1 O
rgmii2_td3 0x2 O
mmc2_dat1 0x3 IO
gpmc_a18 0x4 O
pr1_mii1_txd3 0x5 O
ehrpwm1A 0x6 O
gpio1_18 0x7 IO
A4 gpmc_a3 gpmc_a3 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_txd2 0x1 O
rgmii2_td2 0x2 O
mmc2_dat2 0x3 IO
gpmc_a19 0x4 O
pr1_mii1_txd2 0x5 O
ehrpwm1B 0x6 O
gpio1_19 0x7 IO
D7 gpmc_a4 gpmc_a4 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_txd1 0x1 O
rgmii2_td1 0x2 O
rmii2_txd1 0x3 O
gpmc_a20 0x4 O
pr1_mii1_txd1 0x5 O
eQEP1A_in 0x6 I
gpio1_20 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
40
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
E7 gpmc_a5 gpmc_a5 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_txd0 0x1 O
rgmii2_td0 0x2 O
rmii2_txd0 0x3 O
gpmc_a21 0x4 O
pr1_mii1_txd0 0x5 O
eQEP1B_in 0x6 I
gpio1_21 0x7 IO
E8 gpmc_a6 gpmc_a6 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_txclk 0x1 I
rgmii2_tclk 0x2 O
mmc2_dat4 0x3 IO
gpmc_a22 0x4 O
pr1_mii_mt1_clk 0x5 I
eQEP1_index 0x6 IO
gpio1_22 0x7 IO
F6 gpmc_a7 gpmc_a7 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxclk 0x1 I
rgmii2_rclk 0x2 I
mmc2_dat5 0x3 IO
gpmc_a23 0x4 O
pr1_mii_mr1_clk 0x5 I
eQEP1_strobe 0x6 IO
gpio1_23 0x7 IO
F7 gpmc_a8 gpmc_a8 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxd3 0x1 I
rgmii2_rd3 0x2 I
mmc2_dat6 0x3 IO
gpmc_a24 0x4 O
pr1_mii1_rxd3 0x5 I
mcasp0_aclkx 0x6 IO
gpio1_24 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
41
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B4 gpmc_a9 gpmc_a9 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxd2 0x1 I
rgmii2_rd2 0x2 I
mmc2_dat7 0x3 IO
gpmc_a25 0x4 O
pr1_mii1_rxd2 0x5 I
mcasp0_fsx 0x6 IO
gpio1_25 0x7 IO
rmii2_crs_dv 0x8 I
G8 gpmc_a10 gpmc_a10 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxd1 0x1 I
rgmii2_rd1 0x2 I
rmii2_rxd1 0x3 I
gpmc_a26 0x4 O
pr1_mii1_rxd1 0x5 I
mcasp0_axr0 0x6 IO
gpio1_26 0x7 IO
D8 gpmc_a11 gpmc_a11 0x0 O PD PD Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxd0 0x1 I
rgmii2_rd0 0x2 I
rmii2_rxd0 0x3 I
gpmc_a27 0x4 O
pr1_mii1_rxd0 0x5 I
mcasp0_axr1 0x6 IO
gpio1_27 0x7 IO
B5 gpmc_ad0 gpmc_ad0 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat0 0x1 IO
gpio1_0 0x7 IO
A5 gpmc_ad1 gpmc_ad1 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat1 0x1 IO
gpio1_1 0x7 IO
B6 gpmc_ad2 gpmc_ad2 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat2 0x1 IO
gpio1_2 0x7 IO
A6 gpmc_ad3 gpmc_ad3 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat3 0x1 IO
gpio1_3 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
42
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B7 gpmc_ad4 gpmc_ad4 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat4 0x1 IO
gpio1_4 0x7 IO
A7 gpmc_ad5 gpmc_ad5 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat5 0x1 IO
gpio1_5 0x7 IO
C8 gpmc_ad6 gpmc_ad6 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat6 0x1 IO
gpio1_6 0x7 IO
B8 gpmc_ad7 gpmc_ad7 0x0 IO PD PD Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
mmc1_dat7 0x1 IO
gpio1_7 0x7 IO
B10 gpmc_ad8 gpmc_ad8 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data23 0x1 O
mmc1_dat0 0x2 IO
mmc2_dat4 0x3 IO
ehrpwm2A 0x4 O
pr1_mii_mt0_clk 0x5 I
spi3_sclk 0x6 IO
gpio0_22 0x7 IO
spi3_cs1 0x8 IO
gpio5_26 0x9 IO
A10 gpmc_ad9 gpmc_ad9 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data22 0x1 O
mmc1_dat1 0x2 IO
mmc2_dat5 0x3 IO
ehrpwm2B 0x4 O
pr1_mii0_col 0x5 I
spi3_d0 0x6 IO
gpio0_23 0x7 IO
gpio5_25 0x9 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
43
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
F11 gpmc_ad10 gpmc_ad10 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data21 0x1 O
mmc1_dat2 0x2 IO
mmc2_dat6 0x3 IO
ehrpwm2_tripzone_input 0x4 I
pr1_mii0_txen 0x5 O
spi3_d1 0x6 IO
gpio0_26 0x7 IO
gpio5_24 0x9 IO
D11 gpmc_ad11 gpmc_ad11 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data20 0x1 O
mmc1_dat3 0x2 IO
mmc2_dat7 0x3 IO
ehrpwm0_synco 0x4 O
pr1_mii0_txd3 0x5 O
spi3_cs0 0x6 IO
gpio0_27 0x7 IO
gpio5_23 0x9 IO
E11 gpmc_ad12 gpmc_ad12 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data19 0x1 O
mmc1_dat4 0x2 IO
mmc2_dat0 0x3 IO
eQEP2A_in 0x4 I
pr1_mii0_txd2 0x5 O
pr1_pru0_gpi10 0x6 I
gpio1_12 0x7 IO
mcasp0_aclkx 0x8 IO
pr1_pru0_gpo10 0x9 O
C11 gpmc_ad13 gpmc_ad13 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data18 0x1 O
mmc1_dat5 0x2 IO
mmc2_dat1 0x3 IO
eQEP2B_in 0x4 I
pr1_mii0_txd1 0x5 O
pr1_pru0_gpi11 0x6 I
gpio1_13 0x7 IO
mcasp0_fsx 0x8 IO
pr1_pru0_gpo11 0x9 O
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
44
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B11 gpmc_ad14 gpmc_ad14 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data17 0x1 O
mmc1_dat6 0x2 IO
mmc2_dat2 0x3 IO
eQEP2_index 0x4 IO
pr1_mii0_txd0 0x5 O
pr1_pru0_gpi16 0x6 I
gpio1_14 0x7 IO
mcasp0_axr0 0x8 IO
A11 gpmc_ad15 gpmc_ad15 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
dss_data16 0x1 O
mmc1_dat7 0x2 IO
mmc2_dat3 0x3 IO
eQEP2_strobe 0x4 IO
pr1_ecap0_ecap_capin_apwm_o 0x5 IO
gpio1_15 0x7 IO
mcasp0_axr1 0x8 IO
spi3_cs1 0x9 IO
A9 gpmc_advn_ale gpmc_advn_ale 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
spi0_cs3 0x1 IO
timer4 0x2 IO
qspi_d0 0x3 IO
gpio2_2 0x7 IO
C10 gpmc_be0n_cle gpmc_be0n_cle 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
spi1_cs3 0x1 IO
timer5 0x2 IO
qspi_d3 0x3 I
pr1_mii1_rxlink 0x4 I
gpmc_a5 0x5 O
spi3_cs1 0x6 IO
gpio2_5 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
45
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
A3 gpmc_be1n gpmc_be1n 0x0 O PU PU Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_col 0x1 I
gpmc_csn6 0x2 O
mmc2_dat3 0x3 IO
gpmc_dir 0x4 O
pr1_mii1_col 0x5 I
mcasp0_aclkr 0x6 IO
gpio1_28 0x7 IO
A12 gpmc_clk gpmc_clk 0x0 IO PD PD Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
gpmc_wait1 0x2 I
mmc2_clk 0x3 IO
pr1_mii1_crs 0x4 I
pr1_mdio_mdclk 0x5 O
mcasp0_fsr 0x6 IO
gpio2_1 0x7 IO
gpio0_4 0x9 IO
A8 gpmc_csn0 gpmc_csn0 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
qspi_csn 0x3 O
gpio1_29 0x7 IO
B9 gpmc_csn1 gpmc_csn1 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
gpmc_clk 0x1 IO
mmc1_clk 0x2 IO
pr1_edio_data_in6 0x3 I
pr1_edio_data_out6 0x4 O
pr1_pru0_gpo8 0x5 O
pr1_pru0_gpi8 0x6 I
gpio1_30 0x7 IO
F10 gpmc_csn2 gpmc_csn2 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
gpmc_be1n 0x1 O
mmc1_cmd 0x2 IO
pr1_edio_data_in7 0x3 I
pr1_edio_data_out7 0x4 O
pr1_pru0_gpo9 0x5 O
pr1_pru0_gpi9 0x6 I
gpio1_31 0x7 IO
gmii2_crs 0x8 I
rmii2_crs_dv 0x9 I
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
46
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B12 gpmc_csn3 gpmc_csn3 0x0 O PU PU Mode7 VDDSHV9 Yes 6 PU/PD LVCMOS
gpmc_wait0 0x1 I
qspi_clk 0x2 IO
mmc2_cmd 0x3 IO
pr1_mii0_crs 0x4 I
pr1_mdio_data 0x5 IO
EMU4 0x6 IO
gpio2_0 0x7 IO
gmii2_crs 0x8 I
rmii2_crs_dv 0x9 I
E10 gpmc_oen_ren gpmc_oen_ren 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
spi0_cs2 0x1 IO
timer7 0x2 IO
qspi_d1 0x3 I
gpio2_3 0x7 IO
A2 gpmc_wait0 gpmc_wait0 0x0 I PU PU Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_crs 0x1 I
gpmc_csn4 0x2 O
rmii2_crs_dv 0x3 I
mmc1_sdcd 0x4 I
pr1_mii1_crs 0x5 I
uart4_rxd 0x6 I
gpio0_30 0x7 IO
gpio5_30 0x9 IO
D10 gpmc_wen gpmc_wen 0x0 O PU PU Mode7 VDDSHV10 Yes 6 PU/PD LVCMOS
spi1_cs2 0x1 IO
timer6 0x2 IO
qspi_d2 0x3 I
gpio2_4 0x7 IO
B3 gpmc_wpn gpmc_wpn 0x0 O PU PU Mode7 VDDSHV11 Yes 6 PU/PD LVCMOS
gmii2_rxer 0x1 I
gpmc_csn5 0x2 O
rmii2_rxer 0x3 I
mmc2_sdcd 0x4 I
pr1_mii1_rxer 0x5 I
uart4_txd 0x6 O
gpio0_31 0x7 IO
gpio5_31 0x9 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
47
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
Y22 I2C0_SCL I2C0_SCL 0x0 IOD OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
timer7 0x1 IO
uart2_rtsn 0x2 O
eCAP1_in_PWM1_out 0x3 IO
gpio3_6 0x7 IO
AB24 I2C0_SDA I2C0_SDA 0x0 IOD OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
timer4 0x1 IO
uart2_ctsn 0x2 IO
eCAP2_in_PWM2_out 0x3 IO
gpio3_5 0x7 IO
L23 mcasp0_aclkr mcasp0_aclkr 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
eQEP0A_in 0x1 I
mcasp0_axr2 0x2 IO
mcasp1_aclkx 0x3 IO
mmc0_sdwp 0x4 I
pr0_pru0_gpo4 0x5 O
pr0_pru0_gpi4 0x6 I
gpio3_18 0x7 IO
gpio0_18 0x9 IO
N24 mcasp0_aclkx mcasp0_aclkx 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm0A 0x1 O
spi0_cs3 0x2 IO
spi1_sclk 0x3 IO
mmc0_sdcd 0x4 I
pr0_pru0_gpo0 0x5 O
pr0_pru0_gpi0 0x6 I
gpio3_14 0x7 IO
M24 mcasp0_ahclkr mcasp0_ahclkr 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm0_synci 0x1 I
mcasp0_axr2 0x2 IO
spi1_cs0 0x3 IO
eCAP2_in_PWM2_out 0x4 IO
pr0_pru0_gpo3 0x5 O
pr0_pru0_gpi3 0x6 I
gpio3_17 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
48
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
L24 mcasp0_ahclkx mcasp0_ahclkx 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
eQEP0_strobe 0x1 IO
mcasp0_axr3 0x2 IO
mcasp1_axr1 0x3 IO
EMU4 0x4 IO
pr0_pru0_gpo7 0x5 O
pr0_pru0_gpi7 0x6 I
gpio3_21 0x7 IO
gpio0_3 0x9 IO
H23 mcasp0_axr0 mcasp0_axr0 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm0_tripzone_input 0x1 I
spi1_cs3 0x2 IO
spi1_d1 0x3 IO
mmc2_sdcd 0x4 I
pr0_pru0_gpo2 0x5 O
pr0_pru0_gpi2 0x6 I
gpio3_16 0x7 IO
M25 mcasp0_axr1 mcasp0_axr1 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
eQEP0_index 0x1 IO
mcasp1_axr0 0x3 IO
EMU3 0x4 IO
pr0_pru0_gpo6 0x5 O
pr0_pru0_gpi6 0x6 I
gpio3_20 0x7 IO
gpio0_2 0x9 IO
K23 mcasp0_fsr mcasp0_fsr 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
eQEP0B_in 0x1 I
mcasp0_axr3 0x2 IO
mcasp1_fsx 0x3 IO
EMU2 0x4 IO
pr0_pru0_gpo5 0x5 O
pr0_pru0_gpi5 0x6 I
gpio3_19 0x7 IO
gpio0_19 0x9 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
49
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
N22 mcasp0_fsx mcasp0_fsx 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm0B 0x1 O
spi1_cs2 0x2 IO
spi1_d0 0x3 IO
mmc1_sdcd 0x4 I
pr0_pru0_gpo1 0x5 O
pr0_pru0_gpi1 0x6 I
gpio3_15 0x7 IO
B17 mdio_clk mdio_clk 0x0 O PU PU Mode7 VDDSHV7 Yes 6 PU/PD LVCMOS
timer5 0x1 IO
uart5_txd 0x2 O
uart3_rtsn 0x3 O
mmc0_sdwp 0x4 I
mmc1_clk 0x5 IO
mmc2_clk 0x6 IO
gpio0_1 0x7 IO
pr1_mdio_mdclk 0x8 O
A17 mdio_data mdio_data 0x0 IO PU PU Mode7 VDDSHV7 Yes 6 PU/PD LVCMOS
timer6 0x1 IO
uart5_rxd 0x2 I
uart3_ctsn 0x3 IO
mmc0_sdcd 0x4 I
mmc1_cmd 0x5 IO
mmc2_cmd 0x6 IO
gpio0_0 0x7 IO
pr1_mdio_data 0x8 IO
D16 mii1_col gmii1_col 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii2_refclk 0x1 IO
spi1_sclk 0x2 IO
uart5_rxd 0x3 I
mcasp1_axr2 0x4 IO
mmc2_dat3 0x5 IO
mcasp0_axr2 0x6 IO
gpio3_0 0x7 IO
gpio0_0 0x9 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
50
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B14 mii1_crs gmii1_crs 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_crs_dv 0x1 I
spi1_d0 0x2 IO
I2C1_SDA 0x3 IOD
mcasp1_aclkx 0x4 IO
uart5_ctsn 0x5 I
uart2_rxd 0x6 IO
gpio3_1 0x7 IO
F17 mii1_rxd0 gmii1_rxd0 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_rxd0 0x1 I
rgmii1_rd0 0x2 I
mcasp1_ahclkx 0x3 IO
mcasp1_ahclkr 0x4 IO
mcasp1_aclkr 0x5 IO
mcasp0_axr3 0x6 IO
gpio2_21 0x7 IO
B16 mii1_rxd1 gmii1_rxd1 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_rxd1 0x1 I
rgmii1_rd1 0x2 I
mcasp1_axr3 0x3 IO
mcasp1_fsr 0x4 IO
eQEP0_strobe 0x5 IO
mmc2_clk 0x6 IO
gpio2_20 0x7 IO
E16 mii1_rxd2 gmii1_rxd2 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
uart3_txd 0x1 IO
rgmii1_rd2 0x2 I
mmc0_dat4 0x3 IO
mmc1_dat3 0x4 IO
uart1_rin 0x5 I
mcasp0_axr1 0x6 IO
gpio2_19 0x7 IO
gpio0_11 0x9 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
51
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
C14 mii1_rxd3 gmii1_rxd3 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
uart3_rxd 0x1 IO
rgmii1_rd3 0x2 I
mmc0_dat5 0x3 IO
mmc1_dat2 0x4 IO
uart1_dtrn 0x5 O
mcasp0_axr0 0x6 IO
gpio2_18 0x7 IO
gpio0_10 0x9 IO
D13 mii1_rx_clk gmii1_rxclk 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
uart2_txd 0x1 IO
rgmii1_rclk 0x2 I
mmc0_dat6 0x3 IO
mmc1_dat1 0x4 IO
uart1_dsrn 0x5 I
mcasp0_fsx 0x6 IO
gpio3_10 0x7 IO
gpio0_9 0x9 IO
A15 mii1_rx_dv gmii1_rxdv 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rgmii1_rctl 0x2 I
uart5_txd 0x3 O
mcasp1_aclkx 0x4 IO
mmc2_dat0 0x5 IO
mcasp0_aclkr 0x6 IO
gpio3_4 0x7 IO
gpio0_1 0x9 IO
B13 mii1_rx_er gmii1_rxer 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_rxer 0x1 I
spi1_d1 0x2 IO
I2C1_SCL 0x3 IOD
mcasp1_fsx 0x4 IO
uart5_rtsn 0x5 O
uart2_txd 0x6 IO
gpio3_2 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
52
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
B15 mii1_txd0 gmii1_txd0 0x0 O PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_txd0 0x1 O
rgmii1_td0 0x2 O
mcasp1_axr2 0x3 IO
mcasp1_aclkr 0x4 IO
eQEP0B_in 0x5 I
mmc1_clk 0x6 IO
gpio0_28 0x7 IO
A14 mii1_txd1 gmii1_txd1 0x0 O PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_txd1 0x1 O
rgmii1_td1 0x2 O
mcasp1_fsr 0x3 IO
mcasp1_axr1 0x4 IO
eQEP0A_in 0x5 I
mmc1_cmd 0x6 IO
gpio0_21 0x7 IO
C13 mii1_txd2 gmii1_txd2 0x0 O PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
dcan0_rx 0x1 I
rgmii1_td2 0x2 O
uart4_txd 0x3 O
mcasp1_axr0 0x4 IO
mmc2_dat2 0x5 IO
mcasp0_ahclkx 0x6 IO
gpio0_17 0x7 IO
gpio3_12 0x9 IO
C16 mii1_txd3 gmii1_txd3 0x0 O PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
dcan0_tx 0x1 O
rgmii1_td3 0x2 O
uart4_rxd 0x3 I
mcasp1_fsx 0x4 IO
mmc2_dat1 0x5 IO
mcasp0_fsr 0x6 IO
gpio0_16 0x7 IO
gpio3_11 0x9 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
53
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
D14 mii1_tx_clk gmii1_txclk 0x0 I PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
uart2_rxd 0x1 IO
rgmii1_tclk 0x2 O
mmc0_dat7 0x3 IO
mmc1_dat0 0x4 IO
uart1_dcdn 0x5 I
mcasp0_aclkx 0x6 IO
gpio3_9 0x7 IO
gpio0_8 0x9 IO
A13 mii1_tx_en gmii1_txen 0x0 O PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
rmii1_txen 0x1 O
rgmii1_tctl 0x2 O
timer4 0x3 IO
mcasp1_axr0 0x4 IO
eQEP0_index 0x5 IO
mmc2_cmd 0x6 IO
gpio3_3 0x7 IO
D1 mmc0_clk mmc0_clk 0x0 IO OFF OFF Mode7 VDDSHV1 Yes 6 PU/PD LVCMOS
gpmc_a24 0x1 O
uart3_ctsn 0x2 IO
uart2_rxd 0x3 IO
dcan1_tx 0x4 O
pr0_pru0_gpo12 0x5 O
pr0_pru0_gpi12 0x6 I
gpio2_30 0x7 IO
D2 mmc0_cmd mmc0_cmd 0x0 IO OFF OFF Mode7 VDDSHV1 Yes 6 PU/PD LVCMOS
gpmc_a25 0x1 O
uart3_rtsn 0x2 O
uart2_txd 0x3 IO
dcan1_rx 0x4 I
pr0_pru0_gpo13 0x5 O
pr0_pru0_gpi13 0x6 I
gpio2_31 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
54
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
C1 mmc0_dat0 mmc0_dat0 0x0 IO OFF OFF Mode7 VDDSHV1 Yes 6 PU/PD LVCMOS
gpmc_a23 0x1 O
uart5_rtsn 0x2 O
uart3_txd 0x3 IO
uart1_rin 0x4 I
pr0_pru0_gpo11 0x5 O
pr0_pru0_gpi11 0x6 I
gpio2_29 0x7 IO
C2 mmc0_dat1 mmc0_dat1 0x0 IO OFF OFF Mode7 VDDSHV1 Yes 6 PU/PD LVCMOS
gpmc_a22 0x1 O
uart5_ctsn 0x2 I
uart3_rxd 0x3 IO
uart1_dtrn 0x4 O
pr0_pru0_gpo10 0x5 O
pr0_pru0_gpi10 0x6 I
gpio2_28 0x7 IO
B2 mmc0_dat2 mmc0_dat2 0x0 IO OFF OFF Mode7 VDDSHV1 Yes 6 PU/PD LVCMOS
gpmc_a21 0x1 O
uart4_rtsn 0x2 O
timer6 0x3 IO
uart1_dsrn 0x4 I
pr0_pru0_gpo9 0x5 O
pr0_pru0_gpi9 0x6 I
gpio2_27 0x7 IO
B1 mmc0_dat3 mmc0_dat3 0x0 IO OFF OFF Mode7 VDDSHV1 Yes 6 PU/PD LVCMOS
gpmc_a20 0x1 O
uart4_ctsn 0x2 I
timer5 0x3 IO
uart1_dcdn 0x4 I
pr0_pru0_gpo8 0x5 O
pr0_pru0_gpi8 0x6 I
gpio2_26 0x7 IO
Y25 nTRST nTRST 0x0 I PD PD Mode0 VDDSHV3 Yes NA PU/PD LVCMOS
Y23 PWRONRSTn porz 0x0 I Z Z Mode0 VDDSHV3 (13) Yes NA NA LVCMOS
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
55
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AA10,AA7,
AA9,AB10,
AB6,AB7,
AB9,AC10,
AC12,AC5,
AC6,AC7,
AC9,AD1,
AD10,AD11,
AD2,AD7,
AE11,AE12,
AE9,H19,
H21,W10,
Y10,Y6,Y7
Reserved Reserved (7) NA NA NA NA NA NA NA NA NA NA
A16 rmii1_ref_clk rmii1_refclk 0x0 IO PD PD Mode7 VDDSHV8 Yes 6 PU/PD LVCMOS
xdma_event_intr2 0x1 I
spi1_cs0 0x2 IO
uart5_txd 0x3 O
mcasp1_axr3 0x4 IO
mmc0_pow 0x5 O
mcasp1_ahclkx 0x6 IO
gpio0_29 0x7 IO
AE2 RTC_KALDO_ENn RTC_KALDO_ENn 0x0 I Z Z Mode0 VDDS_RTC NA NA NA Analog
AD6 RTC_PMIC_EN RTC_PMIC_EN 0x0 O PU 1 Mode0 VDDS_RTC NA 6 NA LVCMOS
AE6 RTC_PWRONRSTn RTC_PORz 0x0 I Z Z Mode0 VDDS_RTC Yes NA NA LVCMOS
AE3 RTC_WAKEUP RTC_WAKEUP 0x0 I PD Z Mode0 VDDS_RTC Yes NA NA LVCMOS
AE5 RTC_XTALIN OSC1_IN 0x0 I H H Mode0 VDDS_RTC Yes NA PU (2) LVCMOS
AE4 RTC_XTALOUT OSC1_OUT 0x0 O Z Z (24) Mode0 VDDS_RTC NA NA (14) NA LVCMOS
T20 spi0_cs0 spi0_cs0 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
mmc2_sdwp 0x1 I
I2C1_SCL 0x2 IOD
ehrpwm0_synci 0x3 I
pr1_uart0_txd 0x4 O
pr0_uart0_txd 0x5 O
pr1_edio_data_out1 0x6 O
gpio0_5 0x7 IO
ehrpwm1B 0x8 O
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
56
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
R25 spi0_cs1 spi0_cs1 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
uart3_rxd 0x1 IO
eCAP1_in_PWM1_out 0x2 IO
mmc0_pow 0x3 O
xdma_event_intr2 0x4 I
mmc0_sdcd 0x5 I
EMU4 0x6 IO
gpio0_6 0x7 IO
ehrpwm2A 0x8 O
timer0 0x9 IO
T22 spi0_d0 spi0_d0 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
uart2_txd 0x1 IO
I2C2_SCL 0x2 IOD
ehrpwm0B 0x3 O
pr1_uart0_rts_n 0x4 O
pr0_uart0_rts_n 0x5 O
EMU3 0x6 IO
gpio0_3 0x7 IO
T21 spi0_d1 spi0_d1 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
mmc1_sdwp 0x1 I
I2C1_SDA 0x2 IOD
ehrpwm0_tripzone_input 0x3 I
pr1_uart0_rxd 0x4 I
pr0_uart0_rxd 0x5 I
pr1_edio_data_out0 0x6 O
gpio0_4 0x7 IO
ehrpwm1A 0x8 O
P23 spi0_sclk spi0_sclk 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
uart2_rxd 0x1 IO
I2C2_SDA 0x2 IOD
ehrpwm0A 0x3 O
pr1_uart0_cts_n 0x4 I
pr0_uart0_cts_n 0x5 I
EMU2 0x6 IO
gpio0_2 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
57
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
T23 spi2_cs0 spi2_cs0 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
I2C1_SDA 0x1 IOD
ehrpwm2_tripzone_input 0x6 I
gpio3_25 0x7 IO
gpio0_23 0x9 IO
P22 spi2_d0 spi2_d0 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm5_tripzone_input 0x6 I
gpio3_22 0x7 IO
gpio0_20 0x9 IO
P20 spi2_d1 spi2_d1 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm1_tripzone_input 0x6 I
gpio3_23 0x7 IO
gpio0_21 0x9 IO
N20 spi2_sclk spi2_sclk 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
I2C1_SCL 0x1 IOD
ehrpwm4_tripzone_input 0x6 I
gpio3_24 0x7 IO
gpio0_22 0x9 IO
N25 spi4_cs0 spi4_cs0 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm3_tripzone_input 0x6 I
gpio5_7 0x7 IO
R24 spi4_d0 spi4_d0 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm3_synci 0x6 I
gpio5_5 0x7 IO
P24 spi4_d1 spi4_d1 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm0_tripzone_input 0x6 I
gpio5_6 0x7 IO
P25 spi4_sclk spi4_sclk 0x0 IO OFF PD Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
ehrpwm0_synci 0x6 I
gpio5_4 0x7 IO
AA25 TCK TCK 0x0 I PU PU Mode0 VDDSHV3 Yes NA PU/PD LVCMOS
Y20 TDI TDI 0x0 I PU PU Mode0 VDDSHV3 Yes NA PU/PD LVCMOS
AA24 TDO TDO 0x0 O PU PU Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
Y24 TMS TMS 0x0 I PU PU Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
58
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
L25 uart0_ctsn uart0_ctsn 0x0 I OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
uart4_rxd 0x1 I
dcan1_tx 0x2 O
I2C1_SDA 0x3 IOD
spi1_d0 0x4 IO
timer7 0x5 IO
pr1_edc_sync0_out 0x6 O
gpio1_8 0x7 IO
J25 uart0_rtsn uart0_rtsn 0x0 O OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
uart4_txd 0x1 O
dcan1_rx 0x2 I
I2C1_SCL 0x3 IOD
spi1_d1 0x4 IO
spi1_cs0 0x5 IO
pr1_edc_sync1_out 0x6 O
gpio1_9 0x7 IO
K25 uart0_rxd uart0_rxd 0x0 I OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
spi1_cs0 0x1 IO
dcan0_tx 0x2 O
I2C2_SDA 0x3 IOD
eCAP2_in_PWM2_out 0x4 IO
pr0_pru1_gpo4 0x5 O
pr0_pru1_gpi4 0x6 I
gpio1_10 0x7 IO
J24 uart0_txd uart0_txd 0x0 O OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
spi1_cs1 0x1 IO
dcan0_rx 0x2 I
I2C2_SCL 0x3 IOD
eCAP1_in_PWM1_out 0x4 IO
pr0_pru1_gpo5 0x5 O
pr0_pru1_gpi5 0x6 I
gpio1_11 0x7 IO
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
59
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
K22 uart1_ctsn uart1_ctsn 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
timer6 0x1 IO
dcan0_tx 0x2 O
I2C2_SDA 0x3 IOD
spi1_cs0 0x4 IO
pr1_uart0_cts_n 0x5 I
pr1_edc_latch0_in 0x6 I
gpio0_12 0x7 IO
L22 uart1_rtsn uart1_rtsn 0x0 O OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
timer5 0x1 IO
dcan0_rx 0x2 I
I2C2_SCL 0x3 IOD
spi1_cs1 0x4 IO
pr1_uart0_rts_n 0x5 O
pr1_edc_latch1_in 0x6 I
gpio0_13 0x7 IO
K21 uart1_rxd uart1_rxd 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
mmc1_sdwp 0x1 I
dcan1_tx 0x2 O
I2C1_SDA 0x3 IOD
pr1_uart0_rxd 0x5 I
pr1_pru0_gpi16 0x6 I
gpio0_14 0x7 IO
L21 uart1_txd uart1_txd 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
mmc2_sdwp 0x1 I
dcan1_rx 0x2 I
I2C1_SCL 0x3 IOD
pr1_uart0_txd 0x5 O
pr1_pru0_gpi16 0x6 I
gpio0_15 0x7 IO
H22 uart3_ctsn uart3_ctsn 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
spi4_cs1 0x2 IO
pr0_pru1_gpo18 0x4 O
pr0_pru1_gpi18 0x5 I
ehrpwm5A 0x6 O
gpio5_0 0x7 IO
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
60
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
K24 uart3_rtsn uart3_rtsn 0x0 O OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
hdq_sio 0x1 IOD
pr0_pru1_gpo19 0x4 O
pr0_pru1_gpi19 0x5 I
ehrpwm5B 0x6 O
gpio5_1 0x7 IO
H25 uart3_rxd uart3_rxd 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
pr0_pru0_gpo18 0x4 O
pr0_pru0_gpi18 0x5 I
ehrpwm4A 0x6 O
gpio5_2 0x7 IO
H24 uart3_txd uart3_txd 0x0 IO OFF PU Mode7 VDDSHV3 Yes 6 PU/PD LVCMOS
pr0_pru0_gpo19 0x4 O
pr0_pru0_gpi19 0x5 I
ehrpwm4B 0x6 O
gpio5_3 0x7 IO
W22 USB0_CE USB0_CE 0x0 A Z Z Mode0 VDDA3P3V_USB0/V
DDA1P8V_USB0 NA NA NA Analog
W24 USB0_DM USB0_DM 0x0 A Z Z Mode0 VDDA3P3V_USB0/V
DDA1P8V_USB0 NA (15) 8(15) NA Analog
W25 USB0_DP USB0_DP 0x0 A Z Z Mode0 VDDA3P3V_USB0/V
DDA1P8V_USB0 NA (15) 8(15) NA Analog
G21 USB0_DRVVBUS USB0_DRVVBUS 0x0 O PD PD Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio0_18 0x7 IO
gpio5_27 0x9 IO
U24 USB0_ID USB0_ID 0x0 A Z Z Mode0 VDDA3P3V_USB0/V
DDA1P8V_USB0 NA NA NA Analog
U23 USB0_VBUS USB0_VBUS 0x0 A Z Z Mode0 VDDA3P3V_USB0/V
DDA1P8V_USB0 NA NA NA Analog
U22 USB1_CE USB1_CE 0x0 A Z Z Mode0 VDDA3P3V_USB1/V
DDA1P8V_USB1 NA NA NA Analog
V25 USB1_DM USB1_DM 0x0 A Z Z Mode0 VDDA3P3V_USB1/V
DDA1P8V_USB1 NA (16) 8(16) NA Analog
V24 USB1_DP USB1_DP 0x0 A Z Z Mode0 VDDA3P3V_USB1/V
DDA1P8V_USB1 NA (16) 8(16) NA Analog
F25 USB1_DRVVBUS USB1_DRVVBUS 0x0 O PD PD Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
gpio3_13 0x7 IO
gpio0_25 0x9 IO
U25 USB1_ID USB1_ID 0x0 A Z Z Mode0 VDDA3P3V_USB1/V
DDA1P8V_USB1 NA NA NA Analog
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
61
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
T25 USB1_VBUS USB1_VBUS 0x0 A Z Z Mode0 VDDA3P3V_USB1/V
DDA1P8V_USB1 NA NA NA Analog
W21 VDDA1P8V_USB0 VDDA1P8V_USB0 NA POWER NA NA NA NA NA NA NA NA
U21 VDDA1P8V_USB1 VDDA1P8V_USB1 NA POWER NA NA NA NA NA NA NA NA
W20 VDDA3P3V_USB0 VDDA3P3V_USB0 NA POWER NA NA NA NA NA NA NA NA
U20 VDDA3P3V_USB1 VDDA3P3V_USB1 NA POWER NA NA NA NA NA NA NA NA
AB12 VDDA_ADC0 VDDA_ADC0 NA POWER NA NA NA NA NA NA NA NA
Y16 VDDA_ADC1 VDDA_ADC1 NA POWER NA NA NA NA NA NA NA NA
AD12,AD8,
F20,G6,H12,
P19,W15,
Y19
VDDS VDDS (1) NA POWER NA NA NA NA NA NA NA NA
F8 VDDS3P3V_IOLDO VDDS3P3V_IOLDO NA POWER NA NA NA NA NA NA NA NA
J7,J8 VDDSHV1 VDDSHV1 NA POWER NA NA NA NA NA NA NA NA
V16,V17,
W16 VDDSHV2 VDDSHV2 NA POWER NA NA NA NA NA NA NA NA
J18,K17,
K18,N18,
N19,P18,
W18
VDDSHV3 VDDSHV3 NA POWER NA NA NA NA NA NA NA NA
F22 VDDSHV5 VDDSHV5 NA POWER NA NA NA NA NA NA NA NA
G16,G17,
H17 VDDSHV6 VDDSHV6 NA POWER NA NA NA NA NA NA NA NA
F16 VDDSHV7 VDDSHV7 NA POWER NA NA NA NA NA NA NA NA
G13,G14 VDDSHV8 VDDSHV8 NA POWER NA NA NA NA NA NA NA NA
G11,H11 VDDSHV9 VDDSHV9 NA POWER NA NA NA NA NA NA NA NA
G10,H10 VDDSHV10 VDDSHV10 NA POWER NA NA NA NA NA NA NA NA
H8,H9 VDDSHV11 VDDSHV11 NA POWER NA NA NA NA NA NA NA NA
E23 VDDS_CLKOUT VDDS_CLKOUT NA POWER NA NA NA NA NA NA NA NA
K7,K8,M7,
M8,N7,N8,
R6,R7,R8,
T7,T8,V7,
V8
VDDS_DDR VDDS_DDR NA POWER NA NA NA NA NA NA NA NA
C23 VDDS_OSC VDDS_OSC NA POWER NA NA NA NA NA NA NA NA
N21 VDDS_PLL_CORE_LCD VDDS_PLL_CORE_LCD NA POWER NA NA NA NA NA NA NA NA
G5 VDDS_PLL_DDR VDDS_PLL_DDR NA POWER NA NA NA NA NA NA NA NA
E17 VDDS_PLL_MPU VDDS_PLL_MPU NA POWER NA NA NA NA NA NA NA NA
AD5 VDDS_RTC VDDS_RTC NA POWER NA NA NA NA NA NA NA NA
F13 VDDS_SRAM_CORE_BG VDDS_SRAM_CORE_BG NA POWER NA NA NA NA NA NA NA NA
F14 VDDS_SRAM_MPU_BB VDDS_SRAM_MPU_BB NA POWER NA NA NA NA NA NA NA NA
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
62
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
AD9,J10,
J11,L12,L14,
M12,M14,
M9,N16,N17,
N9,P16,P17,
R11,R14,R9,
T11,T14,
T18,T19,T9,
U15,V15,
W12,W13
VDD_CORE VDD_CORE (11) NA POWER NA NA NA NA NA NA NA NA
H13,H14,
H16,J13,J14,
J16,K19,
K20,L19,
L20,M17,
M18
VDD_MPU VDD_MPU NA POWER NA NA NA NA NA NA NA NA
D20 vdd_mpu_mon vdd_mpu_mon (25) NA POWER NA NA NA NA NA NA NA NA
P21 VPP VPP (18) NA POWER NA NA NA NA NA NA NA NA
A1,A25,
AA23,AE1,
AE10,AE25,
AE7,AE8,
H15,H18,
J12,J15,J17,
J9,K11,K12,
K14,K15,K9,
L11,L15,L17,
L18,L8,L9,
M10,M11,
M13,M15,
M16,N10,
N11,N12,
N13,N14,
N15,P10,
P11,P12,
P13,P14,
P15,P8,P9,
R12,R15,
R17,R18,
T12,T15,
T17,U10,
U11,U12,
U13,U14,
U16,U17,
U18,U19,U8,
U9,V10,V11,
V12,V13,
V14,V18,V9
VSS VSS (12) NA GROUND NA NA NA NA NA NA NA NA
AC15 VSSA_ADC VSSA_ADC NA GROUND NA NA NA NA NA NA NA NA
W23 VSSA_USB VSSA_USB NA GROUND NA NA NA NA NA NA NA NA
B24 VSS_OSC VSS_OSC (26) NA GROUND NA NA NA NA NA NA NA NA
AD4 VSS_RTC VSS_RTC (27) NA GROUND NA NA NA NA NA NA NA NA
G22 WARMRSTn nRESETIN_OUT 0x0 IOD (9) OFF PU (17) Mode0 VDDSHV3 Yes 6 PU/PD LVCMOS
Copyright © 2014–2016, Texas Instruments Incorporated Terminal Configuration and Functions
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
63
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Table 4-10. Pin Attributes (ZDN Package) (continued)
BALL
NUMBER [1] PIN NAME [2] SIGNAL NAME [3] MODE [4] TYPE [5] BALL
RESET
STATE [6]
BALL
RESET
REL.
STATE [7]
BALL RESET
REL. MODE
[8] POWER [9] HYS [10] BUFFER
STRENGTH
(mA) [11]
PULL
UP/DOWN
TYPE [12] IO CELL [13]
D24 xdma_event_intr0 xdma_event_intr0 0x0 I OFF PD (8) Mode7 VDDSHV5 Yes 6 PU/PD LVCMOS
ext_hw_trigger 0x1 I
timer4 0x2 IO
clkout1 0x3 O
spi1_cs1 0x4 IO
pr1_pru0_gpi16 0x5 I
EMU2 0x6 IO
gpio0_19 0x7 IO
pr1_mdio_data 0x8 IO
gpio5_28 0x9 IO
C24 xdma_event_intr1 xdma_event_intr1 0x0 I OFF PD Mode7 VDDSHV5 Yes 6 PU/PD LVCMOS
spi0_cs2 0x1 IO
tclkin 0x2 I
clkout2 0x3 O
timer7 0x4 IO
pr1_pru0_gpi16 0x5 I
EMU3 0x6 IO
gpio0_20 0x7 IO
pr1_mdio_mdclk 0x8 O
gpio5_29 0x9 IO
C25 XTALIN OSC0_IN 0x0 (3) I Z Z Mode0 VDDS_OSC Yes NA PD LVCMOS
B25 XTALOUT OSC0_OUT 0x0 O Z Z Mode0 VDDS_OSC NA NA (14) NA LVCMOS
(1) AD12 and AD8 are not connected to VDDS in the device, but they are required to be connected to 1.8-V VDDS on the board.
(2) An internal 10-kΩpullup is turned on when the oscillator is disabled. The oscillator is disabled by default after power is applied.
(3) An internal 15-kΩpulldown is turned on when the oscillator is disabled. The oscillator is enabled by default after power is applied.
(4) DSS_DATA[15:0] terminals are respectively SYSBOOT[15:0] inputs, latched on the rising edge of PWRONRSTn.
(5) DSS_HSYNC terminal is SYSBOOT[17] input, latched on the rising edge of PWRONRSTn.
(6) DSS_VSYNC terminal is SYSBOOT[16] input, latched on the rising edge of PWRONRSTn.
(7) Do not connect any signal, test point, or board trace to reserved signals.
(8) If sysboot[17] is low on the rising edge of PWRONRSTn, this terminal has an internal pulldown turned on after reset is released. If sysboot[17] is high on the rising edge or PWRONRSTn,
this terminal will initially be driven low after reset is released then it begins to toggle at the same frequency of the OSC0_IN terminal.
(9) See the External Warm Reset section of the Technical Reference Manual for more information related to the operation of this terminal.
(10) Reset Release Mode = 7 if sysboot[17] is low. Mode = 3 if sysboot[17] is high.
(11) Terminal AD9 is not connected to VDD_CORE in the device, but it is required to be connected to VDD_CORE on the board.
(12) Terminals AA23, AE10, AE7, AE8 are not connected to VSS in the device, but they are required to be connected to board ground.
Copyright © 2014–2016, Texas Instruments IncorporatedTerminal Configuration and Functions Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
64
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
(13) The input voltage thresholds for this input are not a function of VDDSHV3. See the DC Electrical Characteristics section for details related to electrical parameters associated with this
input terminal.
(14) This output should only be used to source the recommended crystal circuit.
(15) This parameter only applies when this USB PHY terminal is operating in UART2 mode.
(16) This parameter only applies when this USB PHY terminal is operating in UART3 mode.
(17) This pin is configured as open-drain and, hence, is expected to have an external pullup resistor. However, there is also an internal PU resistor by default enabled after reset is
deasserted.
(18) This signal is valid only for High-Security (AM437xHS) devices. For more details, see the VPP Specification for One-Time Programmable (OTP) eFUSEs section. This signal is reserved
for AM437x devices and, thus, do not connect any signal, test point, or board trace to this signal for AM437x devices.
(19) This terminal is an analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).
(20) This terminal is an analog passive signal that connects to an external 49.9 Ω1%, 20mW reference resistor which is used to calibrate the DDR input/output buffers.
(21) This terminal is analog input that may also be configured as an open-drain output.
(22) This terminal is analog input that may also be configured as an open-source or open-drain output.
(23) This terminal is analog input that may also be configured as an open-source output.
(24) This terminal is high-Z when the oscillator is disabled. This terminal is driven high if RTC_XTALIN is less than VIL, driven low if RTC_XTALIN is greater than VIH, and driven to a
unknown value if RTC_XTALIN is between VIL and VIH when the oscillator is enabled. The oscillator is disabled by default after power is applied.
(25) This terminal provides a Kelvin connection to VDD_MPU. It can be connected to the power supply feedback input to provide remote sensing which compensates for voltage drop in the
PCB power distribution network and package. When the Kelvin connection is not used it should be connected to the same power source as VDD_MPU.
(26) This terminal provides a Kelvin ground reference for the external crystal components. If a crystal circuit is connected to the OSC0_IN/OSC0_OUT terminals, the crystal circuit component
grounds should be connected to this terminal and also be connected to the PCB ground plane close to this terminal. If an external LVCMOS clock source is connected to the OSC0_IN
terminal, this terminal should be connected to VSS.
(27) This terminal provides a Kelvin ground reference for the external crystal components. If a crystal circuit is connected to the OSC1_IN/OSC1_OUT terminals, the crystal circuit component
grounds should be connected to this terminal and also should be connected to the PCB ground plane close to this terminal. If an external LVCMOS clock source is connected to the
OSC1_IN terminal, this terminal should be connected to VSS.
65
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3 Signal Descriptions
The device contains many peripheral interfaces. In order to reduce package size and lower overall system
cost while maintaining maximum functionality, many of the terminals can multiplex up to eight signal
functions. Although there are many combinations of pin multiplexing that are possible, only a certain
number of sets, called IO Sets, are valid due to timing limitations. These valid IO Sets were carefully
chosen to provide many possible application scenarios for the user.
TI has developed a Windows-based application called Pin Mux Utility that helps a system designer select
the appropriate pin-multiplexing configuration for their device-based product design. The Pin Mux Utility
provides a way to select valid IO Sets of specific peripheral interfaces to ensure the pin-multiplexing
configuration selected for a design only uses valid IO Sets supported by the device.
(1) SIGNAL NAME: The signal name
(2) DESCRIPTION: Description of the signal.
(3) TYPE: Ball type for this specific function:
I = Input
O = Output
I/O = Input/Output
D = Open drain
DS = Differential
A = Analog
(4) BALL: Package ball location.
4.3.1 ADC Interfaces
Table 4-11. ADC0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ADC0_AIN0 Analog Input/Output A AA12
ADC0_AIN1 Analog Input/Output A Y12
ADC0_AIN2 Analog Input/Output A Y13
ADC0_AIN3 Analog Input/Output A AA13
ADC0_AIN4 Analog Input/Output A AB13
ADC0_AIN5 Analog Input/Output A AC13
ADC0_AIN6 Analog Input/Output A AD13
ADC0_AIN7 Analog Input/Output A AE13
ADC0_VREFN Analog Negative Reference Input AP AE14
ADC0_VREFP Analog Positive Reference Input AP AD14
Table 4-12. ADC0/1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ext_hw_trigger External Hardware Trigger for ADC conversion I AC25,D24
Table 4-13. ADC1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ADC1_AIN0 Analog Input/Output A AC16
ADC1_AIN1 Analog Input/Output A AB16
ADC1_AIN2 Analog Input/Output A AA16
ADC1_AIN3 Analog Input/Output A AB15
ADC1_AIN4 Analog Input/Output A AA15
ADC1_AIN5 Analog Input/Output A Y15
ADC1_AIN6 Analog Input/Output A AE16
ADC1_AIN7 Analog Input/Output A AD16
ADC1_VREFN Analog Negative Reference Input AP AD15
66
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-13. ADC1 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ADC1_VREFP Analog Positive Reference Input AP AE15
67
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.2 CAN Interfaces
Table 4-14. DCAN0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
dcan0_rx DCAN0 Receive Data I C13,J24,L22
dcan0_tx DCAN0 Transmit Data O C16,K22,K25
Table 4-15. DCAN1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
dcan1_rx DCAN1 Receive Data I D2,J25,L21
dcan1_tx DCAN1 Transmit Data O D1,K21,L25
68
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.3 Camera (VPFE) Interfaces
Table 4-16. Camera0 Input Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
cam0_data0 Camera data I AE18
cam0_data1 Camera data I AB18
cam0_data2 Camera data I Y18
cam0_data3 Camera data I AA18
cam0_data4 Camera data I AE19
cam0_data5 Camera data I AD19
cam0_data6 Camera data I AE20
cam0_data7 Camera data I AD20
cam0_data8 Camera data I AB19
cam0_data9 Camera data I AA19
cam0_data10 Camera data I AC18,AC25
cam0_data11 Camera data I AB25,AD17
cam0_field CCD Data Field Indicator IO AC18
cam0_hd CCD Data Horizontal Detect IO AE17
cam0_pclk CCD Data Pixel Clock I AC20
cam0_vd CCD Data Vertical Detect IO AD18
cam0_wen CCD Data Write Enable I AD17
Table 4-17. Camera1 Input Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
cam1_data0 Camera data I AB20
cam1_data1 Camera data I AC21
cam1_data2 Camera data I AD21
cam1_data3 Camera data I AE22
cam1_data4 Camera data I AD22
cam1_data5 Camera data I AE23
cam1_data6 Camera data I AD23
cam1_data7 Camera data I AE24
cam1_data8 Camera data I AB18,AD24
cam1_data9 Camera data I AC24,AE18
cam1_data10 Camera data I AC18,AC25,Y18
cam1_data11 Camera data I AA18,AB25,AD17
cam1_field CCD Data Field Indicator IO AC25
cam1_hd CCD Data Horizontal Detect IO AD25
cam1_pclk CCD Data Pixel Clock I AE21
cam1_vd CCD Data Vertical Detect IO AC23
cam1_wen CCD Data Write Enable I AB25,AE19
69
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.4 Debug Subsystem Interface
Table 4-18. Debug Subsystem Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
EMU0 MISC EMULATION PIN IO N23
EMU1 MISC EMULATION PIN IO T24
EMU2 MISC EMULATION PIN IO AE17,D24,K23,P23
EMU3 MISC EMULATION PIN IO AD18,C24,M25,T22
EMU4 MISC EMULATION PIN IO AC18,B12,L24,R25
EMU5 MISC EMULATION PIN IO AD17
EMU6 MISC EMULATION PIN IO AC20
EMU7 MISC EMULATION PIN IO AB19
EMU8 MISC EMULATION PIN IO AA19
EMU9 MISC EMULATION PIN IO AC24
EMU10 MISC EMULATION PIN IO AD24,AE17
EMU11 MISC EMULATION PIN IO AB25,AD18
nTRST JTAG TEST RESET (ACTIVE LOW) I Y25
TCK JTAG TEST CLOCK I AA25
TDI JTAG TEST DATA INPUT I Y20
TDO JTAG TEST DATA OUTPUT O AA24
TMS JTAG TEST MODE SELECT I Y24
70
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.5 Display Subsystem (DSS) Interface
Table 4-19. Display Subsystem (DSS) Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
dss_ac_bias_en DSS data O A24
dss_data0 DSS data IO B22
dss_data1 DSS data IO A21
dss_data2 DSS data IO B21
dss_data3 DSS data IO C21
dss_data4 DSS data IO A20
dss_data5 DSS data IO B20
dss_data6 DSS data IO C20
dss_data7 DSS data IO E19
dss_data8 DSS data IO A19
dss_data9 DSS data IO B19
dss_data10 DSS data IO A18
dss_data11 DSS data IO B18
dss_data12 DSS data IO C19
dss_data13 DSS data IO D19
dss_data14 DSS data IO C17
dss_data15 DSS data IO D17
dss_data16 DSS data O A11,AC24
dss_data17 DSS data O AA19,B11
dss_data18 DSS data O AB19,C11
dss_data19 DSS data O AC20,E11
dss_data20 DSS data O AD17,D11
dss_data21 DSS data O AC18,F11
dss_data22 DSS data O A10,AD18
dss_data23 DSS data O AE17,B10
dss_hsync DSS Horizontal Sync O A23
dss_pclk DSS Pixel Clock O A22
dss_vsync DSS Vertical Sync O B23
71
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.6 Ethernet (GEMAC_CPSW) Interfaces
Table 4-20. MDIO Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
mdio_clk MDIO Clk O B17
mdio_data MDIO Data IO A17
Table 4-21. MII1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gmii1_col MII Colision I D16
gmii1_crs MII Carrier Sense I B14
gmii1_rxclk MII Receive Clock I D13
gmii1_rxd0 MII Receive Data bit 0 I F17
gmii1_rxd1 MII Receive Data bit 1 I B16
gmii1_rxd2 MII Receive Data bit 2 I E16
gmii1_rxd3 MII Receive Data bit 3 I C14
gmii1_rxdv MII Receive Data Valid I A15
gmii1_rxer MII Receive Data Error I B13
gmii1_txclk MII Transmit Clock I D14
gmii1_txd0 MII Transmit Data bit 0 O B15
gmii1_txd1 MII Transmit Data bit 1 O A14
gmii1_txd2 MII Transmit Data bit 2 O C13
gmii1_txd3 MII Transmit Data bit 3 O C16
gmii1_txen MII Transmit Enable O A13
Table 4-22. MII2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gmii2_col MII Colision I A3
gmii2_crs MII Carrier Sense I A2,B12,F10
gmii2_rxclk MII Receive Clock I F6
gmii2_rxd0 MII Receive Data bit 0 I D8
gmii2_rxd1 MII Receive Data bit 1 I G8
gmii2_rxd2 MII Receive Data bit 2 I B4
gmii2_rxd3 MII Receive Data bit 3 I F7
gmii2_rxdv MII Receive Data Valid I C5
gmii2_rxer MII Receive Data Error I B3
gmii2_txclk MII Transmit Clock I E8
gmii2_txd0 MII Transmit Data bit 0 O E7
gmii2_txd1 MII Transmit Data bit 1 O D7
gmii2_txd2 MII Transmit Data bit 2 O A4
gmii2_txd3 MII Transmit Data bit 3 O C6
gmii2_txen MII Transmit Enable O C3
Table 4-23. RGMII1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
rgmii1_rclk RGMII Receive Clock I D13
rgmii1_rctl RGMII Receive Control I A15
rgmii1_rd0 RGMII Receive Data bit 0 I F17
72
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-23. RGMII1 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
rgmii1_rd1 RGMII Receive Data bit 1 I B16
rgmii1_rd2 RGMII Receive Data bit 2 I E16
rgmii1_rd3 RGMII Receive Data bit 3 I C14
rgmii1_tclk RGMII Transmit Clock O D14
rgmii1_tctl RGMII Transmit Control O A13
rgmii1_td0 RGMII Transmit Data bit 0 O B15
rgmii1_td1 RGMII Transmit Data bit 1 O A14
rgmii1_td2 RGMII Transmit Data bit 2 O C13
rgmii1_td3 RGMII Transmit Data bit 3 O C16
Table 4-24. RGMII2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
rgmii2_rclk RGMII Receive Clock I F6
rgmii2_rctl RGMII Receive Control I C5
rgmii2_rd0 RGMII Receive Data bit 0 I D8
rgmii2_rd1 RGMII Receive Data bit 1 I G8
rgmii2_rd2 RGMII Receive Data bit 2 I B4
rgmii2_rd3 RGMII Receive Data bit 3 I F7
rgmii2_tclk RGMII Transmit Clock O E8
rgmii2_tctl RGMII Transmit Control O C3
rgmii2_td0 RGMII Transmit Data bit 0 O E7
rgmii2_td1 RGMII Transmit Data bit 1 O D7
rgmii2_td2 RGMII Transmit Data bit 2 O A4
rgmii2_td3 RGMII Transmit Data bit 3 O C6
Table 4-25. RMII1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
rmii1_crs_dv RMII Carrier Sense / Data Valid I B14
rmii1_refclk RMII Reference Clock IO A16
rmii1_rxd0 RMII Receive Data bit 0 I F17
rmii1_rxd1 RMII Receive Data bit 1 I B16
rmii1_rxer RMII Receive Data Error I B13
rmii1_txd0 RMII Transmit Data bit 0 O B15
rmii1_txd1 RMII Transmit Data bit 1 O A14
rmii1_txen RMII Transmit Enable O A13
Table 4-26. RMII2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
rmii2_crs_dv RMII Carrier Sense / Data Valid I A2,B12,B4,F10
rmii2_refclk RMII Reference Clock IO D16
rmii2_rxd0 RMII Receive Data bit 0 I D8
rmii2_rxd1 RMII Receive Data bit 1 I G8
rmii2_rxer RMII Receive Data Error I B3
rmii2_txd0 RMII Transmit Data bit 0 O E7
rmii2_txd1 RMII Transmit Data bit 1 O D7
rmii2_txen RMII Transmit Enable O C3
73
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.7 External Memory Interfaces
Table 4-27. DDR Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ddr_a0 DDR SDRAM ROW/COLUMN ADDRESS O N1
ddr_a1 DDR SDRAM ROW/COLUMN ADDRESS O L1
ddr_a2 DDR SDRAM ROW/COLUMN ADDRESS O L2
ddr_a3 DDR SDRAM ROW/COLUMN ADDRESS O P2
ddr_a4 DDR SDRAM ROW/COLUMN ADDRESS O P1
ddr_a5 DDR SDRAM ROW/COLUMN ADDRESS O R5
ddr_a6 DDR SDRAM ROW/COLUMN ADDRESS O R4
ddr_a7 DDR SDRAM ROW/COLUMN ADDRESS O R3
ddr_a8 DDR SDRAM ROW/COLUMN ADDRESS O R2
ddr_a9 DDR SDRAM ROW/COLUMN ADDRESS O R1
ddr_a10 DDR SDRAM ROW/COLUMN ADDRESS O M6
ddr_a11 DDR SDRAM ROW/COLUMN ADDRESS O T5
ddr_a12 DDR SDRAM ROW/COLUMN ADDRESS O T4
ddr_a13 DDR SDRAM ROW/COLUMN ADDRESS O N5
ddr_a14 DDR SDRAM ROW/COLUMN ADDRESS O T3
ddr_a15 DDR SDRAM ROW/COLUMN ADDRESS O T2
ddr_ba0 DDR SDRAM BANK ADDRESS O K1
ddr_ba1 DDR SDRAM BANK ADDRESS O K2
ddr_ba2 DDR SDRAM BANK ADDRESS O K3
ddr_casn DDR SDRAM COLUMN ADDRESS STROBE. (ACTIVE
LOW) ON3
ddr_ck DDR SDRAM CLOCK (Differential+) O M2
ddr_cke0 DDR SDRAM CLOCK ENABLE O M3
ddr_cke1 DDR SDRAM CLOCK ENABLE1 O N6
ddr_csn0 DDR SDRAM CHIP SELECT0 O M5
ddr_csn1 DDR SDRAM CHIP SELECT1 O M4
ddr_d0 DDR SDRAM DATA IO E3
ddr_d1 DDR SDRAM DATA IO E2
ddr_d2 DDR SDRAM DATA IO E1
ddr_d3 DDR SDRAM DATA IO F3
ddr_d4 DDR SDRAM DATA IO G4
ddr_d5 DDR SDRAM DATA IO G3
ddr_d6 DDR SDRAM DATA IO G2
ddr_d7 DDR SDRAM DATA IO G1
ddr_d8 DDR SDRAM DATA IO H1
ddr_d9 DDR SDRAM DATA IO J6
ddr_d10 DDR SDRAM DATA IO J5
ddr_d11 DDR SDRAM DATA IO J4
ddr_d12 DDR SDRAM DATA IO J3
ddr_d13 DDR SDRAM DATA IO K6
ddr_d14 DDR SDRAM DATA IO K5
ddr_d15 DDR SDRAM DATA IO K4
ddr_d16 DDR SDRAM DATA IO V5
ddr_d17 DDR SDRAM DATA IO V4
ddr_d18 DDR SDRAM DATA IO V3
ddr_d19 DDR SDRAM DATA IO V2
74
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-27. DDR Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ddr_d20 DDR SDRAM DATA IO V1
ddr_d21 DDR SDRAM DATA IO W4
ddr_d22 DDR SDRAM DATA IO W5
ddr_d23 DDR SDRAM DATA IO W6
ddr_d24 DDR SDRAM DATA IO Y2
ddr_d25 DDR SDRAM DATA IO Y3
ddr_d26 DDR SDRAM DATA IO Y4
ddr_d27 DDR SDRAM DATA IO AA3
ddr_d28 DDR SDRAM DATA IO AB2
ddr_d29 DDR SDRAM DATA IO AB1
ddr_d30 DDR SDRAM DATA IO AC1
ddr_d31 DDR SDRAM DATA IO AC2
ddr_dqm0 DDR WRITE ENABLE / DATA MASK FOR DATA[7:0] O F4
ddr_dqm1 DDR WRITE ENABLE / DATA MASK FOR DATA[15:8] O H2
ddr_dqm2 DDR WRITE ENABLE / DATA MASK FOR DATA[23:16] O V6
ddr_dqm3 DDR WRITE ENABLE / DATA MASK FOR DATA[31:24] O Y1
ddr_dqs0 DDR DATA STROBE FOR DATA[7:0] (Differential+) IO F2
ddr_dqs1 DDR DATA STROBE FOR DATA[15:8] (Differential+) IO J2
ddr_dqs2 DDR DATA STROBE FOR DATA[23:16] (Differential+) IO W1
ddr_dqs3 DDR DATA STROBE FOR DATA[31:24] (Differential+) IO AA1
ddr_dqsn0 DDR DATA STROBE FOR DATA[7:0] (Differential-) IO F1
ddr_dqsn1 DDR DATA STROBE FOR DATA[15:8] (Differential-) IO J1
ddr_dqsn2 DDR DATA STROBE FOR DATA[23:16] (Differential-) IO W2
ddr_dqsn3 DDR DATA STROBE FOR DATA[31:24] (Differential-) IO AA2
ddr_nck DDR SDRAM CLOCK (Differential-) O M1
ddr_odt0 DDR SDRAM ODT0 O U1
ddr_odt1 DDR SDRAM ODT1 O U2
ddr_rasn DDR SDRAM ROW ADDRESS STROBE (ACTIVE LOW) O N2
ddr_resetn DDR SDRAM RESET (only for DDR3) O T1
ddr_vref Voltage Reference AP (1) T6
ddr_vtp External Resistor for Impedance Training I (2) AC3
ddr_wen DDR SDRAM WRITE ENABLE (ACTIVE LOW) O N4
(1) This terminal is an analog input used to set the switching threshold of the DDR input buffers to (VDDS_DDR / 2).
(2) This terminal is an analog passive signal that connects to an external 49.9 Ω1%, 20mW reference resistor which is used to calibrate the
DDR input/output buffers.
Table 4-28. General Purpose Memory Controller (GPMC) Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpmc_a0 GPMC Address O B22,C3
gpmc_a1 GPMC Address O A21,B23,C5
gpmc_a2 GPMC Address O A23,B21,C6
gpmc_a3 GPMC Address O A22,A4,C21
gpmc_a4 GPMC Address O A20,A24,D7
gpmc_a5 GPMC Address O B20,C10,E7
gpmc_a6 GPMC Address O C20,E8
gpmc_a7 GPMC Address O E19,F6
gpmc_a8 GPMC Address O B23,F7
75
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-28. General Purpose Memory Controller (GPMC) Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpmc_a9 GPMC Address O A23,B4
gpmc_a10 GPMC Address O A22,G8
gpmc_a11 GPMC Address O A24,D8
gpmc_a12 GPMC Address O A19
gpmc_a13 GPMC Address O B19
gpmc_a14 GPMC Address O A18
gpmc_a15 GPMC Address O B18
gpmc_a16 GPMC Address O C19,C3
gpmc_a17 GPMC Address O C5,D19
gpmc_a18 GPMC Address O C17,C6
gpmc_a19 GPMC Address O A4,D17
gpmc_a20 GPMC Address O B1,D7
gpmc_a21 GPMC Address O B2,E7
gpmc_a22 GPMC Address O C2,E8
gpmc_a23 GPMC Address O C1,F6
gpmc_a24 GPMC Address O D1,F7
gpmc_a25 GPMC Address O B4,D2
gpmc_a26 GPMC Address O G8
gpmc_a27 GPMC Address O D8
gpmc_ad0 GPMC Address and Data IO B5
gpmc_ad1 GPMC Address and Data IO A5
gpmc_ad2 GPMC Address and Data IO B6
gpmc_ad3 GPMC Address and Data IO A6
gpmc_ad4 GPMC Address and Data IO B7
gpmc_ad5 GPMC Address and Data IO A7
gpmc_ad6 GPMC Address and Data IO C8
gpmc_ad7 GPMC Address and Data IO B8
gpmc_ad8 GPMC Address and Data IO B10
gpmc_ad9 GPMC Address and Data IO A10
gpmc_ad10 GPMC Address and Data IO F11
gpmc_ad11 GPMC Address and Data IO D11
gpmc_ad12 GPMC Address and Data IO E11
gpmc_ad13 GPMC Address and Data IO C11
gpmc_ad14 GPMC Address and Data IO B11
gpmc_ad15 GPMC Address and Data IO A11
gpmc_advn_ale GPMC Address Valid / Address Latch Enable O A9
gpmc_be0n_cle GPMC Byte Enable 0 / Command Latch Enable O C10
gpmc_be1n GPMC Byte Enable 1 O A3,F10
gpmc_clk GPMC Clock IO A12,B9
gpmc_csn0 GPMC Chip Select O A8
gpmc_csn1 GPMC Chip Select O B9
gpmc_csn2 GPMC Chip Select O F10
gpmc_csn3 GPMC Chip Select O B12
gpmc_csn4 GPMC Chip Select O A2
gpmc_csn5 GPMC Chip Select O B3
gpmc_csn6 GPMC Chip Select O A3
gpmc_dir GPMC Data Direction O A3
76
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-28. General Purpose Memory Controller (GPMC) Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpmc_oen_ren GPMC Output / Read Enable O E10
gpmc_wait0 GPMC Wait 0 I A2,B12
gpmc_wait1 GPMC Wait 1 I A12
gpmc_wen GPMC Write Enable O D10
gpmc_wpn GPMC Write Protect O B3
77
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.8 General Purpose IOs
Table 4-29. GPIO0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio0_0 GPIO IO A17,D16
gpio0_1 GPIO IO A15,B17
gpio0_2 GPIO IO M25,P23
gpio0_3 GPIO IO L24,T22
gpio0_4 GPIO IO A12,T21
gpio0_5 GPIO IO T20
gpio0_6 GPIO IO R25
gpio0_7 GPIO IO G24
gpio0_8 GPIO IO C19,D14
gpio0_9 GPIO IO D13,D19
gpio0_10 GPIO IO C14,C17
gpio0_11 GPIO IO D17,E16
gpio0_12 GPIO IO K22
gpio0_13 GPIO IO L22
gpio0_14 GPIO IO K21
gpio0_15 GPIO IO L21
gpio0_16 GPIO IO C16
gpio0_17 GPIO IO C13
gpio0_18 GPIO IO G21,L23
gpio0_19 GPIO IO D24,K23
gpio0_20 GPIO IO C24,P22
gpio0_21 GPIO IO A14,P20
gpio0_22 GPIO IO B10,N20
gpio0_23 GPIO IO A10,T23
gpio0_24 GPIO IO H20
gpio0_25 GPIO IO F25
gpio0_26 GPIO IO F11
gpio0_27 GPIO IO D11
gpio0_28 GPIO IO B15
gpio0_29 GPIO IO A16
gpio0_30 GPIO IO A2
gpio0_31 GPIO IO B3
Table 4-30. GPIO1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio1_0 GPIO IO B5
gpio1_1 GPIO IO A5
gpio1_2 GPIO IO B6
gpio1_3 GPIO IO A6
gpio1_4 GPIO IO B7
gpio1_5 GPIO IO A7
gpio1_6 GPIO IO C8
gpio1_7 GPIO IO B8
gpio1_8 GPIO IO L25
gpio1_9 GPIO IO J25
78
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-30. GPIO1 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio1_10 GPIO IO K25
gpio1_11 GPIO IO J24
gpio1_12 GPIO IO E11
gpio1_13 GPIO IO C11
gpio1_14 GPIO IO B11
gpio1_15 GPIO IO A11
gpio1_16 GPIO IO C3
gpio1_17 GPIO IO C5
gpio1_18 GPIO IO C6
gpio1_19 GPIO IO A4
gpio1_20 GPIO IO D7
gpio1_21 GPIO IO E7
gpio1_22 GPIO IO E8
gpio1_23 GPIO IO F6
gpio1_24 GPIO IO F7
gpio1_25 GPIO IO B4
gpio1_26 GPIO IO G8
gpio1_27 GPIO IO D8
gpio1_28 GPIO IO A3
gpio1_29 GPIO IO A8
gpio1_30 GPIO IO B9
gpio1_31 GPIO IO F10
Table 4-31. GPIO2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio2_0 GPIO IO B12
gpio2_1 GPIO IO A12
gpio2_2 GPIO IO A9
gpio2_3 GPIO IO E10
gpio2_4 GPIO IO D10
gpio2_5 GPIO IO C10
gpio2_6 GPIO IO B22
gpio2_7 GPIO IO A21
gpio2_8 GPIO IO B21
gpio2_9 GPIO IO C21
gpio2_10 GPIO IO A20
gpio2_11 GPIO IO B20
gpio2_12 GPIO IO C20
gpio2_13 GPIO IO E19
gpio2_14 GPIO IO A19
gpio2_15 GPIO IO B19
gpio2_16 GPIO IO A18
gpio2_17 GPIO IO B18
gpio2_18 GPIO IO C14
gpio2_19 GPIO IO E16
gpio2_20 GPIO IO B16
gpio2_21 GPIO IO F17
79
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-31. GPIO2 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio2_22 GPIO IO B23
gpio2_23 GPIO IO A23
gpio2_24 GPIO IO A22
gpio2_25 GPIO IO A24
gpio2_26 GPIO IO B1
gpio2_27 GPIO IO B2
gpio2_28 GPIO IO C2
gpio2_29 GPIO IO C1
gpio2_30 GPIO IO D1
gpio2_31 GPIO IO D2
Table 4-32. GPIO3 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio3_0 GPIO IO D16
gpio3_1 GPIO IO B14
gpio3_2 GPIO IO B13
gpio3_3 GPIO IO A13
gpio3_4 GPIO IO A15
gpio3_5 GPIO IO AB24
gpio3_6 GPIO IO Y22
gpio3_7 GPIO IO N23
gpio3_8 GPIO IO T24
gpio3_9 GPIO IO D14
gpio3_10 GPIO IO D13
gpio3_11 GPIO IO C16
gpio3_12 GPIO IO C13
gpio3_13 GPIO IO F25
gpio3_14 GPIO IO N24
gpio3_15 GPIO IO N22
gpio3_16 GPIO IO H23
gpio3_17 GPIO IO M24
gpio3_18 GPIO IO L23
gpio3_19 GPIO IO K23
gpio3_20 GPIO IO M25
gpio3_21 GPIO IO L24
gpio3_22 GPIO IO P22
gpio3_23 GPIO IO P20
gpio3_24 GPIO IO N20
gpio3_25 GPIO IO T23
Table 4-33. GPIO4 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio4_0 GPIO IO AE17
gpio4_1 GPIO IO AD18
gpio4_2 GPIO IO AC18
gpio4_3 GPIO IO AD17
gpio4_4 GPIO IO AC20
80
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-33. GPIO4 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio4_5 GPIO IO AB19
gpio4_6 GPIO IO AA19
gpio4_7 GPIO IO AC24
gpio4_8 GPIO IO AD24
gpio4_9 GPIO IO AD25
gpio4_10 GPIO IO AC23
gpio4_11 GPIO IO AE21
gpio4_12 GPIO IO AC25
gpio4_13 GPIO IO AB25
gpio4_14 GPIO IO AB20
gpio4_15 GPIO IO AC21
gpio4_16 GPIO IO AD21
gpio4_17 GPIO IO AE22
gpio4_18 GPIO IO AD22
gpio4_19 GPIO IO AE23
gpio4_20 GPIO IO AD23
gpio4_21 GPIO IO AE24
gpio4_24 GPIO IO Y18
gpio4_25 GPIO IO AA18
gpio4_26 GPIO IO AE19
gpio4_27 GPIO IO AD19
gpio4_28 GPIO IO AE20
gpio4_29 GPIO IO AD20
Table 4-34. GPIO5 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio5_0 GPIO IO H22
gpio5_1 GPIO IO K24
gpio5_2 GPIO IO H25
gpio5_3 GPIO IO H24
gpio5_4 GPIO IO P25
gpio5_5 GPIO IO R24
gpio5_6 GPIO IO P24
gpio5_7 GPIO IO N25
gpio5_8 GPIO IO D25
gpio5_9 GPIO IO F24
gpio5_10 GPIO IO G20
gpio5_11 GPIO IO F23
gpio5_12 GPIO IO E25
gpio5_13 GPIO IO E24
gpio5_19 GPIO IO AE18
gpio5_20 GPIO IO AB18
gpio5_23 GPIO IO D11
gpio5_24 GPIO IO F11
gpio5_25 GPIO IO A10
gpio5_26 GPIO IO B10
gpio5_27 GPIO IO G21
81
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-34. GPIO5 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
gpio5_28 GPIO IO D24
gpio5_29 GPIO IO C24
gpio5_30 GPIO IO A2
gpio5_31 GPIO IO B3
82
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.9 HDQ Interface
Table 4-35. HDQ Signal Description
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
hdq_sio HDQ 1W Data IO IOD K24
83
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.10 I2C Interfaces
Table 4-36. I2C0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
I2C0_SCL I2C0 Clock IOD Y22
I2C0_SDA I2C0 Data IOD AB24
Table 4-37. I2C1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
I2C1_SCL I2C1 Clock IOD AB18,B13,G20,J25,
L21,N20,T20
I2C1_SDA I2C1 Data IOD AE18,B14,E25,K21,
L25,T21,T23
Table 4-38. I2C2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
I2C2_SCL I2C2 Clock IOD AB19,AC21,J24,
L22,T22
I2C2_SDA I2C2 Data IOD AB20,AC20,K22,
K25,P23
84
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.11 McASP Interfaces
Table 4-39. McASP0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
mcasp0_aclkr McASP0 Receive Bit Clock IO A15,A3,C19,L23
mcasp0_aclkx McASP0 Transmit Bit Clock IO A19,D14,E11,F7,
N24
mcasp0_ahclkr McASP0 Receive Master Clock IO B18,M24
mcasp0_ahclkx McASP0 Transmit Master Clock IO C13,D17,L24
mcasp0_axr0 McASP0 Serial Data (IN/OUT) IO A18,B11,C14,G8,
H23
mcasp0_axr1 McASP0 Serial Data (IN/OUT) IO A11,C17,D8,E16,
M25
mcasp0_axr2 McASP0 Serial Data (IN/OUT) IO B18,C19,D16,L23,
M24
mcasp0_axr3 McASP0 Serial Data (IN/OUT) IO D17,D19,F17,K23,
L24
mcasp0_fsr McASP0 Receive Frame Sync IO A12,C16,D19,K23
mcasp0_fsx McASP0 Transmit Frame Sync IO B19,B4,C11,D13,
N22
Table 4-40. McASP1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
mcasp1_aclkr McASP1 Receive Bit Clock IO B15,F17
mcasp1_aclkx McASP1 Transmit Bit Clock IO A15,B14,L23
mcasp1_ahclkr McASP1 Receive Master Clock IO F17
mcasp1_ahclkx McASP1 Transmit Master Clock IO A16,F17
mcasp1_axr0 McASP1 Serial Data (IN/OUT) IO A13,C13,M25
mcasp1_axr1 McASP1 Serial Data (IN/OUT) IO A14,L24
mcasp1_axr2 McASP1 Serial Data (IN/OUT) IO B15,D16
mcasp1_axr3 McASP1 Serial Data (IN/OUT) IO A16,B16
mcasp1_fsr McASP1 Receive Frame Sync IO A14,B16
mcasp1_fsx McASP1 Transmit Frame Sync IO B13,C16,K23
85
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.12 Miscellaneous
Table 4-41. Miscellaneous Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
clkout1 Clock out1 O D24
clkout2 Clock out2 O C24
clkreq Clock Request Control O H20
nNMI External Interrupt to ARM Cortex A9 core I G25
nRESETIN_OUT Warm Reset Input/Output IOD (1) G22
OSC0_IN High frequency oscillator input I C25
OSC0_OUT High frequency oscillator output O B25
OSC1_IN Low frequency (32.768 KHz) Real Time Clock oscillator
input IAE5
OSC1_OUT Low frequency (32.768 KHz) Real Time Clock oscillator
output OAE4
porz Power on Reset I Y23
RTC_PORz RTC active low reset input I AE6
tclkin Timer Clock In I C24
xdma_event_intr0 External DMA Event or Interrupt 0 I D24
xdma_event_intr1 External DMA Event or Interrupt 1 I C24
xdma_event_intr2 External DMA Event or Interrupt 2 I A16,G24,R25
xdma_event_intr3 External DMA Event or Interrupt 3 I AD24
xdma_event_intr4 External DMA Event or Interrupt 4 I AD25
xdma_event_intr5 External DMA Event or Interrupt 5 I AC23
xdma_event_intr6 External DMA Event or Interrupt 6 I AE21
xdma_event_intr7 External DMA Event or Interrupt 7 I AC25
xdma_event_intr8 External DMA Event or Interrupt 8 I AB25
(1) Refer to the External Warm Reset section of the Technical Reference Manual for more information related to the operation of this
terminal.
Table 4-42. Reserved Signals
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
Reserved NA AA10,AA7,AA9,
AB10,AB6,AB7,
AB9,AC10,AC12,
AC5,AC6,AC7,AC9,
AD1,AD10,AD11,
AD2,AD7,AE11,
AE12,AE9,H19,
H21,W10,Y10,Y6,
Y7
86
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.13 PRU-ICSS0 Interface
Table 4-43. PRU-ICSS0-PRU0/General Purpose Inputs Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr0_pru0_gpi0 PRU-ICSS0 PRU0 Data In I N24
pr0_pru0_gpi1 PRU-ICSS0 PRU0 Data In I N22
pr0_pru0_gpi2 PRU-ICSS0 PRU0 Data In I H23
pr0_pru0_gpi3 PRU-ICSS0 PRU0 Data In I M24
pr0_pru0_gpi4 PRU-ICSS0 PRU0 Data In I L23
pr0_pru0_gpi5 PRU-ICSS0 PRU0 Data In I K23
pr0_pru0_gpi6 PRU-ICSS0 PRU0 Data In I M25
pr0_pru0_gpi7 PRU-ICSS0 PRU0 Data In I L24
pr0_pru0_gpi8 PRU-ICSS0 PRU0 Data In I B1
pr0_pru0_gpi9 PRU-ICSS0 PRU0 Data In I B2
pr0_pru0_gpi10 PRU-ICSS0 PRU0 Data In I C2
pr0_pru0_gpi11 PRU-ICSS0 PRU0 Data In I C1
pr0_pru0_gpi12 PRU-ICSS0 PRU0 Data In I D1
pr0_pru0_gpi13 PRU-ICSS0 PRU0 Data In I D2
pr0_pru0_gpi14 PRU-ICSS0 PRU0 Data In I AC20
pr0_pru0_gpi15 PRU-ICSS0 PRU0 Data In I AB19
pr0_pru0_gpi16 PRU-ICSS0 PRU0 Data In Capture Enable I AA19
pr0_pru0_gpi17 PRU-ICSS0 PRU0 Data In I AC24
pr0_pru0_gpi18 PRU-ICSS0 PRU0 Data In I H25
pr0_pru0_gpi19 PRU-ICSS0 PRU0 Data In I H24
Table 4-44. PRU-ICSS0-PRU0/General Purpose Outputs Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr0_pru0_gpo0 PRU-ICSS0 PRU0 Data Out O N24
pr0_pru0_gpo1 PRU-ICSS0 PRU0 Data Out O N22
pr0_pru0_gpo2 PRU-ICSS0 PRU0 Data Out O H23
pr0_pru0_gpo3 PRU-ICSS0 PRU0 Data Out O M24
pr0_pru0_gpo4 PRU-ICSS0 PRU0 Data Out O L23
pr0_pru0_gpo5 PRU-ICSS0 PRU0 Data Out O K23
pr0_pru0_gpo6 PRU-ICSS0 PRU0 Data Out O M25
pr0_pru0_gpo7 PRU-ICSS0 PRU0 Data Out O L24
pr0_pru0_gpo8 PRU-ICSS0 PRU0 Data Out O B1
pr0_pru0_gpo9 PRU-ICSS0 PRU0 Data Out O B2
pr0_pru0_gpo10 PRU-ICSS0 PRU0 Data Out O C2
pr0_pru0_gpo11 PRU-ICSS0 PRU0 Data Out O C1
pr0_pru0_gpo12 PRU-ICSS0 PRU0 Data Out O D1
pr0_pru0_gpo13 PRU-ICSS0 PRU0 Data Out O D2
pr0_pru0_gpo14 PRU-ICSS0 PRU0 Data Out O AC20
pr0_pru0_gpo15 PRU-ICSS0 PRU0 Data Out O AB19
pr0_pru0_gpo16 PRU-ICSS0 PRU0 Data Out O AA19
pr0_pru0_gpo17 PRU-ICSS0 PRU0 Data Out O AC24
pr0_pru0_gpo18 PRU-ICSS0 PRU0 Data Out O H25
pr0_pru0_gpo19 PRU-ICSS0 PRU0 Data Out O H24
87
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-45. PRU-ICSS0-PRU1/General Purpose Inputs Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr0_pru1_gpi0 PRU-ICSS0 PRU1 Data In I AD24
pr0_pru1_gpi1 PRU-ICSS0 PRU1 Data In I AD25
pr0_pru1_gpi2 PRU-ICSS0 PRU1 Data In I AC23
pr0_pru1_gpi3 PRU-ICSS0 PRU1 Data In I AE21
pr0_pru1_gpi4 PRU-ICSS0 PRU1 Data In I K25
pr0_pru1_gpi5 PRU-ICSS0 PRU1 Data In I J24
pr0_pru1_gpi6 PRU-ICSS0 PRU1 Data In I B23
pr0_pru1_gpi7 PRU-ICSS0 PRU1 Data In I A23
pr0_pru1_gpi8 PRU-ICSS0 PRU1 Data In I A22
pr0_pru1_gpi9 PRU-ICSS0 PRU1 Data In I A24
pr0_pru1_gpi10 PRU-ICSS0 PRU1 Data In I AD21
pr0_pru1_gpi11 PRU-ICSS0 PRU1 Data In I AE22
pr0_pru1_gpi12 PRU-ICSS0 PRU1 Data In I AD22
pr0_pru1_gpi13 PRU-ICSS0 PRU1 Data In I AE23
pr0_pru1_gpi14 PRU-ICSS0 PRU1 Data In I AD23
pr0_pru1_gpi15 PRU-ICSS0 PRU1 Data In I AE24
pr0_pru1_gpi16 PRU-ICSS0 PRU1 Data In Capture Enable I AE18
pr0_pru1_gpi17 PRU-ICSS0 PRU1 Data In I AB18
pr0_pru1_gpi18 PRU-ICSS0 PRU1 Data In I H22
pr0_pru1_gpi19 PRU-ICSS0 PRU1 Data In I K24
Table 4-46. PRU-ICSS0-PRU1/General Purpose Outputs Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr0_pru1_gpo0 PRU-ICSS0 PRU1 Data Out O AD24
pr0_pru1_gpo1 PRU-ICSS0 PRU1 Data Out O AD25
pr0_pru1_gpo2 PRU-ICSS0 PRU1 Data Out O AC23
pr0_pru1_gpo3 PRU-ICSS0 PRU1 Data Out O AE21
pr0_pru1_gpo4 PRU-ICSS0 PRU1 Data Out O K25
pr0_pru1_gpo5 PRU-ICSS0 PRU1 Data Out O J24
pr0_pru1_gpo6 PRU-ICSS0 PRU1 Data Out O B23
pr0_pru1_gpo7 PRU-ICSS0 PRU1 Data Out O A23
pr0_pru1_gpo8 PRU-ICSS0 PRU1 Data Out O A22
pr0_pru1_gpo9 PRU-ICSS0 PRU1 Data Out O A24
pr0_pru1_gpo10 PRU-ICSS0 PRU1 Data Out O AD21
pr0_pru1_gpo11 PRU-ICSS0 PRU1 Data Out O AE22
pr0_pru1_gpo12 PRU-ICSS0 PRU1 Data Out O AD22
pr0_pru1_gpo13 PRU-ICSS0 PRU1 Data Out O AE23
pr0_pru1_gpo14 PRU-ICSS0 PRU1 Data Out O AD23
pr0_pru1_gpo15 PRU-ICSS0 PRU1 Data Out O AE24
pr0_pru1_gpo16 PRU-ICSS0 PRU1 Data Out O AE18
pr0_pru1_gpo17 PRU-ICSS0 PRU1 Data Out O AB18
pr0_pru1_gpo18 PRU-ICSS0 PRU1 Data Out O H22
pr0_pru1_gpo19 PRU-ICSS0 PRU1 Data Out O K24
88
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-47. PRU-ICSS0/UART0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr0_uart0_cts_n UART Clear to Send I P23
pr0_uart0_rts_n UART Request to Send O T22
pr0_uart0_rxd UART Receive Data I T21
pr0_uart0_txd UART Transmit Data O T20
89
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.14 PRU-ICSS1 Interface
Table 4-48. PRU-ICSS1-PRU0/General Purpose Inputs Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_pru0_gpi0 PRU-ICSS1 PRU0 Data In I B22
pr1_pru0_gpi1 PRU-ICSS1 PRU0 Data In I A21
pr1_pru0_gpi2 PRU-ICSS1 PRU0 Data In I B21
pr1_pru0_gpi3 PRU-ICSS1 PRU0 Data In I C21
pr1_pru0_gpi4 PRU-ICSS1 PRU0 Data In I A20
pr1_pru0_gpi5 PRU-ICSS1 PRU0 Data In I B20
pr1_pru0_gpi6 PRU-ICSS1 PRU0 Data In I C20
pr1_pru0_gpi7 PRU-ICSS1 PRU0 Data In I E19
pr1_pru0_gpi8 PRU-ICSS1 PRU0 Data In I B9
pr1_pru0_gpi9 PRU-ICSS1 PRU0 Data In I F10
pr1_pru0_gpi10 PRU-ICSS1 PRU0 Data In I E11
pr1_pru0_gpi11 PRU-ICSS1 PRU0 Data In I C11
pr1_pru0_gpi16 PRU-ICSS1 PRU0 Data In Capture Enable I B11,C24,D24,K21,
L21
Table 4-49. PRU-ICSS1-PRU0/General Purpose Outputs Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_pru0_gpo0 PRU-ICSS1 PRU0 Data Out O B22
pr1_pru0_gpo1 PRU-ICSS1 PRU0 Data Out O A21
pr1_pru0_gpo2 PRU-ICSS1 PRU0 Data Out O B21
pr1_pru0_gpo3 PRU-ICSS1 PRU0 Data Out O C21
pr1_pru0_gpo4 PRU-ICSS1 PRU0 Data Out O A20
pr1_pru0_gpo5 PRU-ICSS1 PRU0 Data Out O B20
pr1_pru0_gpo6 PRU-ICSS1 PRU0 Data Out O C20
pr1_pru0_gpo7 PRU-ICSS1 PRU0 Data Out O E19
pr1_pru0_gpo8 PRU-ICSS1 PRU0 Data Out O B9
pr1_pru0_gpo9 PRU-ICSS1 PRU0 Data Out O F10
pr1_pru0_gpo10 PRU-ICSS1 PRU0 Data Out O E11
pr1_pru0_gpo11 PRU-ICSS1 PRU0 Data Out O C11
Table 4-50. PRU-ICSS1/ECAT Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_edc_latch0_in Data In I AE22,K22
pr1_edc_latch1_in Data In I AD22,L22
pr1_edc_sync0_out Data Out O L25
pr1_edc_sync1_out Data Out O J25
pr1_edio_data_in0 Data In I AD23
pr1_edio_data_in1 Data In I AE24
pr1_edio_data_in2 Data In I B23
pr1_edio_data_in3 Data In I A23
pr1_edio_data_in4 Data In I A22
pr1_edio_data_in5 Data In I A24
pr1_edio_data_in6 Data In I B9,C20
pr1_edio_data_in7 Data In I E19,F10
pr1_edio_data_out0 Data Out O T21
90
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-50. PRU-ICSS1/ECAT Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_edio_data_out1 Data Out O T20
pr1_edio_data_out2 Data Out O B23
pr1_edio_data_out3 Data Out O A23
pr1_edio_data_out4 Data Out O A22
pr1_edio_data_out5 Data Out O A24
pr1_edio_data_out6 Data Out O B9,C20
pr1_edio_data_out7 Data Out O E19,F10
pr1_edio_latch_in Latch In I AE23
pr1_edio_outvalid Data Out Valid O AD18
pr1_edio_sof Start of Frame O AB25,AE17
Table 4-51. PRU-ICSS1/MDIO Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_mdio_data MDIO Data IO A17,B12,D24
pr1_mdio_mdclk MDIO Clk O A12,B17,C24
Table 4-52. PRU-ICSS1/MII0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_mii0_col MII Collision Detect I A10,D25
pr1_mii0_crs MII Carrier Sense I B12,G20
pr1_mii0_rxd0 MII Receive Data bit 0 I B18
pr1_mii0_rxd1 MII Receive Data bit 1 I A18
pr1_mii0_rxd2 MII Receive Data bit 2 I B19
pr1_mii0_rxd3 MII Receive Data bit 3 I A19
pr1_mii0_rxdv MII Receive Data Valid I D17
pr1_mii0_rxer MII Receive Data Error I D19
pr1_mii0_rxlink MII Receive Link I C19,E25
pr1_mii0_txd0 MII Transmit Data bit 0 O B11,B20
pr1_mii0_txd1 MII Transmit Data bit 1 O A20,C11
pr1_mii0_txd2 MII Transmit Data bit 2 O C21,E11
pr1_mii0_txd3 MII Transmit Data bit 3 O B21,D11
pr1_mii0_txen MII Transmit Enable O A21,F11
pr1_mii_mr0_clk MII Receive Clock I C17
pr1_mii_mt0_clk MII Transmit Clock I B10,B22
Table 4-53. PRU-ICSS1/MII1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_mii1_col MII Collision Detect I A3,F24
pr1_mii1_crs MII Carrier Sense I A12,A2,F23
pr1_mii1_rxd0 MII Receive Data bit 0 I D8
pr1_mii1_rxd1 MII Receive Data bit 1 I G8
pr1_mii1_rxd2 MII Receive Data bit 2 I B4
pr1_mii1_rxd3 MII Receive Data bit 3 I F7
pr1_mii1_rxdv MII Receive Data Valid I C5
pr1_mii1_rxer MII Receive Data Error I B3
pr1_mii1_rxlink MII Receive Link I C10,E24
91
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
Table 4-53. PRU-ICSS1/MII1 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_mii1_txd0 MII Transmit Data bit 0 O E7
pr1_mii1_txd1 MII Transmit Data bit 1 O D7
pr1_mii1_txd2 MII Transmit Data bit 2 O A4
pr1_mii1_txd3 MII Transmit Data bit 3 O C6
pr1_mii1_txen MII Transmit Enable O C3
pr1_mii_mr1_clk MII Receive Clock I F6
pr1_mii_mt1_clk MII Transmit Clock I E8
Table 4-54. PRU-ICSS1/UART0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_uart0_cts_n UART Clear to Send I K22,P23
pr1_uart0_rts_n UART Request to Send O L22,T22
pr1_uart0_rxd UART Receive Data I K21,T21
pr1_uart0_txd UART Transmit Data O L21,T20
Table 4-55. PRU-ICSS1/eCAP Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
pr1_ecap0_ecap_capin_apwm_o Enhanced capture input or Auxiliary PWM out IO A11,G24
92
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.15 QSPI Interface
Table 4-56. QSPI Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
qspi_clk QSPI Clock IO B12,Y18
qspi_csn QSPI Chip Select O A8,AA18
qspi_d0 QSPI Data IO A9,AE19
qspi_d1 QSPI Data I AD19,E10
qspi_d2 QSPI Data I AE20,D10
qspi_d3 QSPI Data I AD20,C10
93
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.16 RTC Subsystem Interface
Table 4-57. RTC Subsystem Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
RTC_KALDO_ENn Active low enable input for internal CAP_VDD_RTC
voltage regulator IAE2
RTC_PMIC_EN PMIC Power Enable output generated from Generic
RTCSS OAD6
RTC_WAKEUP External Wakeup Pin when Generic RTC is used I AE3
94
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.17 Removable Media Interfaces
Table 4-58. MMC0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
mmc0_clk MMC/SD/SDIO Clock IO D1
mmc0_cmd MMC/SD/SDIO Command IO D2
mmc0_dat0 MMC/SD/SDIO Data Bus IO C1
mmc0_dat1 MMC/SD/SDIO Data Bus IO C2
mmc0_dat2 MMC/SD/SDIO Data Bus IO B2
mmc0_dat3 MMC/SD/SDIO Data Bus IO B1
mmc0_dat4 MMC/SD/SDIO Data Bus IO E16
mmc0_dat5 MMC/SD/SDIO Data Bus IO C14
mmc0_dat6 MMC/SD/SDIO Data Bus IO D13
mmc0_dat7 MMC/SD/SDIO Data Bus IO D14
mmc0_pow MMC/SD Power Switch Control O A16,R25
mmc0_sdcd SD Card Detect I A17,N24,R25
mmc0_sdwp SD Write Protect I B17,G24,L23
Table 4-59. MMC1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
mmc1_clk MMC/SD/SDIO Clock IO B15,B17,B9,Y18
mmc1_cmd MMC/SD/SDIO Command IO A14,A17,AA18,F10
mmc1_dat0 MMC/SD/SDIO Data Bus IO AE19,B10,B5,D14
mmc1_dat1 MMC/SD/SDIO Data Bus IO A10,A5,AD19,D13
mmc1_dat2 MMC/SD/SDIO Data Bus IO AE20,B6,C14,F11
mmc1_dat3 MMC/SD/SDIO Data Bus IO A6,AD20,D11,E16
mmc1_dat4 MMC/SD/SDIO Data Bus IO B7,E11
mmc1_dat5 MMC/SD/SDIO Data Bus IO A7,C11
mmc1_dat6 MMC/SD/SDIO Data Bus IO B11,C8
mmc1_dat7 MMC/SD/SDIO Data Bus IO A11,B8
mmc1_sdcd SD Card Detect I A2,N22
mmc1_sdwp SD Write Protect I K21,T21
Table 4-60. MMC2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
mmc2_clk MMC/SD/SDIO Clock IO A12,AD21,B16,B17
mmc2_cmd MMC/SD/SDIO Command IO A13,A17,AE22,B12
mmc2_dat0 MMC/SD/SDIO Data Bus IO A15,AD22,C5,E11
mmc2_dat1 MMC/SD/SDIO Data Bus IO AE23,C11,C16,C6
mmc2_dat2 MMC/SD/SDIO Data Bus IO A4,AD23,B11,C13
mmc2_dat3 MMC/SD/SDIO Data Bus IO A11,A3,AE24,D16
mmc2_dat4 MMC/SD/SDIO Data Bus IO B10,E8
mmc2_dat5 MMC/SD/SDIO Data Bus IO A10,F6
mmc2_dat6 MMC/SD/SDIO Data Bus IO F11,F7
mmc2_dat7 MMC/SD/SDIO Data Bus IO B4,D11
mmc2_sdcd SD Card Detect I B3,H23
mmc2_sdwp SD Write Protect I L21,T20
95
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.18 SPI Interfaces
Table 4-61. SPI0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
spi0_cs0 SPI Chip Select IO T20
spi0_cs1 SPI Chip Select IO R25
spi0_cs2 SPI Chip Select IO AD24,C24,E10
spi0_cs3 SPI Chip Select IO A9,AD25,N24
spi0_d0 SPI Data IO T22
spi0_d1 SPI Data IO T21
spi0_sclk SPI Clock IO P23
Table 4-62. SPI1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
spi1_cs0 SPI Chip Select IO A16,J25,K22,K25,
M24
spi1_cs1 SPI Chip Select IO D24,G24,J24,L22
spi1_cs2 SPI Chip Select IO AC23,D10,N22
spi1_cs3 SPI Chip Select IO AE21,C10,H23
spi1_d0 SPI Data IO B14,L25,N22
spi1_d1 SPI Data IO B13,H23,J25
spi1_sclk SPI Clock IO D16,G24,N24
Table 4-63. SPI2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
spi2_cs0 SPI Chip Select IO AC20,AD25,T23
spi2_cs1 SPI Chip Select IO AC25,AE17
spi2_cs2 SPI Chip Select IO AB19,AC23
spi2_cs3 SPI Chip Select IO AA19,AC24
spi2_d0 SPI Data IO AD17,AD24,P22
spi2_d1 SPI Data IO AB25,AD18,P20
spi2_sclk SPI Clock IO AC18,AE21,N20
Table 4-64. SPI3 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
spi3_cs0 SPI Chip Select IO AD21,D11,D17
spi3_cs1 SPI Chip Select IO A11,B10,B18,C10
spi3_d0 SPI Data IO A10,AB20,D19
spi3_d1 SPI Data IO AC21,C17,F11
spi3_sclk SPI Clock IO AE22,B10,C19
Table 4-65. SPI4 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
spi4_cs0 SPI Chip Select IO N25
spi4_cs1 SPI Chip Select IO H22
spi4_d0 SPI Data IO R24
spi4_d1 SPI Data IO P24
spi4_sclk SPI Clock IO P25
96
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.19 Timer Interfaces
Table 4-66. Timer0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
timer0 Timer trigger event / PWM out IO R25
Table 4-67. Timer1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
timer1 Timer trigger event / PWM out IO G24
Table 4-68. Timer4 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
timer4 Timer trigger event / PWM out IO A13,A9,AB24,D24
Table 4-69. Timer5 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
timer5 Timer trigger event / PWM out IO B1,B17,C10,L22
Table 4-70. Timer6 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
timer6 Timer trigger event / PWM out IO A17,B2,D10,K22
Table 4-71. Timer7 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
timer7 Timer trigger event / PWM out IO C24,E10,L25,Y22
97
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.20 UART Interfaces
Table 4-72. UART0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart0_ctsn UART Clear to Send I AC24,L25
uart0_dcdn UART Data Carrier Detect I AD22
uart0_rtsn UART Request to Send O AD24,J25
uart0_rxd UART Receive Data I K25
uart0_txd UART Transmit Data O J24
Table 4-73. UART1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart1_ctsn UART Clear to Send IO AD21,K22
uart1_dcdn UART Clear to Send I AD23,B1,D14
uart1_dsrn UART Request to Send I AE23,B2,D13
uart1_dtrn UART Receive Data O AE24,C14,C2
uart1_rin UART Transmit Data I AD22,C1,E16
uart1_rtsn UART Request to Send O AE22,L22
uart1_rxd UART Receive Data IO AB20,K21
uart1_txd UART Transmit Data IO AC21,L21
Table 4-74. UART2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart2_ctsn UART Clear to Send IO A19,AB24,AD23
uart2_rtsn UART Request to Send O AE24,B19,Y22
uart2_rxd UART Receive Data IO AD22,B14,D1,D14,
P23
uart2_txd UART Transmit Data IO AE23,B13,D13,D2,
T22
Table 4-75. UART3 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart3_ctsn UART Clear to Send IO A17,A18,D1,H22
uart3_rtsn UART Request to Send O B17,B18,D2,K24
uart3_rxd UART Receive Data IO C14,C2,H25,R25
uart3_txd UART Transmit Data IO C1,E16,G24,H24
Table 4-76. UART4 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart4_ctsn UART Clear to Send I B1,C19
uart4_rtsn UART Request to Send O B2,D19
uart4_rxd UART Receive Data I A2,C16,L25
uart4_txd UART Transmit Data O B3,C13,J25
Table 4-77. UART5 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart5_ctsn UART Clear to Send I B14,C17,C2
uart5_rtsn UART Request to Send O B13,C1,D17
98
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
Table 4-77. UART5 Signal Descriptions (continued)
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
uart5_rxd UART Receive Data I A17,B19,C17,D16
uart5_txd UART Transmit Data O A15,A16,A19,B17
99
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.21 USB Interfaces
Table 4-78. USB0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
USB0_CE USB0 Active high Charger Enable output A W22
USB0_DM USB0 Data minus A W24
USB0_DP USB0 Data plus A W25
USB0_DRVVBUS USB0 Active high VBUS control output O G21
USB0_ID USB0 ID A U24
USB0_VBUS USB0 VBUS A U23
Table 4-79. USB1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
USB1_CE USB1 Active high Charger Enable output A U22
USB1_DM USB1 Data minus A V25
USB1_DP USB1 Data plus A V24
USB1_DRVVBUS USB1 Active high VBUS control output O F25
USB1_ID USB1 ID A U25
USB1_VBUS USB1 VBUS A T25
100
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and Functions Copyright © 2014–2016, Texas Instruments Incorporated
4.3.22 eCAP Interfaces
Table 4-80. eCAP0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
eCAP0_in_PWM0_out Enhanced Capture 0 input or Auxiliary PWM0 output IO G24
Table 4-81. eCAP1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
eCAP1_in_PWM1_out Enhanced Capture 1 input or Auxiliary PWM1 output IO J24,R25,Y22
Table 4-82. eCAP2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
eCAP2_in_PWM2_out Enhanced Capture 2 input or Auxiliary PWM2 output IO AB24,K25,M24
101
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Terminal Configuration and FunctionsCopyright © 2014–2016, Texas Instruments Incorporated
4.3.23 eHRPWM Interfaces
Table 4-83. eHRPWM0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ehrpwm0_synci Sync input to eHRPWM0 module from an external pin I AC21,M24,P25,T20
ehrpwm0_synco Sync Output from eHRPWM0 module to an external pin O AE18,B19,C21,C5,
D11
ehrpwm0_tripzone_input eHRPWM0 trip zone input I AB20,H23,P24,T21
ehrpwm0A eHRPWM0 A output. O AD25,N24,P23
ehrpwm0B eHRPWM0 B output. O AC23,N22,T22
Table 4-84. eHRPWM1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ehrpwm1_tripzone_input eHRPWM1 trip zone input I A19,AD21,C3,P20
ehrpwm1A eHRPWM1 A output. O A18,AE20,AE21,
C6,T21
ehrpwm1B eHRPWM1 B output. O A4,AC25,AD20,
B18,T20
Table 4-85. eHRPWM2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ehrpwm2_tripzone_input eHRPWM2 trip zone input I B21,F11,T23
ehrpwm2A eHRPWM2 A output. O B10,B22,R25
ehrpwm2B eHRPWM2 B output. O A10,A21,G24
Table 4-86. eHRPWM3 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ehrpwm3_synci Sync input to eHRPWM3 module or sync output to
external PWM IR24
ehrpwm3_synco Sync input to eHRPWM3 module or sync output to
external PWM OAB18
ehrpwm3_tripzone_input eHRPWM3 trip zone input I N25
ehrpwm3A eHRPWM3 A output. O AC25,AE19
ehrpwm3B eHRPWM3 B output. O AB25,AD19
Table 4-87. eHRPWM4 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ehrpwm4_tripzone_input eHRPWM4 trip zone input I N20
ehrpwm4A eHRPWM4 A output. O H25
ehrpwm4B eHRPWM4 B output. O H24
Table 4-88. eHRPWM5 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
ehrpwm5_tripzone_input eHRPWM5 trip zone input I P22
ehrpwm5A eHRPWM5 A output. O H22
ehrpwm5B eHRPWM5 B output. O K24
102
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
4.3.24 eQEP Interfaces
Table 4-89. eQEP0 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
eQEP0_index eQEP0 index. IO A13,M25
eQEP0_strobe eQEP0 strobe. IO B16,L24
eQEP0A_in eQEP0A quadrature input I A14,L23
eQEP0B_in eQEP0B quadrature input I B15,K23
Table 4-90. eQEP1 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
eQEP1_index eQEP1 index. IO C17,E8
eQEP1_strobe eQEP1 strobe. IO D17,F6
eQEP1A_in eQEP1A quadrature input I C19,D7
eQEP1B_in eQEP1B quadrature input I D19,E7
Table 4-91. eQEP2 Signal Descriptions
SIGNAL NAME [1] DESCRIPTION [2] TYPE [3] ZDN [4]
eQEP2_index eQEP2 index. IO B11,C20
eQEP2_strobe eQEP2 strobe. IO A11,E19
eQEP2A_in eQEP2A quadrature input I A20,E11
eQEP2B_in eQEP2B quadrature input I B20,C11
103
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5 Specifications
5.1 Absolute Maximum Ratings
over junction temperature range (unless otherwise noted)(1)(2)
MIN MAX UNIT
VDD_MPU Supply voltage for the MPU domain –0.5 1.5 V
VDD_CORE Supply voltage range for the CORE domain –0.5 1.5 V
CAP_VDD_RTC(3) Supply voltage range for the RTC domain –0.5 1.5 V
VDDS_RTC Supply voltage range for the RTC domain –0.5 2.1 V
VDDS_OSC Supply voltage range for the System oscillator –0.5 2.1 V
VDDS_SRAM_CORE_BG Supply voltage range for the Core SRAM and Bandgap LDOs –0.5 2.1 V
VDDS_SRAM_MPU_BB Supply voltage range for the MPU SRAM and BB LDOs –0.5 2.1 V
VDDS_PLL_DDR Supply voltage range for the DPLL DDR –0.5 2.1 V
VDDS_PLL_CORE_LCD Supply voltage range for the DPLL CORE, EXTDEV, and LCD –0.5 2.1 V
VDDS_PLL_MPU Supply voltage range for the DPLL MPU –0.5 2.1 V
VDDS_DDR Supply voltage range for the DDR IO domain 0.5 2.1 V
VDDS Supply voltage range for all dual-voltage IO domains –0.5 2.1 V
VDDA1P8V_USB0 Supply voltage range for USBPHY and DPLL PER –0.5 2.1 V
VDDA1P8V_USB1 Supply voltage range for USBPHY –0.5 2.1 V
VDDA_ADC0 Supply voltage range for ADC0 –0.5 2.1 V
VDDA_ADC1 Supply voltage range for ADC1 –0.5 2.1 V
VDDSHV1 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV2 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV3 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV5 Supply voltage range for the CLKOUT voltage domain –0.5 3.8 V
VDDSHV6 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV7 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV8 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV9 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV10 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDSHV11 Supply voltage range for the dual-voltage IO domain –0.5 3.8 V
VDDA3P3V_USB0 Supply voltage range for USBPHY –0.5 4 V
VDDA3P3V_USB1 Supply voltage range for USBPHY –0.5 4 V
VDDS3P3V_IOLDO Supply voltage range for the dual-voltage IO LDO –0.5 3.8 V
VDDS_CLKOUT Supply voltage range for CLKOUT domain –0.5 2.1 V
USB0_VBUS(4) Supply voltage range for USB VBUS comparator input –0.5 5.25 V
USB1_VBUS(4) Supply voltage range for USB VBUS comparator input –0.5 5.25 V
DDR_VREF Supply voltage range for the DDR3/DDR3L HSTL, LPDDR2
HSUL_12 reference voltage –0.3 1.1 V
Steady State Max. Voltage at all
IO pins(5) –0.5 V to IO supply voltage + 0.3 V
USB0_ID(6) Steady state maximum voltage range for the USB ID input –0.5 2.1 V
USB1_ID(6) Steady state maximum voltage range for the USB ID input –0.5 2.1 V
Transient Overshoot and
Undershoot specification at IO
terminal
20% of corresponding IO supply voltage for
up to 20% of signal period (see Figure 5-1)
Latch-up Performance(7) Class II (105°C)
Latch-up I-test performance current-pulse
injection on each IO pin ±100 mA
Latch-up overvoltage performance voltage
injection on each IO pin ±100
Tstg(8) Storage temperature –55 155 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) All voltage values are with respect to their associated VSS or VSSA_x.
Tovershoot
Tundershoot
Tperiod
Overshoot = 20% of nominal
IO supply voltage
Undershoot = 20% of nominal
IO supply voltage
104
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Absolute Maximum Ratings (continued)
over junction temperature range (unless otherwise noted)(1)(2)
(3) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced
from an external power supply.
(4) This terminal is connected to a fail-safe IO and does not have a dependence on any IO supply voltage.
(5) This parameter applies to all IO terminals which are not fail-safe and the requirement applies to all values of IO supply voltage. For
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be
–0.5 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources used
to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range,
including power supply ramp-up and ramp-down sequences.
(6) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the
voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ωor greater than 100 kΩ. The terminal
should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to
any external voltage source.
(7) For current pulse injection:
Pins stressed per JEDEC JESD78D (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times
maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.
For overvoltage performance:
Supplies stressed per JEDEC JESD78D (Class II) and passed specified voltage injection.
(8) For tape and reel the storage temperature range is [–10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning
to ambient room temperature before usage.
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power
supply voltage. This allows external voltage sources to be connected to these IO terminals when the
respective IO power supplies are turned off. The USB0_VBUS, USB1_VBUS, and DDR_RESETn are the
only fail-safe IO terminals. All other IO terminals are not fail-safe and the voltage applied to them should
be limited to the value defined by the Steady State Max. Voltage at all IO pins parameter in Section 5.1.
Figure 5-1. Tovershoot + Tundershoot < 20% of Tperiod
105
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.2 ESD Ratings
VALUE UNIT
VESD Electrostatic discharge
(ESD) Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 V
Charged device model (CDM), per JESD22-C101(2) ±250
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
5.3 Power-On Hours (POH)(1)(2)(3)(4)
OPERATING
CONDITION
COMMERCIAL INDUSTRIAL EXTENDED
JUNCTION TEMP
(Tj)LIFETIME
(POH)(5) JUNCTION TEMP
(Tj)LIFETIME
(POH)(5) JUNCTION TEMP
(Tj)LIFETIME
(POH)(5)
Nitro 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 84.4K
Turbo 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K
OPP120 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K
OPP100 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K
OPP50 0°C to 90°C 100K –40°C to 90°C 100K –40°C to 105°C 100K
(1) The POH information in this table is provided solely for your convenience and does not extend or modify the warranty provided under
TI's standard terms and conditions for TI semiconductor products.
(2) To avoid significant degradation, the device POH must be limited as described in this table.
(3) Logic functions and parameter values are not assured out of the range specified in the recommended operating conditions.
(4) The previous notations cannot be deemed a warranty or deemed to extend or modify the warranty under TI's standard terms and
conditions for TI semiconductor products.
(5) POH = Power-on hours when the device is fully functional.
106
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.4 Operating Performance Points
Device operating performance points (OPPs) are defined in Table 5-1,Table 5-2, and Table 5-3.
Table 5-1. VDD_CORE OPPs(1)
VDD_CORE OPP VDD_CORE DDR3/DDR3L(2) LPDDR2(2) L3 and L4
MIN NOM MAX
OPP100 1.056 V 1.100 V 1.144 V 400 MHz 266 MHz 200 MHz and
100 MHz
OPP50 0.912 V 0.950 V 1 V Not supported 133 MHz 100 MHz and
50 MHz
(1) Frequencies in this table indicate maximum performance for a given OPP condition.
(2) This parameter represents the maximum memory clock frequency. Because data is transferred on both edges of the clock, double-data
rate (DDR), the maximum data rate is two times the maximum memory clock frequency defined in this table.
Table 5-2. VDD_MPU OPPs(1)
VDD_MPU OPP VDD_MPU ARM (A9)
MIN NOM MAX
Nitro 1.272 V 1.325 V 1.378 V 1 GHz
Turbo 1.210 V 1.260 V 1.326 V 800 MHz
OPP120 1.152 V 1.200 V 1.248 V 720 MHz
OPP100 1.056 V 1.100 V 1.144 V 600 MHz
OPP50 0.912 V 0.950 V 1.000 V 300 MHz
(1) Frequencies in this table indicate maximum performance for a given OPP condition.
Table 5-3. Valid Combinations of VDD_CORE and
VDD_MPU OPPs(1)
VDD_CORE VDD_MPU
OPP50 OPP50
OPP100 OPP50
OPP100 OPP100
OPP100 OPP120
OPP100 Turbo
OPP100 Nitro
(1) OPP combinations listed in this table have been tested. Other OPP combinations are not supported.
107
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.5 Recommended Operating Conditions
over junction temperature range (unless otherwise noted)
SUPPLY NAME DESCRIPTION MIN NOM MAX UNIT
VDD_CORE Supply voltage range for core domain; OPP100 1.056 1.100 1.144 V
Supply voltage range for core domain; OPP50 0.912 0.950 1.000
VDD_MPU
Supply voltage range for MPU domain, Nitro 1.272 1.325 1.378
V
Supply voltage range for MPU domain; Turbo 1.210 1.260 1.326
Supply voltage range for MPU domain; OPP120 1.152 1.200 1.248
Supply voltage range for MPU domain; OPP100 1.056 1.100 1.144
Supply voltage range for MPU domain; OPP50 0.912 0.950 1.000
CAP_VDD_RTC(1) Supply voltage range for RTC core domain 0.900 1.100 1.250 V
VDDS_RTC Supply voltage range for RTC domain 1.710 1.800 1.890 V
VDDS_DDR
Supply voltage range for DDR IO domain (DDR3) 1.425 1.500 1.575
VSupply voltage range for DDR IO domain (DDR3L) 1.283 1.350 1.418
Supply voltage range for DDR IO domain (LPDDR2) 1.140 1.200 1.260
VDDS(2) Supply voltage range for all dual-voltage IO domains 1.710 1.800 1.890 V
VDDS_SRAM_CORE_BG Supply voltage range for Core SRAM LDOs, Analog 1.710 1.800 1.890 V
VDDS_SRAM_MPU_BB Supply voltage range for MPU SRAM LDOs, Analog 1.710 1.800 1.890 V
VDDS_PLL_DDR(3) Supply voltage range for DPLL DDR, Analog 1.710 1.800 1.890 V
VDDS_PLL_CORE_LCD(3) Supply voltage range for DPLL CORE, EXTDEV, and LCD,
Analog 1.710 1.800 1.890 V
VDDS_PLL_MPU(3) Supply voltage range for DPLL MPU, Analog 1.710 1.800 1.890 V
VDDS_OSC Supply voltage range for system oscillator, Analog 1.710 1.800 1.890 V
VDDA1P8V_USB0(3) Supply voltage range for USBPHY and DPLL PER, Analog,
1.8 V 1.710 1.800 1.890 V
VDDA1P8V_USB1 Supply voltage range for USBPHY, Analog, 1.8 V 1.710 1.800 1.890 V
VDDA3P3V_USB0 Supply voltage range for USBPHY, Analog, 3.3 V 3.135 3.300 3.465 V
VDDA3P3V_USB1 Supply voltage range for USBPHY, Analog, 3.3 V 3.135 3.300 3.465 V
VDDA_ADC0 Supply voltage range for ADC0, Analog 1.710 1.800 1.890 V
VDDA_ADC1 Supply voltage range for ADC1, Analog 1.710 1.800 1.890 V
VDDSHV1 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV2 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV3 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV5 Supply voltage range for CLKOUT voltage
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV6 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV7 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV8 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV9 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV10 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
VDDSHV11 Supply voltage range for dual-voltage IO
domain 1.8-V operation 1.710 1.800 1.890 V
3.3-V operation 3.135 3.300 3.465
DDR_VREF Supply voltage range for the DDR3/DDR3L HSTL, LPDDR2
HSUL_12 reference input 0.49 ×
VDDS_DDR 0.50 ×
VDDS_DDR 0.51 ×
VDDS_DDR V
VDDS3P3V_IOLDO Supply voltage range for the dual-voltage IO LDO 3.135 3.3 3.465 V
VDDS_CLKOUT Supply voltage range for CLKOUT domain 1.71 1.8 1.89 V
108
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Recommended Operating Conditions (continued)
over junction temperature range (unless otherwise noted)
SUPPLY NAME DESCRIPTION MIN NOM MAX UNIT
USB0_VBUS Voltage range for USB VBUS comparator input 0.000 5.000 5.250 V
USB1_VBUS Voltage range for USB VBUS comparator input 0.000 5.000 5.250 V
USB0_ID Voltage range for the USB ID input (4) V
USB1_ID Voltage range for the USB ID input (4) V
Operating Temperature
Range, Tj
Commercial Temperature 0 90
°CIndustrial Temperature –40 90
Extended Temperature –40 105
(1) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced
from an external power supply.
(2) VDDS should be supplied irrespective of 1.8-V or 3.3-V mode of operation of the dual-voltage IOs.
(3) For more details on power supply requirements, see Section 5.13.2.1.1.
(4) This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the
voltage to determine if the terminal is connected to VSSA_USB with a resistance less than 10 Ωor greater than 100 kΩ. The terminal
should be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to
any external voltage source.
109
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
(1) Current ratings specified in this table are worst-case estimates. Actual application power supply estimates could be lower. For more
information, see AM43xx Power Consumption Summary.
(2) This supply is sourced from an internal LDO when RTC_KALDO_ENn is low. If RTC_KALDO_ENn is high, this supply must be sourced
from an external power supply.
5.6 Power Consumption Summary
Table 5-4 summarizes the maximum power consumption at each power terminal.
Note: Data in the Maximum Current Ratings table (Table 5-4) represents worst-case power consumption
based on various applications of the device using practical operating conditions. The data primarily
benefits the power supply designer trying to understand the worst-case power consumption expected from
each power rail.
Table 5-4. Maximum Current Ratings at Power Terminals(1)
PARAMETER MAX UNIT
SUPPLY NAME DESCRIPTION
VDD_CORE Maximum current rating for the core domain; OPP100 600 mA
Maximum current rating for the core domain; OPP50 400 mA
VDD_MPU
Maximum current rating for the MPU domain; Nitro at 1 GHz 1000
mA
Maximum current rating for the MPU domain; Turbo at 800 MHz 800
Maximum current rating for the MPU domain; OPP120 at 720 MHz 720
Maximum current rating for the MPU domain; OPP100 at 600 MHz 600
Maximum current rating for the MPU domain; OPP50 at 300 MHz 350
CAP_VDD_RTC(2) Maximum current rating for RTC domain and LDO output 2 mA
VDDS_RTC Maximum current rating for the RTC domain 5 mA
VDDS_DDR Maximum current rating for DDR IO domain; DDR3/DDR3L 300 mA
Maximum current rating for DDR IO domain; LPDDR2 150
VDDS Maximum current rating for all dual-voltage IO domains 70 mA
VDDS_SRAM_CORE_BG Maximum current rating for core SRAM LDOs 10 mA
VDDS_SRAM_MPU_BB Maximum current rating for MPU SRAM LDOs 10 mA
VDDS_PLL_DDR Maximum current rating for the DPLL DDR 10 mA
VDDS_PLL_CORE_LCD Maximum current rating for the DPLL CORE, EXTDEV, and LCD 20 mA
VDDS_PLL_MPU Maximum current rating for the DPLL MPU 10 mA
VDDS_OSC Maximum current rating for the system oscillator 5 mA
VDDA1P8V_USB0 Maximum current rating for USBPHY 1.8 V and DPLL PER 25 mA
VDDA1P8V_USB1 Maximum current rating for USBPHY 1.8 V 25 mA
VDDA3P3V_USB0 Maximum current rating for USBPHY 3.3 V 40 mA
VDDA3P3V_USB1 Maximum current rating for USBPHY 3.3 V 40 mA
VDDS3P3V_IOLDO Maximum current rating for the dual-voltage IO LDO 30 mA
VDDA_ADC0 Maximum current rating for ADC0 10 mA
VDDA_ADC1 Maximum current rating for ADC1 10 mA
VDDSHV1 Maximum current rating for dual-voltage IO domain 30 mA
VDDSHV2 Maximum current rating for dual-voltage IO domain 80 mA
VDDSHV3 Maximum current rating for dual-voltage IO domain 100 mA
VDDSHV5 Maximum current rating for dual-voltage IO domain 10 mA
VDDSHV6 Maximum current rating for dual-voltage IO domain 50 mA
VDDSHV7 Maximum current rating for dual-voltage IO domain 10 mA
VDDSHV8 Maximum current rating for dual-voltage IO domain 50 mA
VDDSHV9 Maximum current rating for dual-voltage IO domain 50 mA
VDDSHV10 Maximum current rating for dual-voltage IO domain 50 mA
VDDSHV11 Maximum current rating for dual-voltage IO domain 50 mA
VDDS_CLKOUT Maximum current rating for CLKOUT domain 10 mA
110
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.7 DC Electrical Characteristics
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)
PARAMETER MIN TYP MAX UNIT
DDR_CSn[1:0], DDR_CKE[1:0], DDR_CK, DDR_CKn, DDR_CASn, DDR_RASn, DDR_WEn, DDR_BA[2:0], DDR_A[15:0],
DDR_ODT[1:0], DDR_D[31:0], DDR_DQM[3:0], DDR_DQS[3:0], DDR_DQSn[3:0] pins (DDR3/DDR3L - HSTL mode)
VIH High-level input voltage
VDDS_DDR =
1.5 V DDR_VREF +
0.1 V
VDDS_DDR =
1.35 V DDR_VREF +
0.09
VIL Low-level input voltage
VDDS_DDR =
1.5 V DDR_VREF
0.1 V
VDDS_DDR =
1.35 V DDR_VREF
0.09
VHYS Hysteresis voltage at an input NA V
VOH High-level output voltage, driver enabled, pullup
or pulldown disabled IOH = 8 mA VDDS_DDR
0.4 V
VOL Low-level output voltage, driver enabled, pullup
or pulldown disabled IOL = 8 mA 0.4 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –10 10 µA
Input leakage current, Receiver disabled, pullup enabled –240 –40
Input leakage current, Receiver disabled, pulldown enabled 40 240
IOZ Total leakage current through the terminal connection of a driver-
receiver combination that may include a pullup or pulldown. The
driver output is disabled and the pullup or pulldown is inhibited.
–10 10 µA
DDR_CSn[1:0], DDR_CKE[1:0], DDR_CK, DDR_CKn, DDR_CASn, DDR_RASn, DDR_WEn, DDR_BA[2:0], DDR_A[15:0],
DDR_D[31:0], DDR_DQM[3:0], DDR_DQS[3:0], DDR_DQSn[3:0] pins (LPDDR2 - HSUL_12 mode)(2)
VIH High-level input voltage VDDS_DDR =
1.2 V DDR_VREF +
0.13 V
VIL Low-level input voltage VDDS_DDR =
1.2 V DDR_VREF
0.13 V
VHYS Hysteresis voltage at an input NA V
VOH High-level output voltage, driver enabled, pullup
or pulldown disabled IOH = 8 mA VDDS_DDR
0.4 V
VOL Low-level output voltage, driver enabled, pullup
or pulldown disabled IOL = 8 mA 0.4 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –10 10 µA
Input leakage current, Receiver disabled, pullup enabled –240 –40
Input leakage current, Receiver disabled, pulldown enabled 40 240
IOZ Total leakage current through the terminal connection of a driver-
receiver combination that may include a pullup or pulldown. The
driver output is disabled and the pullup or pulldown is inhibited.
–10 10 µA
DDR_RESETn(3)
VIH High-level input voltage NA
VIL Low-level input voltage NA
VHYS Hysteresis voltage at an input NA
VOH High-level output voltage, driver enabled, pullup
or pulldown disabled IOH = 8 mA VDDS_DDR
0.4 V
VOL Low-level output voltage, driver enabled, pullup
or pulldown disabled IOL = 8 mA 0.4 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –10 10
µA
Input leakage current, Receiver disabled, pullup enabled –240 –24
Input leakage current, Receiver disabled, pulldown enabled 24 240
111
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
DC Electrical Characteristics (continued)
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)
PARAMETER MIN TYP MAX UNIT
IOZ Total leakage current through the terminal connection of a driver-
receiver combination that may include a pullup or pulldown. The
driver output is disabled and the pullup or pulldown is inhibited.
–10 10 µA
RTC_PWRONRSTn
VIH High-level input voltage 0.65 ×
VDDS_RTC V
VIL Low-level input voltage 0.35 ×
VDDS_RTC V
VHYS Hysteresis voltage at an input 0.065 V
IIInput leakage current –1 1 µA
RTC_PMIC_EN
VOH High-level output voltage, driver enabled, pullup
or pulldown disabled IOH = 6 mA VDDS_RTC
0.45 V
VOL Low-level output voltage, driver enabled, pullup
or pulldown disabled IOL = 6 mA 0.45 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –1 1 µA
Input leakage current, Receiver disabled, pullup enabled –200 –40
Input leakage current, Receiver disabled, pulldown enabled 40 200
IOZ Total leakage current through the terminal connection of a driver-
receiver combination that may include a pullup or pulldown. The
driver output is disabled and the pullup or pulldown is inhibited. –1 1 µA
RTC_WAKEUP
VIH High-level input voltage 0.65 ×
VDDS_RTC V
VIL Low-level input voltage 0.35 ×
VDDS_RTC V
VHYS Hysteresis voltage at an input 0.15 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –1 1 µA
Input leakage current, Receiver disabled, pullup enabled –200 –40
Input leakage current, Receiver disabled, pulldown enabled 40 200
TCK (VDDSHV3 = 1.8 V)
VIH High-level input voltage 1.45 V
VIL Low-level input voltage 0.46 V
VHYS Hysteresis voltage at an input 0.4 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –8 8
µA
Input leakage current, Receiver disabled, pullup enabled –161 –100 –52
Input leakage current, Receiver disabled, pulldown enabled 52 100 170
TCK (VDDSHV3 = 3.3 V)
VIH High-level input voltage 2.15 V
VIL Low-level input voltage 0.46 V
VHYS Hysteresis voltage at an input 0.4 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –18 18 µA
Input leakage current, Receiver disabled, pullup enabled –243 –100 –19
Input leakage current, Receiver disabled, pulldown enabled 51 110 210
PWRONRSTn (VDDSHV3 = 1.8 V or 3.3 V)(4)
VIH High-level input voltage 1.35 V
VIL Low-level input voltage 0.5 V
112
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
DC Electrical Characteristics (continued)
over recommended ranges of supply voltage and operating temperature (unless otherwise noted)(1)
PARAMETER MIN TYP MAX UNIT
VHYS Hysteresis voltage at an input 0.07 V
IIInput leakage current VI= 1.8 V 0.1 µA
VI= 3.3 V 2
All other LVCMOS pins (VDDSHVx = 1.8 V; x=1–11)
VIH High-level input voltage 0.65 ×
VDDSHVx V
VIL Low-level input voltage 0.35 ×
VDDSHVx V
VHYS Hysteresis voltage at an input 0.18 0.305 V
VOH High-level output voltage, driver enabled, pullup
or pulldown disabled IOH = 6 mA VDDSHVx
0.45 V
VOL Low-level output voltage, driver enabled, pullup
or pulldown disabled IOL = 6 mA 0.45 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –8.4 8.4 µA
Input leakage current, Receiver disabled, pullup enabled –161 –100 –52
Input leakage current, Receiver disabled, pulldown enabled 52 100 170
IOZ Total leakage current through the terminal connection of a driver-
receiver combination that may include a pullup or pulldown. The
driver output is disabled and the pullup or pulldown is inhibited.
–8.4 8.4 µA
All other LVCMOS pins (VDDSHVx = 3.3 V; x=1–11)
VIH High-level input voltage 2 V
VIL Low-level input voltage 0.8 V
VHYS Hysteresis voltage at an input 0.265 0.44 V
VOH High-level output voltage, driver enabled, pullup
or pulldown disabled IOH = 6 mA VDDSHVx
0.45 V
VOL Low-level output voltage, driver enabled, pullup
or pulldown disabled IOL = 6 mA 0.45 V
II
Input leakage current, Receiver disabled, pullup or pulldown
inhibited –18 18 µA
Input leakage current, Receiver disabled, pullup enabled –243 –100 –19
Input leakage current, Receiver disabled, pulldown enabled 51 110 210
IOZ Total leakage current through the terminal connection of a driver-
receiver combination that may include a pullup or pulldown. The
driver output is disabled and the pullup or pulldown is inhibited.
–18 18 µA
XTALIN (OSC0)
VIH High-level input voltage 0.65 ×
VDDS_OSC V
VIL Low-level input voltage 0.35 ×
VDDS_OSC V
RTC_XTALIN (OSC1)
VIH High-level input voltage 0.65 ×
VDDS_RTC V
VIL Low-level input voltage 0.35 ×
VDDS_RTC V
(1) The interfaces or signals described in this table correspond to the interfaces or signals available in multiplexing mode 0. All interfaces or
signals multiplexed on the terminals described in this table have the same DC electrical characteristics.
(2) For mapping to the LPDDR2 interface terminal name, see the AM437x Sitara Processors Technical Reference Manual.
(3) The DDR_RESETn terminal supports fail-safe operation.
(4) The input voltage thresholds for this input are not a function of VDDSHV3.
113
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.8 ADC0: Touch Screen Controller and Analog-to-Digital Subsystem Electrical Parameters
The touch screen controller (TSC) and analog-to-digital converter (ADC) subsystem (ADC0) contains a
single-channel ADC connected to an 8:1 analog multiplexer which operates as a general-purpose ADC
with optional support for interleaving TSC conversions for 4-wire, 5-wire, or 8-wire resistive panels. The
ADC0 subsystem can be configured for use in one of the following applications:
8 general-purpose ADC channels
4-wire TSC with 4 general-purpose ADC channels
5-wire TSC with 3 general-purpose ADC channels
8-wire TSC
Table 5-5 summarizes the ADC0 subsystem electrical parameters.
Table 5-5. ADC0 Electrical Parameters
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
ANALOG INPUT
ADC0_VREFP(1) (0.5 × VDDA_ADC0) +
0.25 VDDA_ADC0 V
ADC0_VREFN(1) 0(0.5 × VDDA_ADC0)
0.25 V
ADC0_VREFP + ADC0_VREFN VDDA_ADC0 V
Full-scale Input Range Internal Voltage Reference 0 VDDA_ADC0 V
External Voltage Reference ADC0_VREFN ADC0_VREFP
Differential Nonlinearity
(DNL)
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V –1 0.5 1 LSB
Integral Nonlinearity (INL)
Source impedance = 50 Ω
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V
–2 ±1 2
LSB
Source Impedance = 1 kΩ
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V
±1
Gain Error Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V ±2 LSB
Offset Error Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V ±2 LSB
Input Sampling Capacitance 5.5 pF
Signal-to-Noise Ratio
(SNR)
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
70 dB
Total Harmonic Distortion
(THD)
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
75 dB
114
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-5. ADC0 Electrical Parameters (continued)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Spurious Free Dynamic
Range
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
80 dB
Signal-to-Noise Plus
Distortion
Internal Voltage Reference:
VDDA_ADC0 = 1.8 V
External Voltage Reference:
VREFP VREFN = 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
69 dB
VREFP and VREFN Input Impedance 20 kΩ
Input Impedance of
AIN[7:0](2) f = input frequency [1/((65.97 × 10–12) × f)] Ω
SAMPLING DYNAMICS
ADC Clock Frequency 13 MHz
Conversion Time 13 ADC0
clock
cycles
Acquisition Time 2 257 ADC0
clock
cycles
Sampling Rate(3) ADC0 Clock = 13 MHz 867 kSPS
Channel-to-Channel Isolation 100 dB
TOUCH SCREEN SWITCH DRIVERS
Pullup and Pulldown Switch ON-Resistance (Ron) 2 Ω
Pullup and Pulldown Switch
Current Leakage Ileak Source impedance = 500 Ω0.5 uA
Drive Current 25 mA
Touch Screen Resistance 6 kΩ
Pen Touch Detect 2 kΩ
(1) The ADC0_VREFP and ADC0_VREFN terminals should not be allowed to float to prevent noise from coupling into the ADC. If
ADC0_VREFN is not used to connect an external negative voltage reference to the ADC, connect it to VSSA_ADC. If ADC0_VREFP is
not used to connect an external positive voltage reference to the ADC, connect it to VSSA_ADC or VDDA_ADC0. Connecting
ADC0_VREFP to VSSA_ADC in this use case is the preferred option because VDDA_ADC0 may couple more noise into the ADC than
VSSA_ADC.
(2) This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.
(3) The maximum sample rate assumes a conversion time of 13 ADC clock cycles with the acquisition time configured for the minimum of 2
ADC clock cycles, where it takes a total of 15 ADC clock cycles to sample the analog input and convert it to a positive binary weighted
digital value.
115
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.9 ADC1: Analog-to-Digital Subsystem Electrical Parameters
The analog-to-digital converter (ADC) subsystem implements a basic general-purpose ADC1.
Table 5-6 summarizes the ADC1 subsystem electrical parameters.
Table 5-6. ADC1 Electrical Parameters
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
ANALOG INPUT
ADC1_VREFP(1) Bypass mode (0.5 × VDDA_ADC1) +
0.25 VDDA_ADC1 V
Gain mode (0.5 × VDDA_ADC1) +
0.25 1.2(2) VDDA_ADC1
ADC1_VREFN(1) Bypass mode 0 (0.5 × VDDA_ADC1)
0.25 V
Gain mode 0 0.5(2) (0.5 × VDDA_ADC1)
0.25
ADC1_VREFP + ADC1_VREFN VDDA_ADC1 V
Full-scale Input Range
Bypass mode, Internal Voltage
Reference 0 VDDA_ADC1
V
Bypass mode, External Voltage
Reference ADC1_VREFN ADC1_VREFP
Gain mode, Internal Voltage
Reference –(VDDA_ADC1 / Gain) (VDDA_ADC1 / Gain)
Gain mode, External Voltage
Reference –((ADC1_VREFP
ADC1_VREFN) / Gain) ((ADC1_VREFP
ADC1_VREFN) / Gain)
Preamp output Gain mode (differential) 2.4 V
Differential Nonlinearity
(DNL)
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
–1 0.5 1 LSB
Preamp Gain
GAIN_CTRLx[MSB:LSB] = 00b 12
GAIN_CTRLx[MSB:LSB] = 01b 14
GAIN_CTRLx[MSB:LSB] = 10b 16
GAIN_CTRLx[MSB:LSB] = 11b 18
Preamp Bandwidth Gain mode 15 50 kHz
Integral Nonlinearity (INL)
Bypass mode
Source impedance = 1 kΩ
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
–2 ±1 2
LSB
Gain mode
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
±1
Gain Error
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
±2 LSB
Offset Error
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
±2 LSB
116
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-6. ADC1 Electrical Parameters (continued)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
Input Capacitance Bypass mode 5.5 pF
Gain mode 2 pF
Differential Input
Impedance(3) 18 kΩ
Signal-to-Noise Ratio
(SNR)
Bypass mode
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
70
dB
Gain mode
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.2 V
Input Signal: 5 kHz sine wave at
Full Scale
70
Total Harmonic Distortion
(THD)
Bypass mode
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
75
dB
Gain mode
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.2 V
Input Signal: 5 kHz sine wave at
Full Scale
75
Spurious Free Dynamic
Range
Bypass mode
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
80
dB
Gain mode
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.2 V
Input Signal: 5 kHz sine wave at
Full Scale
80
Signal-to-Noise Plus
Distortion
Bypass mode
Internal Voltage Reference:
VDDA_ADC1 = 1.8 V
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.8 V
Input Signal: 30 kHz sine wave at
–0.5 dB Full Scale
69
dB
Gain mode
External Voltage Reference:
ADC1_VREFP ADC1_VREFN
= 1.2 V
Input Signal: 5 kHz sine wave at
Full Scale
69
ADC1_VREFP and ADC1_VREFN Input Impedance 20 kΩ
Input Impedance of
ADC1_AIN[7:0](4) f = input frequency [1/((65.97 × 10–12) × f)] Ω
117
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-6. ADC1 Electrical Parameters (continued)
PARAMETER TEST CONDITIONS MIN NOM MAX UNIT
SAMPLING DYNAMICS
ADC Clock Frequency 13 MHz
Conversion Time 13 ADC
clock
cycles
Acquisition Time(5) 2 257 ADC
clock
cycles
Sampling Rate(6) ADC Clock = 13 MHz 867 kSPS
(1) The ADC1_VREFP and ADC1_VREFN terminals should not be allowed to float to prevent noise from coupling into the ADC. If
ADC1_VREFN is not used to connect an external negative voltage reference to the ADC, connect it to VSSA_ADC. If ADC1_VREFP is
not used to connect an external positive voltage reference to the ADC, connect it to VSSA_ADC or VDDA_ADC1. Connecting
ADC1_VREFP to VSSA_ADC in this use case is the preferred option because VDDA_ADC1 may couple more noise into the ADC than
VSSA_ADC.
(2) If the application using ADC1 requires low distortion when operating in Gain mode, the preamplifier output should be limited to ±1.2 volts
differential. To get the full dynamic range of the ADC for this use case it will be necessary to provide a 0.3 volt reference for
ADC1_VREFN and 1.5 volt reference for ADC1_VREFP.
(3) The differential input impedance of each preamplifier is biased to VDDA_ADC1 divided by 2 with a 22-kΩto 50-kΩsource. See the AFE
Functional Description section of the device-specific TRM for more information.
(4) This parameter is valid when the respective AIN terminal is configured to operate as a general-purpose ADC input.
(5) The maximum sample rate of ADC1 may be reduced when using the internal preamplifiers because the preamplifier outputs require 600
ns to settle. Sample Delay must be configured to provide a minimum acquisition time of 600 ns when using the preamplifiers.
An increase in acquisition time may reduce the maximum sample rate because the maximum sample rate is based on a minimum
acquisition time of 2 ADC clock cycles.
For example, the minimum Sample Delay value should be 6 when the preamplifiers are being used with a 13-MHz ADC clock. A Sample
Delay of 6 provides an acquisition time of 8 ADC clock cycles, which reduces the maximum single input sample rate to 619 kSPS when
the acquisition time is combined with the conversion time of 13 ADC clock cycles.
(6) The maximum sample rate assumes a conversion time of 13 ADC clock cycles with the acquisition time configured for the minimum of 2
ADC clock cycles, where it takes a total of 15 ADC clock cycles to sample the analog input and convert it to a positive binary weighted
digital value.
118
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.10 VPP Specifications for One-Time Programmable (OTP) eFuses
This section specifies the operating conditions required for programming the OTP eFuses and is
applicable only for high-security (AM437xHS) devices.
(1) Supply voltage range includes DC errors and peak-to-peak noise. TI power management solutions TLV70717 from the TLV707x family
meet the supply voltage range needed for VPP.
(2) During normal operation, no voltage should be applied to VPP. This can be typically achieved by disabling the regulator attached to the
VPP terminal. For more details, see TLV707, TLV707P 200-mA, Low-IQ, Low-Noise, Low-Dropout Regulator for Portable Devices.
Table 5-7. Recommended Operating Conditions for OTP eFuse Programming
PARAMETER DESCRIPTION MIN NOM MAX UNIT
VDD_CORE Supply voltage range for the core domain during OTP
operation; OPP100 1.056 1.1 1.144 V
VPP
Supply voltage range for the eFuse ROM domain during
normal operation NC
Supply voltage range for the eFuse ROM domain during
OTP programming(1)(2) 1.65 1.7 1.75 V
I(VPP) 50 mA
Temperature (ambient) 0 30 50 ºC
5.10.1 Hardware Requirements
The following hardware requirements must be met when programming keys in the OTP eFuses:
The VPP power supply must be disabled when not programming OTP registers.
The VPP power supply must be ramped up after the proper device power-up sequence (for more
details, see Section 5.13.1.2).
5.10.2 Programming Sequence
Programming sequence for OTP eFuses:
1. Power on the board per the power-up sequencing. No voltage should be applied on the VPP terminal
during power up and normal operation.
2. Load the OTP write software required to program the eFuse (contact your local TI representative for
the OTP software package).
3. Apply the voltage on the VPP terminal according to the specification in Table 5-7.
4. Run the software that programs the OTP registers.
5. After validating the content of the OTP registers, remove the voltage from the VPP terminal.
5.10.3 Impact to Your Hardware Warranty
You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You
acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a
failure may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI
device specifications prior to the attempted eFuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY FOR
ANY TI DEVICES THAT HAVE BEEN eFUSED.
119
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.11 Thermal Resistance Characteristics
Failure to maintain a junction temperature within the range specified in Section 5.5 reduces operating
lifetime, reliability, and performance—and may cause irreversible damage to the system. Therefore, the
product design cycle should include thermal analysis to verify the maximum operating junction
temperature of the device. It is important this thermal analysis is performed using specific system use
cases and conditions. TI provides an application report to aid users in overcoming some of the existing
challenges of producing a good thermal design. For more information, see AM43xx Thermal
Considerations.
Table 5-8 provides thermal characteristics for the packages used on this device.
NOTE
This table provides simulation data and may not represent actual use-case values.
120
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a
JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
Power dissipation of 2 W and an ambient temperature of 70ºC is assumed.
(2) °C/W = degrees Celsius per watt.
(3) m/s = meters per second.
Table 5-8. Thermal Resistance Characteristics (NFBGA Package) [ZDN]
over operating free-air temperature range (unless otherwise noted)
NAME DESCRIPTION ZDN
(°C/W)(1) (2) AIR FLOW
(m/s)(1) (3)
RΘJC Junction-to-case 7.07 NA
RΘJB Junction-to-board 11.11 NA
RΘJA Junction-to-free air
23.0 0.0
19.5 0.5
18.5 1.0
17.5 2.0
16.9 3.0
PsiJT Junction-to-package top
2.10 0.0
2.16 0.5
2.20 1.0
2.27 2.0
2.31 3.0
PsiJB Junction-to-board
11.59 0.0
11.18 0.5
11.05 1.0
10.91 2.0
10.80 3.0
121
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.12 External Capacitors
To improve module performance, decoupling capacitors are required to suppress the switching noise
generated by high frequency and to stabilize the supply voltage. A decoupling capacitor is most effective
when it is close to the device, because this minimizes the inductance of the circuit board wiring and
interconnects.
5.12.1 Voltage Decoupling Capacitors
Table 5-9 summarizes the Core voltage decoupling characteristics.
5.12.1.1 Core Voltage Decoupling Capacitors
To improve module performance, decoupling capacitors are required to suppress high-frequency switching
noise and to stabilize the supply voltage. A decoupling capacitor is most effective when located close to
the device, because this minimizes the inductance of the circuit board wiring and interconnects.
Table 5-9. Core Voltage Decoupling Characteristics
PARAMETER TYP UNIT
CVDD_CORE(1) 10.08 μF
CVDD_MPU(2) 10.05 μF
(1) The typical value corresponds to 1 capacitor of 10 μF and 8 capacitors of 10 nF.
(2) The typical value corresponds to 1 capacitor of 10 μF and 5 capacitors of 10 nF.
5.12.1.2 IO and Analog Voltage Decoupling Capacitors
Table 5-10 summarizes the power-supply decoupling capacitor recommendations.
Table 5-10. Power-Supply Decoupling Capacitor Characteristics
PARAMETER TYP UNIT
CVDDA_ADC0 10 nF
CVDDA_ADC1 10 nF
CVDDA1P8V_USB0(1) 2.21 µF
CCVDDA3P3V_USB0 10 nF
CVDDA1P8V_USB1 10 nF
CVDDA3P3V_USB1 10 nF
CVDDS(2) 10.04 μF
CVDDS_DDR (3)
CVDDS_OSC 10 nF
CVDDS_PLL_DDR 10 nF
CVDDS_PLL_CORE_LCD 10 nF
CVDDS_SRAM_CORE_BG(4) 10.01 µF
CVDDS_SRAM_MPU_BB(5) 10.01 µF
CVDDS_PLL_MPU 10 nF
CVDDS_RTC 10 nF
CVDDS_CLKOUT 10 nF
CVDDS3P3V_IOLDO 10 nF
CVDDSHV1(6) 10.02 μF
CVDDSHV2(7) 10.06 μF
CVDDSHV3(7) 10.06 μF
CVDDSHV5(6) 10.02 μF
CVDDSHV6(7) 10.06 μF
CVDDSHV7(6) 10.02 μF
122
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-10. Power-Supply Decoupling Capacitor Characteristics (continued)
PARAMETER TYP UNIT
CVDDSHV8(6) 10.02 μF
CVDDSHV9(6) 10.02 μF
CVDDSHV10(6) 10.02 μF
CVDDSHV11(6) 10.02 μF
(1) LDO regulator outputs should not be used as a power source for any external components.
(2) The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the RTC_KALDO_ENn terminal is high.
(3) The CAP_VDDS1P8V_IOLDO terminal is the output of the IO LDO and required for simplified power sequencing. For more details, see
Figure 5-8. If simplified power sequencing is not used, this terminal can be left floating.
(1) Typical values consist of 1 capacitor of 10 μF and 4 capacitors of 10 nF.
(2) Typical values consist of 1 capacitor of 2.2 μF and 1 capacitor of 10 nF.
(3) For more details on decoupling capacitor requirements for the DDR3 and DDR3L memory interface, see Section 5.13.8.2.1.3.6 and
Section 5.13.8.2.1.3.7 when using DDR3 and DDR3L memory devices.
(4) VDDS_SRAM_CORE_BG supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the
VDDS_SRAM_CORE_BG supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_CORE_BG terminals. TI
recommends placing a 10-μF capacitor close to the terminal and routing it with the widest traces possible to minimize the voltage drop
on VDDS_SRAM_CORE_BG terminals.
(5) VDDS_SRAM_MPU_BB supply powers an internal LDO for SRAM supplies. Inrush currents could cause voltage drop on the
VDDS_SRAM_MPU_BB supplies when the SRAM LDO is enabled after powering up VDDS_SRAM_MPU_BB terminals. TI
recommends placing a 10-μF capacitor close to the terminal and routing it with the widest traces possible to minimize the voltage drop
on VDDS_SRAM_MPU_BB terminals.
(6) Typical values consist of 1 capacitor of 10 μF and 2 capacitors of 10 nF.
(7) Typical values consist of 1 capacitor of 10 μF and 6 capacitors of 10 nF.
5.12.2 Output Capacitors
Internal low dropout output (LDO) regulators require external capacitors to stabilize their outputs. These
capacitors should be placed as close as possible to the respective terminals of the device. Table 5-11
summarizes the LDO output capacitor recommendations.
Table 5-11. Output Capacitor Characteristics
PARAMETER TYP UNIT
CCAP_VDD_SRAM_CORE(1) 1μF
CCAP_VDD_RTC(1)(2) 1μF
CCAP_VDD_SRAM_MPU(1) 1μF
CCAP_VBB_MPU(1) 1μF
CCAP_VDDS1P8V_IOLDO(1)(3) 2.2 μF
123
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-2 shows an example of the external capacitors.
A. Decoupling capacitors must be placed as closed as possible to the power terminal. Choose the ground closest to the
power pin for each decoupling capacitor. In case of interconnecting powers, first insert the decoupling capacitor and
then interconnect the powers.
B. The decoupling capacitor value depends on the board characteristics.
Figure 5-2. External Capacitors
0
Supply value
t
slew rate < 1E + 5 V/s
slew > (supply value) / (1E + 5V/s)
supply value 10 µs´
124
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13 Timing and Switching Characteristics
The data provided in the following timing requirements and switching characteristics tables assumes the
device is operating within the recommended operating conditions defined in Section 5.5, unless otherwise
noted.
5.13.1 Power Supply Sequencing
5.13.1.1 Power Supply Slew Rate Requirement
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the
maximum slew rate of supplies to be less than 1.0E + 5 V/s. For instance, as shown in Figure 5-3, TI
recommends having the supply ramp slew for a 1.8-V supply of more than 18 µs.
Figure 5-3. Power Supply Slew and Slew Rate
VDDS_RTC(A)
1.8V
RTC_PWRONRSTn(B)
1.8V
RTC_PMIC_EN
1.8V
1.8V
VDDSHVx [x=1-11]
3.3V
VDD_CORE(D)
1.1V
VDD_MPU(D)
1.1V
CLK_32K_RTC
CLK_M_OSC
1.8V
VDDS_DDR
1.2V/1.35V/1.5V
PWRONRSTn
1.8V/3.3V(E)
VDDS_CLKOUT
VDDS_PLL_CORE_LCD, VDDS_PLL_MPU,
(F)
VDDA3P3V_USB0/1
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(C)
VDDS_SRAM_MPU_BB,
VDDS_OSC, VDDA_ADC0/1, VDDS_PLL_DDR,
VDDS,
125
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.1.2 Power-Up Sequencing
A. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on
VDD_CORE.
VDDS_RTC can be ramped independent of other supplies if RTC_PMIC_EN functionality is not required. If
VDDS_RTC is ramped after VDD_CORE when internal RTC LDO is enabled, there might be a small amount of
leakage current on VDD_CORE.
B. RTC_PWRONRSTn should be asserted for at least 1 ms and can be released before the 32-kHz clock is stable.
C. These supplies can be ramped together with VDDS, VDDS_CLKOUT supplies if powered from the same source only.
If a USB port is not used, the respective VDDA1P8V_USB may be connected to any 1.8-V power supply and the
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-
V supply, the VDDA3P3V_USB may be connected to ground.
D. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.
E. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input
terminal, see Section 5.7.
F. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock
CLK_M_OSC is stable.
Figure 5-4. Power Sequencing With RTC Feature Enabled, All Dual-Voltage IOs Configured as 3.3 V
VDDS_RTC(A)
1.8V
RTC_PWRONRSTn(B)
1.8V
RTC_PMIC_EN
1.8V
VDDS_CLKOUT
1.8V
VDDA3P3V_USB0/1
3.3V
VDD_CORE(D)
1.1V
VDD_MPU(D)
1.1V
CLK_32K_RTC
CLK_M_OSC
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(C)
1.8V
VDDS_DDR
1.2V/1.35V/1.5V
PWRONRSTn
1.8V
(E)
VDDS, VDDSHVx [x=1-11]
VDDS_OSC, VDDA_ADC0/1, VDDS_PLL_DDR,
VDDS_PLL_CORE_LCD, VDDS_PLL_MPU,
VDDS_SRAM_MPU_BB,
126
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on
VDD_CORE.
B. RTC_PWRONRSTn should be asserted for at least 1 ms and can be released before the 32-kHz clock is stable.
C. These supplies can be ramped together with the VDDS, VDDSHVx [x=1-11], VDDS_CLKOUT supplies if powered
from the same source.
If a USB port is not used, the respective VDDA1P8V_USB may be connected to any 1.8-V power supply and the
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-
V supply, the VDDA3P3V_USB may be connected to ground.
D. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.
E. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock
CLK_M_OSC is stable.
Figure 5-5. Power Sequencing With RTC Feature Enabled, All Dual-Voltage IOs Configured as 1.8 V
VDDS_RTC(A)
1.8V
RTC_PWRONRSTn(B)
1.8V
RTC_PMIC_EN
1.8V
VDDSHVx [x=1-11]
1.8V
VDDSHVx [x=1-11]
3.3V
VDD_CORE(D)
1.1V
VDD_MPU(D)
1.1V
CLK_32K_RTC
CLK_M_OSC
1.8V
VDDS_DDR
1.2V/1.35V/1.5V
PWRONRSTn
1.8V/3.3V(E)
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(C)
(F)
VDDS,
VDDS_CLKOUT
VDDS_OSC, VDDA_ADC0/1, VDDS_PLL_DDR,
VDDS_PLL_CORE_LCD, VDDS_PLL_MPU,
VDDS_SRAM_MPU_BB,
VDDA3P3V_USB0/1
127
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on
VDD_CORE.
B. RTC_PWRONRSTn should be asserted for at least 1 ms and can be released before the 32-kHz clock is stable.
C. These supplies can be ramped together with the VDDS, VDDSHVx [x=1-11], VDDS_CLKOUT supplies if powered
from the same source.
If a USB port is not used, the respective VDDA1P8V_USB may be connected to any 1.8-V power supply and the
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-
V supply, the VDDA3P3V_USB may be connected to ground.
D. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.
E. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input
terminal, see Section 5.7.
F. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock
CLK_M_OSC is stable.
Figure 5-6. Power Sequencing With RTC Feature Enabled, Dual-Voltage IOs Configured as 1.8 V, 3.3 V
VDDS,
VDDS_CLKOUT
VDDSHVx [x=1-11]
1.8V
VDDSHVx [x=1-11]
VDDA3P3V_USB0/1
3.3V
VDD_CORE ,
(B)
1.1V
VDD_MPU(B)
1.1V
CLK_M_OSC
1.8V
VDDS_DDR
1.2V/1.35V/1.5V
PWRONRSTn
1.8V/3.3V(D)
VDDS_RTC, VDDS_OSC, VDDA_ADC0/1,
(E)
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(A)
VDDS_PLL_MPU, VDDS_SRAM_MPU_BB,
VDDS_PLL_DDR, VDDS_PLL_CORE_LCD,
CAP_VDD_RTC(C)
128
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. These supplies can be ramped together with the VDDS, VDDSHVx [x=1-11], VDDS_CLKOUT supplies if powered
from the same source.
If a USB port is not used, the repsective VDDA1P8V_USB may be connected to any 1.8-V power supply and the
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-
V supply, the VDDA3P3V_USB may be connected to ground.
B. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.
C. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on
VDD_CORE.
VDDS_RTC can be ramped independent of other supplies if RTC_PMIC_EN functionality is not required. If
VDDS_RTC is ramped after VDD_CORE when internal RTC LDO is enabled, there might be a small amount of
leakage current on VDD_CORE.
D. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input
terminal, see Section 5.7.
E. It is required to hold the PWRONRSTn terminal low until all the supplies have ramped and the input clock
CLK_M_OSC is stable.
Figure 5-7. Power Sequencing With RTC Feature Disabled, Dual-Voltage IOs Configured as 1.8 V, 3.3 V
VDDS3P3V_IOLDO,
3.3V
VDD_CORE(C)
1.1V
VDD_MPU(C)
1.1V
CLK_M_OSC
1.8V
VDDS_DDR
1.2V/1.35V/1.5V
PWRONRSTn
1.8V/3.3V(E)
VDDS_RTC, VDDS_OSC, VDDA_ADC0/1,
(F)
VDDA3P3V_USB0/1(A)
VDDSHVx [x=1-11]
VDDS_SRAM_CORE_BG, VDDA1P8V_USB0/1(B)
VDDS_PLL_MPU, VDDS_SRAM_MPU_BB,
VDDS_PLL_DDR, VDDS_PLL_CORE_LCD,
CAP_VDD_RTC(D)
129
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. Power source supplying VDDS3P3V_IOLDO should have a supply slew of >100us.
CAP_VDDS1P8V_IOLDO is the 1.8-V output of VDDA3P3V_IOLDO. VDDS, VDDS_CLKOUT terminals are powered
by shorting them to CAP_VDDS1P8V_IOLDO on the board.
B. If a USB port is not used, the repsective VDDA1P8V_USB may be connected to any 1.8-V power supply and the
respective VDDA3P3V_USB terminal may be connected to any 3.3-V power supply. If a system does not have a 3.3-
V supply, the VDDA3P3V_USB may be connected to ground.
C. VDD_MPU and VDD_CORE can be supplied from the same power source if OPPs higher than OPP100 are not used.
D. The CAP_VDD_RTC terminal operates as an input to the RTC core voltage domain when the internal RTC LDO is
disabled by connecting the RTC_KALDO_ENn terminal to VDDS_RTC.
If the internal RTC LDO is disabled, CAP_VDD_RTC should be sourced from an external 1.1-V power supply. If
CAP_VDD_RTC is ramped after VDD_CORE, there might be a small amount of additional leakage current on
VDD_CORE.
VDDS_RTC can be ramped independent of other supplies if RTC_PMIC_EN functionality is not required. If
VDDS_RTC is ramped after VDD_CORE when internal RTC LDO is enabled, there might be a small amount of
leakage current on VDD_CORE.
E. PWRONRSTn input voltage thresholds are not dependent on VDDSHV3 voltage and the terminal is not fail-safe.
PWRONRSTn can accept 1.8-V or 3.3-V input levels when VDDSHV3 is configured as 3.3 V. However,
PWRONRSTn can only accept 1.8 V input levels when VDDSHV3 is configured as 1.8 V. For details on this input
terminal, see Section 5.7.
F. The PWRONRSTn terminal must be held low until all the supplies have ramped and the input clock CLK_M_OSC is
stable.
Figure 5-8. Simplified Power Sequencing With RTC Feature Disabled, Dual-Voltage IOs
Configured as 3.3 V
130
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.1.3 Power-Down Sequencing
PWRONRSTn input terminal should be taken low, which stops all internal clocks before power supplies
are turned off. All other external clocks to the device should be shut off.
The preferred way to sequence power down is to have all the power supplies ramped down sequentially in
the exact reverse order of the power-up sequencing. In other words, the power supply that has been
ramped up first should be the last one that is ramped down. This ensures there would be no spurious
current paths during the power-down sequence. The VDDS, VDDS_CLKOUT power supply must ramp
down after all 3.3-V VDDSHVx [x=1-11] power supplies.
If it is desired to ramp down VDDS, VDDS_CLKOUT and VDDSHVx [x=1-11] simultaneously, it should
always be ensured that the difference between VDDS, VDDS_CLKOUT and VDDSHVx [x=1-11] during
the entire power-down sequence is <2 V. Any violation of this could cause reliability risks for the device.
Further, it is recommended to maintain VDDS, VDDS_CLKOUT 1.5V as all the other supplies fully ramp
down to minimize in-rush currents.
If none of the VDDSHVx [x=1-11] power supplies are configured as 3.3 V, the VDDS, VDDS_CLKOUT
power supply may ramp down along with the VDDSHVx [x=1-11] supplies or after all the VDDSHVx [x=1-
11] supplies have ramped down. TI recommends maintaining VDDS, VDDS_CLKOUT 1.5V as all the
other supplies fully ramp down to minimize in-rush currents.
When using simplified power-down sequence, there are no power-down requirements between the VDDS,
VDDS_CLKOUT and VDDSHVx [x=1-11] supplies and are ramped down together without any reliability
concerns.
MPU
PLL
PER
PLL
DDR
PLL
CORE
PLL
EXTDEV
PLL
VDDS_PLL_MPU
VDDS_PLL_CORE_LCD
VDDA1P8V_USB0
VDDS_PLL_DDR
LCD
PLL
131
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.2 Clock
5.13.2.1 PLLs
5.13.2.1.1 Digital Phase-Locked Loop Power Supply Requirements
The digital phase-locked loop (DPLL) provides all interface clocks and functional clocks to the processor
of the device. The device integrates six different DPLLs:
Core DPLL
Per DPLL
Display DPLL
DDR DPLL
MPU DPLL
EXTDEV DPLL
Figure 5-9 shows the power supply connectivity implemented in the device. Table 5-12 provides the power
supply requirements for the DPLL.
Figure 5-9. DPLL Power Supply Connectivity
Table 5-12. DPLL Power Supply Requirements
SUPPLY NAME DESCRIPTION MIN NOM MAX UNIT
VDDA1P8V_USB0 Supply voltage range for USBPHY and PER DPLL, Analog, 1.8V 1.71 1.8 1.89 V
Max. peak-to-peak supply noise 50 mV (p-p)
VDDS_PLL_MPU Supply voltage range for DPLL MPU, Analog 1.71 1.8 1.89 V
Max. peak-to-peak supply noise 50 mV (p-p)
VDDS_PLL_CORE_LCD Supply voltage range for DPLL CORE, EXTDEV, and LCD, Analog 1.71 1.8 1.89 V
Max. peak-to-peak supply noise 50 mV (p-p)
VDDS_PLL_DDR Supply voltage range for DPLL DDR, Analog 1.71 1.8 1.89 V
Max. peak-to-peak supply noise 50 mV (p-p)
132
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.2.2 Input Clock Specifications
The device has two clock inputs. Each clock input passes through an internal oscillator which can be
connected to an external crystal circuit (oscillator mode) or external LVCMOS square-wave digital clock
source (bypass mode). The oscillators automatically operate in bypass mode when their input is
connected to an external LVCMOS square-wave digital clock source. The oscillator associated with a
specific clock input must be enabled when the clock input is being used in either oscillator mode or bypass
mode.
The OSC1 oscillator provides a 32.768-kHz reference clock to the real-time clock (RTC) and is connected
to the RTC_XTALIN and RTC_XTALOUT terminals. This clock source is referred to as the 32K oscillator
(CLK_32K_RTC) in the device-specific technical reference manual. OSC1 is disabled by default after
power is applied. This clock input is optional and may not be required if the RTC is configured to receive a
clock from the internal 32k RC oscillator (CLK_RC32K) or peripheral PLL (CLK_32KHZ) which receives a
reference clock from the OSC0 input.
The OSC0 oscillator provides a 19.2-MHz, 24-MHz, 25-MHz, or 26-MHz reference clock which is used to
clock all non-RTC functions and is connected to the XTALIN and XTALOUT terminals. This clock source is
referred to as the master oscillator (CLK_M_OSC) in the device-specific technical reference manual.
OSC0 is enabled by default after power is applied.
For more information related to recommended circuit topologies and crystal oscillator circuit requirements
for these clock inputs, see Section 5.13.2.3.
Device
XTALIN VSS_OSC XTALOUT
C1
C2
Optional Rd
Crystal
Optional Rbias
Copyright © 2016, Texas Instruments Incorporated
133
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.2.3 Input Clock Requirements
5.13.2.3.1 OSC0 Internal Oscillator Clock Source
Figure 5-10 shows the recommended crystal circuit. It is recommended that preproduction printed-circuit
board (PCB) designs include the two optional resistors Rbias and Rdin case they are required for proper
oscillator operation when combined with production crystal circuit components. In most cases, Rbias is not
required and Rdis a 0-Ωresistor. These resistors may be removed from production PCB designs after
evaluating oscillator performance with production crystal circuit components installed on preproduction
PCBs.
The XTALIN terminal has a 15-kΩto 40-kΩinternal pulldown resistor which is enabled when OSC0 is
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which
may increase leakage current through the oscillator input buffer.
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the package. Parasitic
capacitance to the printed circuit board (PCB) ground and other signals should be minimized to reduce noise coupled
into the oscillator. The external crystal component grounds should be connected to the VSS_OSC terminal. The
VSS_OSC terminal should be connected to the PCB ground plane as close as possible to the device.
B. C1and C2represent the total capacitance of the respective PCB trace, load capacitor, and other components
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1and C2should be selected to
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL=
[(C1×C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer
plus any mutual capacitance (Cpkg + CPCB) seen across the XTALIN and XTALOUT signals. For recommended values
of crystal circuit components, see Table 5-13.
Figure 5-10. OSC0 Crystal Circuit Schematic
VDDS_OSC
XTALOUT
tsX
VDD_CORE (min.)
Time
Voltage
VSS
VDDS_OSC (min.)
VSS
VDD_CORE
134
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-13. OSC0 Crystal Circuit Requirements
NAME DESCRIPTION MIN TYP MAX UNIT
fxtal
Crystal parallel resonance
frequency Fundamental mode oscillation only 19.2, 24.0,
25.0, or
26.0 MHz
Crystal frequency stability
and tolerance –50.0 50.0 ppm
CC1 C1capacitance 12.0 24.0 pF
CC2 C2capacitance 12.0 24.0 pF
Cshunt Shunt capacitance 5.0 pF
ESR
Crystal effective series
resistance fxtal = 19.2 MHz, oscillator has nominal
negative resistance of 272 Ωand worst-
case negative resistance of 163 Ω
54.4
Ω
fxtal = 24.0 MHz, oscillator has nominal
negative resistance of 240 Ωand worst-
case negative resistance of 144 Ω
48.0
fxtal = 25.0 MHz, oscillator has nominal
negative resistance of 233 Ωand worst-
case negative resistance of 140 Ω
46.6
fxtal = 26.0 MHz, oscillator has nominal
negative resistance of 227 Ωand worst-
case negative resistance of 137 Ω
45.3
Table 5-14. OSC0 Crystal Circuit Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
Cpkg Shunt capacitance of
package ZDN package 0.01 pF
Pxtal
The actual values of the ESR, fxtal, and CLshould be used to yield a
typical crystal power dissipation value. Using the maximum values
specified for ESR, fxtal, and CLparameters yields a maximum power
dissipation value.
Pxtal = 0.5 ESR (2 πfxtal
CLVDDS_OSC)2
tsX Start-up time 1.5 ms
Figure 5-11. OSC0 Start-up Time
Device
XTALIN VSS_OSC XTALOUT
LVCMOS
Digital
Clock
Source
VDDS_OSC
Copyright © 2016, Texas Instruments Incorporated
135
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.
5.13.2.3.2 OSC0 LVCMOS Digital Clock Source
Figure 5-12 shows the recommended oscillator connections when OSC0 is connected to an LVCMOS
square-wave digital clock source. The LVCMOS clock source is connected to the XTALIN terminal. In this
mode of operation, the XTALOUT terminal should not be used to source any external components. The
printed circuit board design should provide a mechanism to disconnect the XTALOUT terminal from any
external components or signal traces that may couple noise into OSC0 via the XTALOUT terminal.
The XTALIN terminal has a 15-kΩto 40-kΩinternal pulldown resistor which is enabled when OSC0 is
disabled. This internal resistor prevents the XTALIN terminal from floating to an invalid logic level which
may increase leakage current through the oscillator input buffer.
Figure 5-12. OSC0 LVCMOS Circuit Schematic
Table 5-15. OSC0 LVCMOS Reference Clock Requirements
NAME DESCRIPTION MIN TYP MAX UNIT
f(XTALIN) Frequency, LVCMOS reference clock 19.2, 24, 25,
or 26 MHz
Frequency, LVCMOS reference clock stability and tolerance(1) –50 50 ppm
tdc(XTALIN) Duty cycle, LVCMOS reference clock period 45% 55%
tjpp(XTALIN) Jitter peak-to-peak, LVCMOS reference clock period 1% 1%
tR(XTALIN) Time, LVCMOS reference clock rise 5 ns
tF(XTALIN) Time, LVCMOS reference clock fall 5 ns
Device
RTC_XTALIN RTC_XTALOUT
C1C2
Optional Rbias
Optional Rd
Crystal
VSS_RTC
Copyright © 2016, Texas Instruments Incorporated
136
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.2.3.3 OSC1 Internal Oscillator Clock Source
Figure 5-13 shows the recommended crystal circuit for OSC1 of the package. It is recommended that pre-
production printed circuit board (PCB) designs include the two optional resistors Rbias and Rdin case they
are required for proper oscillator operation when combined with production crystal circuit components. In
most cases, Rbias is not required and Rdis a 0-Ωresistor. These resistors may be removed from
production PCB designs after evaluating oscillator performance with production crystal circuit components
installed on preproduction PCBs.
The RTC_XTALIN terminal has a 10-kΩto 40-kΩinternal pullup resistor which is enabled when OSC1 is
disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level
which may increase leakage current through the oscillator input buffer.
A. Oscillator components (Crystal, C1, C2, optional Rbias and Rd) must be located close to the package. Parasitic
capacitance to the printed circuit board (PCB) ground and other signals should be minimized to reduce noise coupled
into the oscillator.
B. C1and C2represent the total capacitance of the respective PCB trace, load capacitor, and other components
(excluding the crystal) connected to each crystal terminal. The value of capacitors C1and C2should be selected to
provide the total load capacitance, CL, specified by the crystal manufacturer. The total load capacitance is CL=
[(C1×C2)/(C1+C2)] + Cshunt, where Cshunt is the crystal shunt capacitance (C0) specified by the crystal manufacturer
plus any mutual capacitance (Cpkg + CPCB) seen across the RTC_XTALIN and RTC_XTALOUT signals. For
recommended values of crystal circuit components, see Table 5-16.
Figure 5-13. OSC1 Crystal Circuit Schematic
Table 5-16. OSC1 Crystal Circuit Requirements
NAME DESCRIPTION MIN TYP MAX UNIT
fxtal
Crystal parallel resonance
frequency Fundamental mode oscillation only 32.768 kHz
Crystal frequency stability
and tolerance Maximum RTC error = 10.512 minutes
per year –20.0 20.0 ppm
Maximum RTC error = 26.28 minutes per
year –50.0 50.0 ppm
CC1 C1capacitance 12.0 24.0 pF
CC2 C2capacitance 12.0 24.0 pF
Cshunt Shunt capacitance 1.5 pF
ESR Crystal effective series
resistance fxtal = 32.768 kHz, oscillator has nominal
negative resistance of 725 kΩand worst-
case negative resistance of 250 kΩ
80 kΩ
Table 5-17. OSC1 Crystal Circuit Characteristics
NAME DESCRIPTION MIN TYP MAX UNIT
Cpkg Shunt capacitance of
package ZDN package 0.17 pF
VDDS_RTC
RTC_XTALOUT
tsX
CAP_VDD_RTC (min.)
Time
Voltage
VSS_RTC
VDDS_RTC (min.)
VSS_RTC
CAP_VDD_RTC
137
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-17. OSC1 Crystal Circuit Characteristics (continued)
NAME DESCRIPTION MIN TYP MAX UNIT
Pxtal
The actual values of the ESR, fxtal, and CLshould be used to yield a
typical crystal power dissipation value. Using the maximum values
specified for ESR, fxtal, and CLparameters yields a maximum power
dissipation value.
Pxtal = 0.5 ESR (2 πfxtal
CLVDDS_RTC)2
tsX Start-up time 2 s
Figure 5-14. OSC1 Start-up Time
Device
RTC_XTALIN RTC_XTALOUT
N/C
LVCMOS
Digital
Clock
Source
VDDS_RTC
VSS_RTC
Copyright © 2016, Texas Instruments Incorporated
138
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) Initial accuracy, temperature drift, and aging effects should be combined when evaluating a reference clock for this requirement.
5.13.2.3.4 OSC1 LVCMOS Digital Clock Source
Figure 5-15 shows the recommended oscillator connections when OSC1 of the package is connected to
an LVCMOS square-wave digital clock source. The LVCMOS clock source is connected to the
RTC_XTALIN terminal. In this mode of operation, the RTC_XTALOUT terminal should not be used to
source any external components. The printed circuit board design should provide a mechanism to
disconnect the RTC_XTALOUT terminal from any external components or signal traces that may couple
noise into OSC1 via the RTC_XTALOUT terminal.
The RTC_XTALIN terminal has a 10-kΩto 40-kΩinternal pullup resistor which is enabled when OSC1 is
disabled. This internal resistor prevents the RTC_XTALIN terminal from floating to an invalid logic level
which may increase leakage current through the oscillator input buffer.
Figure 5-15. OSC1 LVCMOS Circuit Schematic
Table 5-18. OSC1 LVCMOS Reference Clock Requirements
NAME DESCRIPTION MIN TYP MAX UNIT
f(RTC_XTALIN)
Frequency, LVCMOS reference clock 32.768 kHz
Frequency, LVCMOS reference clock
stability and tolerance(1)
Maximum RTC error =
10.512 minutes/year –20 20 ppm
Maximum RTC error = 26.28
minutes/year –50 50 ppm
tdc(RTC_XTALIN) Duty cycle, LVCMOS reference clock period 45% 55%
tjpp(RTC_XTALIN) Jitter peak-to-peak, LVCMOS reference clock period –1% 1%
tR(RTC_XTALIN) Time, LVCMOS reference clock rise 5 ns
tF(RTC_XTALIN) Time, LVCMOS reference clock fall 5 ns
5.13.2.3.5 OSC1 Not Used
Figure 5-16 shows the recommended oscillator connections when OSC1 is not used. An internal 10-kΩ
pullup on the RTC_XTALIN terminal is turned on when OSC1 is disabled to prevent this input from floating
to an invalid logic level which may increase leakage current through the oscillator input buffer. OSC1 is
disabled by default after power is applied. Therefore, both RTC_XTALIN and RTC_XTALOUT terminals
should be a no connect (NC) when OSC1 is not used.
For more information on disabling OSC1, see the device-specific technical reference manual.
Device
RTC_XTALIN RTC_XTALOUT
N/C
N/C
VSS_RTC
Copyright © 2016, Texas Instruments Incorporated
139
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-16. OSC1 Not Used Schematic
5.13.2.4 Output Clock Specifications
The device has two clock output signals. The CLKOUT1 signal can be configured to output the master
oscillator (CLK_M_OSC), EXTDEV_PLL, 32-kHz, or several other internal clocks. See the device-specific
TRM for more details. The CLKOUT2 signal can be configured to output the OSC1 input clock, which is
referred to as the 32K oscillator (CLK_32K_RTC) in the device-specific technical reference manual, or four
other internal clocks. For more information related to configuring these clock output signals, see the
CLKOUT Signals section of the device-specific technical reference manual.
5.13.2.5 Output Clock Characteristics
5.13.2.5.1 CLKOUT1
The CLKOUT1 signal can be output on the XDMA_EVENT_INTR0 terminal. This terminal connects to one
of seven internal signals through configurable multiplexers. The XDMA_EVENT_INTR0 multiplexer must
be configured for Mode 3 to connect the CLKOUT1 signal to the XDMA_EVENT_INTR0 terminal.
The default reset configuration of the XDMA_EVENT_INTR0 multiplexer is selected by the logic level
applied to the DSS_HSYNC terminal on the rising edge of PWRONRSTn. The XDMA_EVENT_INTR0
multiplexer is configured to Mode 7 if the DSS_HSYNC terminal is low on the rising edge of PWRONRSTn
or Mode 3 if the DSS_HSYNC terminal is high on the rising edge of PWRONRSTn. This allows the
CLKOUT1 signal to be output on the XDMA_EVENT_INTR0 terminal without software intervention. In this
mode, the output is held low while PWRONRSTn is active and begins to toggle after PWRONRSTn is
released.
5.13.2.5.2 CLKOUT2
The CLKOUT2 signal can be output on the XDMA_EVENT_INTR1 terminal. This terminal connects to one
of seven internal signals through configurable multiplexers. The XDMA_EVENT_INTR1 multiplexer must
be configured for Mode 3 to connect the CLKOUT2 signal to the XDMA_EVENT_INTR1 terminal.
The default reset configuration of the XDMA_EVENT_INTR1 multiplexer is always Mode 7. Software must
configure the XDMA_EVENT_INTR1 multiplexer to Mode 3 for the CLKOUT2 signal to be output on the
XDMA_EVENT_INTR1 terminal.
5.13.3 Timing Parameters and Board Routing Analysis
The timing parameter values specified in this data manual do not include delays by board routings. As a
good board design practice, such delays must always be taken into account. Timing values may be
adjusted by increasing or decreasing such delays. TI recommends using the available IO buffer
information specification (IBIS) models to analyze the timing characteristics correctly. If needed, external
logic hardware such as buffers may be used to compensate any timing differences.
The timing parameter values specified in this data manual assume the SLEWCTRL bit in each pad control
register is configured for fast mode (0b).
140
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
For the LPDDR2, DDR3, and DDR3L memory interfaces, it is not necessary to use the IBIS models to
analyze timing characteristics. TI provides a PCB routing rules solution that describes the routing rules to
ensure the memory interface timings are met.
5.13.4 Recommended Clock and Control Signal Transition Behavior
All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic
manner.
1
DCANx_RX
2
DCANx_TX
141
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.5 Controller Area Network (CAN)
For more information, see the Controller Area Network (CAN) section of the AM437x Sitara Processors
Technical Reference Manual.
5.13.5.1 DCAN Electrical Data and Timing
Table 5-19. Timing Requirements for DCANx Receive
(see Figure 5-17)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
fbaud(baud) Maximum programmable baud rate 1 1 Mbps
1 tw(RX) Pulse duration, receive data bit H - 2(1) H + 2(1) H + 2(1) H + 2(1) ns
(1) H = period of baud rate, 1/programmed baud rate.
Table 5-20. Switching Characteristics for DCANx Transmit
(see Figure 5-17)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
fbaud(baud) Maximum programmable baud rate 1 1 Mbps
2 tw(TX) Pulse duration, transmit data bit H - 2(1) H + 2(1) H - 2(1) H + 2(1) ns
(1) H = period of baud rate, 1/programmed baud rate.
Figure 5-17. DCANx Timings
TCLKIN
TIMER[x]
1
23
142
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.6 DMTimer
5.13.6.1 DMTimer Electrical Data and Timing
(1) P = period of PICLKOCP (interface clock).
Table 5-21. Timing Requirements for DMTimer [1-11]
(see Figure 5-18)
NO. MIN MAX UNIT
1 tc(TCLKIN) Cycle time, TCLKIN 4P+1(1) ns
(1) P = period of PICLKTIMER (functional clock).
Table 5-22. Switching Characteristics for DMTimer [4-7]
(see Figure 5-18)
NO. PARAMETER MIN MAX UNIT
2 tw(TIMERxH) Pulse duration, high 4P-3(1) ns
3 tw(TIMERxL) Pulse duration, low 4P-3(1) ns
Figure 5-18. Timer Timing
MDIO_CLK (Output)
1
2
MDIO_DATA (Input)
143
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.7 Ethernet Media Access Controller (EMAC) and Switch
5.13.7.1 Ethernet MAC and Switch Electrical Data and Timing
The Ethernet MAC and Switch implemented in the device supports GMII mode, but the design does not
pin out 9 of the 24 GMII signals. This was done to reduce the total number of package terminals.
Therefore, the device does not support GMII mode. MII mode is supported with the remaining GMII
signals.
The AM437x Sitara Processors Technical Reference Manual and this document may reference internal
signal names when discussing peripheral input and output signals because many of the package terminals
can be multiplexed to one of several peripheral signals. For example, the terminal names for port 1 of the
Ethernet MAC and switch have been changed from GMII to MII to indicate their Mode 0 function, but the
internal signal is named GMII. However, documents that describe the Ethernet switch reference these
signals by their internal signal name. For a cross-reference of internal signal names to terminal names,
see Table 4-10.
Operation of the Ethernet MAC and switch in RGMII mode is not supported for OPP50.
Table 5-23. Ethernet MAC and Switch Timing Conditions
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
tRInput signal rise time 1(1) 5(1) ns
tFInput signal fall time 1(1) 5(1) ns
Output Condition
CLOAD Output load capacitance 3 30 pF
(1) Except when specified otherwise.
5.13.7.1.1 Ethernet MAC/Switch MDIO Electrical Data and Timing
Table 5-24. Timing Requirements for MDIO_DATA
(see Figure 5-19)
NO. MIN TYP MAX UNIT
1 tsu(MDIO-MDC) Setup time, MDIO valid before MDC high 90 ns
2 th(MDIO-MDC) Hold time, MDIO valid from MDC high 0 ns
Figure 5-19. MDIO_DATA Timing - Input Mode
Table 5-25. Switching Characteristics for MDIO_CLK
(see Figure 5-20)
NO. PARAMETER MIN TYP MAX UNIT
1 tc(MDC) Cycle time, MDC 400 ns
2 tw(MDCH) Pulse duration, MDC high 160 ns
3 tw(MDCL) Pulse duration, MDC low 160 ns
4 tt(MDC) Transition time, MDC 5 ns
GMII[x]_RXCLK
23
14
4
1
MDIO_CLK (Output)
MDIO_DATA (Output)
MDIO_CLK
23
14
4
144
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-20. MDIO_CLK Timing
Table 5-26. Switching Characteristics for MDIO_DATA
(see Figure 5-21)
NO. PARAMETER MIN TYP MAX UNIT
1 td(MDC-MDIO) Delay time, MDC high to MDIO valid 10 390 ns
Figure 5-21. MDIO_DATA Timing - Output Mode
5.13.7.1.2 Ethernet MAC and Switch MII Electrical Data and Timing
Table 5-27. Timing Requirements for GMII[x]_RXCLK - MII Mode
(see Figure 5-22)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1 tc(RX_CLK) Cycle time, RX_CLK 399.96 400.04 39.996 40.004 ns
2 tw(RX_CLKH) Pulse Duration, RX_CLK high 140 260 14 26 ns
3 tw(RX_CLKL) Pulse Duration, RX_CLK low 140 260 14 26 ns
4 tt(RX_CLK) Transition time, RX_CLK 5 5 ns
Figure 5-22. GMII[x]_RXCLK Timing - MII Mode
GMII[x]_MRCLK (Input)
1
2
GMII[x]_RXD[3:0], GMII[x]_RXDV,
GMII[x]_RXER (Inputs)
GMII[x]_TXCLK
23
14
4
145
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-28. Timing Requirements for GMII[x]_TXCLK - MII Mode
(see Figure 5-23)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1 tc(TX_CLK) Cycle time, TX_CLK 399.96 400.04 39.996 40.004 ns
2 tw(TX_CLKH) Pulse Duration, TX_CLK high 140 260 14 26 ns
3 tw(TX_CLKL) Pulse Duration, TX_CLK low 140 260 14 26 ns
4 tt(TX_CLK) Transition time, TX_CLK 5 5 ns
Figure 5-23. GMII[x]_TXCLK Timing - MII Mode
Table 5-29. Timing Requirements for GMII[x]_RXD[3:0], GMII[x]_RXDV, and GMII[x]_RXER - MII Mode
(see Figure 5-24)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1tsu(RXD-RX_CLK) Setup time, RXD[3:0] valid before RX_CLK 8 8 nstsu(RX_DV-RX_CLK) Setup time, RX_DV valid before RX_CLK
tsu(RX_ER-RX_CLK) Setup time, RX_ER valid before RX_CLK
2th(RX_CLK-RXD) Hold time RXD[3:0] valid after RX_CLK 8 8 nsth(RX_CLK-RX_DV) Hold time RX_DV valid after RX_CLK
th(RX_CLK-RX_ER) Hold time RX_ER valid after RX_CLK
Figure 5-24. GMII[x]_RXD[3:0], GMII[x]_RXDV, GMII[x]_RXER Timing - MII Mode
1
GMII[x]_TXCLK (input)
GMII[x]_TXD[3:0],
GMII[x]_TXEN (outputs)
146
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-30. Switching Characteristics for GMII[x]_TXD[3:0], and GMII[x]_TXEN - MII Mode
(see Figure 5-25)
NO. PARAMETER 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1td(TX_CLK-TXD) Delay time, TX_CLK high to TXD[3:0] valid 5 25 5 25 ns
td(TX_CLK-TX_EN) Delay time, TX_CLK to TX_EN valid
Figure 5-25. GMII[x]_TXD[3:0], GMII[x]_TXEN Timing - MII Mode
RMII[x]_REFCLK (input)
1
2
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,
RMII[x]_RXER (inputs)
RMII[x]_REFCLK
(Input)
1
2
3
147
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.7.1.3 Ethernet MAC and Switch RMII Electrical Data and Timing
Table 5-31. Timing Requirements for RMII[x]_REFCLK - RMII Mode
(see Figure 5-26)
NO. MIN TYP MAX UNIT
1 tc(REF_CLK) Cycle time, REF_CLK 19.999 20.001 ns
2 tw(REF_CLKH) Pulse Duration, REF_CLK high 7 13 ns
3 tw(REF_CLKL) Pulse Duration, REF_CLK low 7 13 ns
Figure 5-26. RMII[x]_REFCLK Timing - RMII Mode
Table 5-32. Timing Requirements for RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RXER - RMII Mode
(see Figure 5-27)
NO. MIN TYP MAX UNIT
1tsu(RXD-REF_CLK) Setup time, RXD[1:0] valid before REF_CLK 4 nstsu(CRS_DV-REF_CLK) Setup time, CRS_DV valid before REF_CLK
tsu(RX_ER-REF_CLK) Setup time, RX_ER valid before REF_CLK
2th(REF_CLK-RXD) Hold time RXD[1:0] valid after REF_CLK 2 nsth(REF_CLK-CRS_DV) Hold time, CRS_DV valid after REF_CLK
th(REF_CLK-RX_ER) Hold time, RX_ER valid after REF_CLK
Figure 5-27. RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing - RMII Mode
1
RMII[x]_REFCLK (Input)
RMII[x]_TXD[1:0],
RMII[x]_TXEN (Outputs)
2
3
148
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-33. Switching Characteristics for RMII[x]_TXD[1:0], and RMII[x]_TXEN - RMII Mode
(see Figure 5-28)
NO. PARAMETER MIN TYP MAX UNIT
1td(REF_CLK-TXD) Delay time, REF_CLK high to TXD[1:0] valid 2 14.2 ns
td(REF_CLK-TXEN) Delay time, REF_CLK to TXEN valid
2tr(TXD) Rise time, TXD outputs 1 5 ns
tr(TX_EN) Rise time, TX_EN output
3tf(TXD) Fall time, TXD outputs 1 5 ns
tf(TX_EN) Fall time, TX_EN output
Figure 5-28. RMII[x]_TXD[1:0], RMII[x]_TXEN Timing - RMII Mode
RGMII[x]_RD[3:0](B)
RGMII[x]_RCTL(B)
RGMII[x]_RCLK(A)
1
RXERR
1st Half-byte
2nd Half-byte
2
3
RXDV
RGRXD[3:0] RGRXD[7:4]
RGMII[x]_RCLK
23
1
4
4
149
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.7.1.4 Ethernet MAC and Switch RGMII Electrical Data and Timing
Table 5-34. Timing Requirements for RGMII[x]_RCLK - RGMII Mode
(see Figure 5-29)
NO. 10 Mbps 100 Mbps 1000 Mbps UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
1 tc(RXC) Cycle time, RXC 360 440 36 44 7.2 8.8 ns
2 tw(RXCH) Pulse duration, RXC
high 160 240 16 24 3.6 4.4 ns
3 tw(RXCL) Pulse duration, RXC low 160 240 16 24 3.6 4.4 ns
4 tt(RXC) Transition time, RXC 0.75 0.75 0.75 ns
Figure 5-29. RGMII[x]_RCLK Timing - RGMII Mode
Table 5-35. Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL - RGMII Mode
(see Figure 5-30)
NO. 10 Mbps 100 Mbps 1000 Mbps UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
1tsu(RD-RXC) Setup time, RD[3:0] valid
before RXC high or low 111ns
tsu(RX_CTL-RXC) Setup time, RX_CTL valid
before RXC high or low 111
2th(RXC-RD) Hold time, RD[3:0] valid
after RXC high or low 111ns
th(RXC-RX_CTL) Hold time, RX_CTL valid
after RXC high or low 111
3tt(RD) Transition time, RD 0.75 0.75 0.75 ns
tt(RX_CTL) Transition time, RX_CTL 0.75 0.75 0.75
A. RGMII[x]_RCLK must be externally delayed relative to the RGMII[x]_RD[3:0] and RGMII[x]_RCTL signals to meet the
respective timing requirements.
B. Data and control information is received using both edges of the clocks. RGMII[x]_RD[3:0] carries data bits 3-0 on the
rising edge of RGMII[x]_RCLK and data bits 7-4 on the falling edge of RGMII[x]_RCLK. Similarly, RGMII[x]_RCTL
carries RXDV on rising edge of RGMII[x]_RCLK and RXERR on falling edge of RGMII[x]_RCLK.
Figure 5-30. RGMII[x]_RD[3:0], RGMII[x]_RCTL Timing - RGMII Mode
RGMII[x]_TCLK(A)
RGMII[x]_TD[3:0](B)
RGMII[x]_TCTL(B)
1
1st Half-byte
TXERRTXEN
2nd Half-byte
1
2
RGMII[x]_TCLK
4
4
23
1
150
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-36. Switching Characteristics for RGMII[x]_TCLK - RGMII Mode
(see Figure 5-31)
NO. PARAMETER 10 Mbps 100 Mbps 1000 Mbps UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
1 tc(TXC) Cycle time, TXC 360 440 36 44 7.2 8.8 ns
2 tw(TXCH) Pulse duration, TXC
high 160 240 16 24 3.6 4.4 ns
3 tw(TXCL) Pulse duration, TXC low 160 240 16 24 3.6 4.4 ns
4 tt(TXC) Transition time, TXC 0.75 0.75 0.75 ns
Figure 5-31. RGMII[x]_TCLK Timing - RGMII Mode
Table 5-37. Switching Characteristics for RGMII[x]_TD[3:0], and RGMII[x]_TCTL - RGMII Mode
(see Figure 5-32)
NO. PARAMETER 10 Mbps 100 Mbps 1000 Mbps UNIT
MIN TYP MAX MIN TYP MAX MIN TYP MAX
1tsk(TD-TXC) TD to TXC output skew -0.5 0.5 -0.5 0.5 -0.5 0.5 ns
tsk(TX_CTL-TXC) TX_CTL to TXC output skew -0.5 0.5 -0.5 0.5 -0.5 0.5
2tt(TD) Transition time, TD 0.75 0.75 0.75 ns
tt(TX_CTL) Transition time, TX_CTL 0.75 0.75 0.75
A. The Ethernet MAC and switch implemented in the device supports internal TX delay mode.
B. Data and control information is transmitted using both edges of the clocks. RGMII[x]_TD[3:0] carries data bits 3-0 on
the rising edge of RGMII[x]_TCLK and data bits 7-4 on the falling edge of RGMII[x]_TCLK. Similarly, RGMII[x]_TCTL
carries TXEN on rising edge of RGMII[x]_TCLK and TXERR of falling edge of RGMII[x]_TCLK.
Figure 5-32. RGMII[x]_TD[3:0], RGMII[x]_TCTL Timing - RGMII Mode
151
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8 External Memory Interfaces
The device includes the following external memory interfaces:
General-purpose memory controller (GPMC)
LPDDR2, DDR3, and DDR3L Memory Interface (EMIF)
5.13.8.1 General-Purpose Memory Controller (GPMC)
NOTE
For more information, see the Memory Subsystem and General-Purpose Memory Controller
section of the AM437x Sitara Processors Technical Reference Manual.
The GPMC is the unified memory controller used to interface external memory devices such as:
Asynchronous SRAM-like memories and ASIC devices
Asynchronous page mode and synchronous burst NOR flash
NAND flash
5.13.8.1.1 GPMC and NOR Flash—Synchronous Mode
Table 5-39 and Table 5-40 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-33 through Figure 5-37).
Table 5-38. GPMC and NOR Flash Timing Conditions—Synchronous Mode
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
tRInput signal rise time 0.3 1.8 ns
tFInput signal fall time 0.3 1.8 ns
Output Condition
CLOAD Output load capacitance 3 30 pF
Table 5-39. GPMC and NOR Flash Timing Requirements—Synchronous Mode
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
F12 tsu(dV-clkH) Setup time, input data gpmc_ad[15:0] valid before output clock
gpmc_clk high 3.5 13.2 ns
F13 th(clkH-dV) Hold time, input data gpmc_ad[15:0] valid after output clock
gpmc_clk high 2.5 2.75 ns
F21 tsu(waitV-clkH) Setup time, input wait gpmc_wait[x](1) valid before output clock
gpmc_clk high 3.5 13.2 ns
F22 th(clkH-waitV) Hold time, input wait gpmc_wait[x](1) valid after output clock
gpmc_clk high 2.5 2.5 ns
(1) In gpmc_wait[x], x is equal to 0 or 1.
152
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-40. GPMC and NOR Flash Switching Characteristics—Synchronous Mode
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
F0 1 / tc(clk) Frequency(1), output clock gpmc_clk 100 50 MHz
F1 tw(clkH) Typical pulse duration, output clock gpmc_clk high 0.5P(2) 0.5P(2) 0.5P(2) 0.5P(2) ns
F1 tw(clkL) Typical pulse duration, output clock gpmc_clk low 0.5P(2) 0.5P(2) 0.5P(2) 0.5P(2) ns
tdc(clk) Duty cycle error, output clock gpmc_clk –500 500 –500 500 ps
tJ(clk) Jitter standard deviation(3), output clock gpmc_clk 33.33 33.33 ps
tR(clk) Rise time, output clock gpmc_clk 2 2 ns
tF(clk) Fall time, output clock gpmc_clk 2 2 ns
tR(do) Rise time, output data gpmc_ad[15:0] 2 2 ns
tF(do) Fall time, output data gpmc_ad[15:0] 2 2 ns
F2 td(clkH-csnV) Delay time, output clock gpmc_clk rising edge to
output chip select gpmc_csn[x](4) transition F(5) 2.2 F(5) + 4.5 F(5) 3.2 F(5) + 9.5 ns
F3 td(clkH-csnIV) Delay time, output clock gpmc_clk rising edge to
output chip select gpmc_csn[x](4) invalid E(6) 2.2 E(6) + 4.5 E(6) 3.2 E(6) + 9.5 ns
F4 td(aV-clk) Delay time, output address gpmc_a[27:1] valid to
output clock gpmc_clk first edge B(7) 4.5 B(7) + 3.1 B(7) 5.5 B(7) + 13.1 ns
F5 td(clkH-aIV) Delay time, output clock gpmc_clk rising edge to
output address gpmc_a[27:1] invalid -2.3 4.5 -3.3 15.3 ns
F6 td(be[x]nV-clk) Delay time, output lower byte enable and command
latch enable gpmc_be0n_cle, output upper byte
enable gpmc_be1n valid to output clock gpmc_clk
first edge
B(7) - 1.9 B(7) + 2.3 B(7) 2.9 B(7) + 12.3 ns
F7 td(clkH-be[x]nIV) Delay time, output clock gpmc_clk rising edge to
output lower byte enable and command latch enable
gpmc_be0n_cle, output upper byte enable
gpmc_be1n invalid(8)
D(9) 2.3 D(9) + 1.9 D(9) 3.3 D(9) + 6.9 ns
F7 td(clkL-be[x]nIV) Delay time, gpmc_clk falling edge to
gpmc_nbe0_cle, gpmc_nbe1 invalid(10) D(9) 2.3 D(9) + 1.9 D(9) 3.3 D(9) + 6.9 ns
F7 td(clkL-be[x]nIV) Delay time, gpmc_clk falling edge to
gpmc_nbe0_cle, gpmc_nbe1 invalid(11) D(9) 2.3 D(9) + 1.9 D(9) 3.3 D(9) + 11.9 ns
F8 td(clkH-advn) Delay time, output clock gpmc_clk rising edge to
output address valid and address latch enable
gpmc_advn_ale transition
G(12) 2.3 G(12) + 4.5 G(12) 3.3 G(12) + 9.5 ns
F9 td(clkH-advnIV) Delay time, output clock gpmc_clk rising edge to
output address valid and address latch enable
gpmc_advn_ale invalid
D(9) 2.3 D(9) + 4.5 D(9) 3.3 D(9) + 9.5 ns
F10 td(clkH-oen) Delay time, output clock gpmc_clk rising edge to
output enable gpmc_oen transition H(13) 2.3 H(13) + 3.5 H(13) 3.3 H(13) + 8.5 ns
F11 td(clkH-oenIV) Delay time, output clock gpmc_clk rising edge to
output enable gpmc_oen invalid H(13) 2.3 H(13) + 3.5 H(13) 3.3 H(13) + 8.5 ns
F14 td(clkH-wen) Delay time, output clock gpmc_clk rising edge to
output write enable gpmc_wen transition I(14) 2.3 I(14) + 4.5 I(14) 3.3 I(14) + 9.5 ns
F15 td(clkH-do) Delay time, output clock gpmc_clk rising edge to
output data gpmc_ad[15:0] transition(8) J(15) 2.3 J(15) + 2.7 J(15) 3.3 J(15) + 7.7 ns
F15 td(clkL-do) Delay time, gpmc_clk falling edge to gpmc_ad[15:0]
data bus transition(10) J(15) 2.3 J(15) + 2.7 J(15) 3.3 J(15) + 7.7 ns
F15 td(clkL-do) Delay time, gpmc_clk falling edge to gpmc_ad[15:0]
data bus transition(11) J(15) 2.3 J(15) + 2.7 J(15) 3.3 J(15) + 12.7 ns
F17 td(clkH-be[x]n) Delay time, output clock gpmc_clk rising edge to
output lower byte enable and command latch enable
gpmc_be0n_cle transition(8)
J(15) 2.3 J(15) + 1.9 J(15) 3.3 J(15) + 6.9 ns
F17 td(clkL-be[x]n) Delay time, gpmc_clk falling edge to
gpmc_nbe0_cle, gpmc_nbe1 transition(10) J(15) 2.3 J(15) + 1.9 J(15) 3.3 J(15) + 6.9 ns
F17 td(clkL-be[x]n) Delay time, gpmc_clk falling edge to
gpmc_nbe0_cle, gpmc_nbe1 transition(11) J(15) 2.3 J(15) + 1.9 J(15) 3.3 J(15) + 11.9 ns
153
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-40. GPMC and NOR Flash Switching Characteristics—Synchronous Mode (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
F18 tw(csnV) Pulse duration, output chip select
gpmc_csn[x](4) low Read A(16) A(16) ns
Write A(16) A(16) ns
F19 tw(be[x]nV) Pulse duration, output lower byte enable
and command latch enable
gpmc_be0n_cle, output upper byte enable
gpmc_be1n low
Read C(17) C(17) ns
Write C(17) C(17) ns
F20 tw(advnV) Pulse duration, output address valid and
address latch enable gpmc_advn_ale low Read K(18) K(18) ns
Write K(18) K(18) ns
(1) Related to the gpmc_clk output clock maximum and minimum frequencies programmable in the GPMC module by setting the
GPMC_CONFIG1_CSx configuration register bit field GpmcFCLKDivider.
(2) P = gpmc_clk period in ns
(3) The jitter probability density can be approximated by a Gaussian function.
(4) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
(5) For csn falling edge (CS activated):
Case GpmcFCLKDivider = 0:
F = 0.5 × CSExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
F = 0.5 × CSExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and
CSOnTime are even)
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
F = 0.5 × CSExtraDelay × GPMC_FCLK(19) if ((CSOnTime ClkActivationTime) is a multiple of 3)
F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(19) if ((CSOnTime ClkActivationTime 1) is a multiple of 3)
F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(19) if ((CSOnTime ClkActivationTime 2) is a multiple of 3)
(6) For single read: E = (CSRdOffTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst read: E = (CSRdOffTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst write: E = (CSWrOffTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
(7) B = ClkActivationTime × GPMC_FCLK(19)
(8) First transfer only for CLK DIV 1 mode.
(9) For single read: D = (RdCycleTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst read: D = (RdCycleTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst write: D = (WrCycleTime AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
(10) Half cycle; for all data after initial transfer for CLK DIV 1 mode.
(11) Half cycle of GPMC_CLK_OUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLK_OUT divide down from GPMC_FCLK.
(12) For ADV falling edge (ADV activated):
Case GpmcFCLKDivider = 0:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
ADVOnTime are even)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if ((ADVOnTime ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVOnTime ClkActivationTime 1) is a multiple of 3)
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVOnTime ClkActivationTime 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
Case GpmcFCLKDivider = 0:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if ((ADVRdOffTime ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVRdOffTime ClkActivationTime 1) is a multiple of 3)
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVRdOffTime ClkActivationTime 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
Case GpmcFCLKDivider = 0:
154
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(19) if ((ADVWrOffTime ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVWrOffTime ClkActivationTime 1) is a multiple of 3)
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(19) if ((ADVWrOffTime ClkActivationTime 2) is a multiple of 3)
(13) For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):
Case GpmcFCLKDivider = 0:
H = 0.5 × OEExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and
OEOnTime are even)
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if ((OEOnTime ClkActivationTime) is a multiple of 3)
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOnTime ClkActivationTime 1) is a multiple of 3)
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOnTime ClkActivationTime 2) is a multiple of 3)
For OE rising edge (OE deactivated):
Case GpmcFCLKDivider = 0:
H = 0.5 × OEExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and
OEOffTime are even)
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
H = 0.5 × OEExtraDelay × GPMC_FCLK(19) if ((OEOffTime ClkActivationTime) is a multiple of 3)
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOffTime ClkActivationTime 1) is a multiple of 3)
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(19) if ((OEOffTime ClkActivationTime 2) is a multiple of 3)
(14) For WE falling edge (WE activated):
Case GpmcFCLKDivider = 0:
I = 0.5 × WEExtraDelay × GPMC_FCLK(19)
Case GpmcFCLKDivider = 1:
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and
WEOnTime are even)
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if ((WEOnTime ClkActivationTime) is a multiple of 3)
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOnTime ClkActivationTime 1) is a multiple of 3)
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOnTime ClkActivationTime 2) is a multiple of 3)
For WE rising edge (WE deactivated):
Case GpmcFCLKDivider = 0:
I = 0.5 × WEExtraDelay × GPMC_FCLK (19)
Case GpmcFCLKDivider = 1:
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and
WEOffTime are even)
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) otherwise
Case GpmcFCLKDivider = 2:
I = 0.5 × WEExtraDelay × GPMC_FCLK(19) if ((WEOffTime ClkActivationTime) is a multiple of 3)
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOffTime ClkActivationTime 1) is a multiple of 3)
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(19) if ((WEOffTime ClkActivationTime 2) is a multiple of 3)
(15) J = GPMC_FCLK(19)
(16) For single read: A = (CSRdOffTime CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst read: A = (CSRdOffTime CSOnTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst write: A = (CSWrOffTime CSOnTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
With n being the page burst access number.
(17) For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst read: C = (RdCycleTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For burst write: C = (WrCycleTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
With n being the page burst access number.
(18) For read: K = (ADVRdOffTime ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
For write: K = (ADVWrOffTime ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(19)
(19) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
gpmc_clk
gpmc_csn[x](A)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_oen
gpmc_ad[15:0]
gpmc_wait[x](B)
Valid Address
D 0
F0
F12
F13
F4
F6
F2
F8
F3
F7
F9
F11
F1
F1
F8
F19
F18
F20
F10
F6
F19
155
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
B. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-33. GPMC and NOR Flash—Synchronous Single Read—(GpmcFCLKDivider = 0)
gpmc_clk
gpmc_csn[x](A)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_oen
gpmc_ad[15:0]
gpmc_wait[x](B)
Valid Address
D 0 D 1 D 2
F0
F12
F13 F13
F12
F4
F1
F1
F2
F6
F3
F7
F8 F8 F9
F10 F11
F21 F22
F6
F7
D 3
156
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
B. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-34. GPMC and NOR Flash—Synchronous Burst Read—4x16-bit (GpmcFCLKDivider = 0)
gpmc_clk
gpmc_csn[x](A)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_wen
gpmc_ad[15:0]
gpmc_wait[x](B)
D 0 D 1 D 2 D 3
F4
F15 F15 F15
F1
F1
F2
F6
F8F8
F0
F14F14
F3
F17
F17
F17
F9F6
F17
F17
F17
Valid Address
157
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
B. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-35. GPMC and NOR Flash—Synchronous Burst Write—(GpmcFCLKDivider > 0)
gpmc_clk
gpmc_csn[x](A)
gpmc_be0n_cle
gpmc_be1n
gpmc_a[27:17]
gpmc_ad[15:0]
gpmc_advn_ale
gpmc_oen
gpmc_wait[x](B)
Valid
Valid
Address (MSB)
Address (LSB) D0 D1 D2 D3
F4
F6
F4
F2
F8 F8
F10
F13
F12
F12
F11
F9
F7
F3
F0 F1
F1
F5
F6 F7
158
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
B. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-36. GPMC and Multiplexed NOR Flash—Synchronous Burst Read
gpmc_clk
gpmc_csn[x](A)
gpmc_a[27:17]
gpmc_be1n
gpmc_be0n_cle
gpmc_advn_ale
gpmc_wen
gpmc_wait[x](B)
Address (LSB) D 0 D 1 D 2 D 3
F4
F15 F15 F15
F1
F1
F2
F6
F8F8
F0
F3
F17
F17
F17
F9
F6 F17
F17
F17
F18
F20
F14
F22 F21
Address (MSB)
gpmc_ad[15:0]
F14
159
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
B. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-37. GPMC and Multiplexed NOR Flash—Synchronous Burst Write
160
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.1.2 GPMC and NOR Flash—Asynchronous Mode
Table 5-42 and Table 5-43 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-38 through Figure 5-43).
Table 5-41. GPMC and NOR Flash Timing Conditions—Asynchronous Mode
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
tRInput signal rise time 0.3 1.8 ns
tFInput signal fall time 0.3 1.8 ns
Output Condition
CLOAD Output load capacitance 3 30 pF
Table 5-42. GPMC and NOR Flash Internal Timing Parameters—Asynchronous Mode(1)(2)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
FI1 Delay time, output data gpmc_ad[15:0] generation from internal functional clock
GPMC_FCLK(3) 6.5 6.5 ns
FI2 Delay time, input data gpmc_ad[15:0] capture from internal functional clock
GPMC_FCLK(3) 4 4 ns
FI3 Delay time, output chip select gpmc_csn[x] generation from internal functional
clock GPMC_FCLK(3) 6.5 6.5 ns
FI4 Delay time, output address gpmc_a[27:1] generation from internal functional clock
GPMC_FCLK(3) 6.5 6.5 ns
FI5 Delay time, output address gpmc_a[27:1] valid from internal functional clock
GPMC_FCLK(3) 6.5 6.5 ns
FI6 Delay time, output lower-byte enable and command latch enable gpmc_be0n_cle,
output upper-byte enable gpmc_be1n generation from internal functional clock
GPMC_FCLK(3) 6.5 6.5 ns
FI7 Delay time, output enable gpmc_oen generation from internal functional clock
GPMC_FCLK(3) 6.5 6.5 ns
FI8 Delay time, output write enable gpmc_wen generation from internal functional
clock GPMC_FCLK(3) 6.5 6.5 ns
FI9 Skew, internal functional clock GPMC_FCLK(3) 100 100 ps
(1) The internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.
161
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-43. GPMC and NOR Flash Timing Requirements—Asynchronous Mode
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
FA5(1) tacc(d) Data access time H(4) H(4) ns
FA20(2) tacc1-pgmode(d) Page mode successive data access time P(5) P(5) ns
FA21(3) tacc2-pgmode(d) Page mode first data access time H(4) H(4) ns
(1) The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active functional clock
edge. FA5 value must be stored inside the AccessTime register bit field.
(2) The FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional clock
edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
(3) The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
(4) H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)
(5) P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)
(6) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
Table 5-44. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tR(d) Rise time, output data gpmc_ad[15:0] 2 2 ns
tF(d) Fall time, output data gpmc_ad[15:0] 2 2 ns
FA0 tw(be[x]nV)
Pulse duration, output lower-byte
enable and command latch enable
gpmc_be0n_cle, output upper-byte
enable gpmc_be1n valid time
Read N(1) N(1)
ns
Write N(1) N(1)
FA1 tw(csnV) Pulse duration, output chip select
gpmc_csn[x](2) low Read A(3) A(3) ns
Write A(3) A(3)
FA3 td(csnV-advnIV)
Delay time, output chip select
gpmc_csn[x](2) valid to output address
valid and address latch enable
gpmc_advn_ale invalid
Read B(4) 0.2 B(4) + 2.0 B(4) 0.2 B(4) + 2.0 ns
Write B(4) 0.2 B(4) + 2.0 B(4) 0.2 B(4) + 2.0
FA4 td(csnV-oenIV) Delay time, output chip select gpmc_csn[x](2)
valid to output enable gpmc_oen invalid (Single
read) C(5) 0.2 C(5) + 2.0 C(5) 0.2 C(5) + 2.0 ns
FA9 td(aV-csnV) Delay time, output address gpmc_a[27:1] valid
to output chip select gpmc_csn[x](2) valid J(6) 0.2 J(6) + 2.0 J(6) 0.2 J(6) + 2.0 ns
FA10 td(be[x]nV-csnV)
Delay time, output lower-byte enable and
command latch enable gpmc_be0n_cle, output
upper-byte enable gpmc_be1n valid to output
chip select gpmc_csn[x](2) valid J(6) 0.2 J(6) + 2.0 J(6) 0.2 J(6) + 2.0 ns
FA12 td(csnV-advnV) Delay time, output chip select gpmc_csn[x](2)
valid to output address valid and address latch
enable gpmc_advn_ale valid K(7) 0.2 K(7) + 2.0 K(7) 0.2 K(7) + 2.0 ns
FA13 td(csnV-oenV) Delay time, output chip select gpmc_csn[x](2)
valid to output enable gpmc_oen valid L(8) 0.2 L(8) + 2.0 L (8) 0.2 L(8) + 2.0 ns
FA16 tw(aIV) Pulse durationm output address gpmc_a[26:1]
invalid between 2 successive read and write
accesses G(9) G(9) ns
FA18 td(csnV-oenIV) Delay time, output chip select gpmc_csn[x](2)
valid to output enable gpmc_oen invalid (Burst
read) I(10) 0.2 I(10) + 2.0 I(10) 0.2 I(10) + 2.0 ns
FA20 tw(aV) Pulse duration, output address gpmc_a[27:1]
valid 2nd, 3rd, and 4th accesses D(11) D(11) ns
FA25 td(csnV-wenV) Delay time, output chip select gpmc_csn[x](2)
valid to output write enable gpmc_wen valid E(12) 0.2 E(12) + 2.0 E(12) 0.2 E(12) + 2.0 ns
162
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-44. GPMC and NOR Flash Switching Characteristics—Asynchronous Mode (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
FA27 td(csnV-wenIV) Delay time, output chip select gpmc_csn[x](2)
valid to output write enable gpmc_wen invalid F(13) 0.2 F(13) + 2.0 F(13) 0.2 F(13) + 2.0 ns
FA28 td(wenV-dV) Delay time, output write enable gpmc_ wen
valid to output data gpmc_ad[15:0] valid 2.8 5 ns
FA29 td(dV-csnV) Delay time, output data gpmc_ad[15:0] valid to
output chip select gpmc_csn[x](2) valid J(6) 0.2 J(6) + 2.8 J(6) 0.2 J(6) + 2.8 ns
FA37 td(oenV-aIV) Delay time, output enable gpmc_oen valid to
output address gpmc_ad[15:0] phase end 2.8 2.8 ns
(1) For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst read: N = (RdCycleTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst write: N = (WrCycleTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
(2) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
(3) For single read: A = (CSRdOffTime CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For single write: A = (CSWrOffTime CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst read: A = (CSRdOffTime CSOnTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst write: A = (CSWrOffTime CSOnTime + (n 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
with n being the page burst access number
(4) For reading: B = ((ADVRdOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) ×
GPMC_FCLK(14)
For writing: B = ((ADVWrOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) ×
GPMC_FCLK(14)
(5) C = ((OEOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC_FCLK(14)
(6) J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)
(7) K = ((ADVOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay CSExtraDelay)) × GPMC_FCLK(14)
(8) L = ((OEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay)) × GPMC_FCLK(14)
(9) G = Cycle2CycleDelay × GPMC_FCLK(14)
(10) I = ((OEOffTime + (n 1) × PageBurstAccessTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay CSExtraDelay))
× GPMC_FCLK(14)
(11) D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)
(12) E = ((WEOnTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK(14)
(13) F = ((WEOffTime CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay CSExtraDelay)) × GPMC_FCLK(14)
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
GPMC_FCLK(A)
gpmc_clk
gpmc_csn[x](C)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_oen
gpmc_ad[15:0]
gpmc_wait[x](C)
Valid Address
Valid
Valid
Data IN 0 Data IN 0
FA0
FA9
FA10
FA3
FA1
FA4
FA12
FA13
FA0
FA10
FA5(B)
163
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-38. GPMC and NOR Flash—Asynchronous Read—Single Word
GPMC_FCLK(A)
gpmc_clk
gpmc_csn[x](C)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_oen
gpmc_ad[15:0]
gpmc_wait[x](C)
Address 0 Address 1
Valid Valid
Valid Valid
Data Upper
FA9
FA10
FA3
FA9
FA3
FA13 FA13
FA1 FA1
FA4 FA4
FA12 FA12
FA10
FA0 FA0
FA16
FA0 FA0
FA10 FA10
FA5(B) FA5(B)
164
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-39. GPMC and NOR Flash—Asynchronous Read—32-Bit
GPMC_FCLK(A)
gpmc_clk
gpmc_csn[x](D)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_oen
gpmc_ad[15:0]
gpmc_wait[x](D)
Add0 Add1 Add2 Add3
Add4
D0 D1 D2 D3 D3
FA1
FA0
FA18
FA13
FA12
FA0
FA9
FA10
FA10
FA21(B) FA20(C) FA20(C)
FA20(C)
165
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
B. FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in
number of GPMC functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input
page data will be internally sampled by active functional clock edge. FA21 calculation must be stored inside
AccessTime register bits field.
C. FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in
number of GPMC functional clock cycles. After each access to input page data, next input page data will be internally
sampled by active functional clock edge after FA20 functional clock cycles. FA20 is also the duration of address
phases for successive input page data (excluding first input page data). FA20 value must be stored in
PageBurstAccessTime register bits field.
D. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-40. GPMC and NOR Flash—Asynchronous Read—Page Mode 4x16-Bit
gpmc_fclk
gpmc_clk
gpmc_csn[x](A)
gpmc_a[10:1]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_wen
gpmc_ad[15:0]
gpmc_wait[x](A)
Valid Address
Data OUT
FA0
FA1
FA10
FA3
FA25
FA29
FA9
FA12
FA27
FA0
FA10
166
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-41. GPMC and NOR Flash—Asynchronous Write—Single Word
GPMC_FCLK(A)
gpmc_clk
gpmc_csn[x](C)
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_oen
gpmc_wait[x](C)
Address (MSB)
Valid
Valid
Address (LSB) Data IN Data IN
FA0
FA9
FA10
FA3
FA13
FA29
FA1
FA37
FA12
FA4
FA10
FA0
FA5(B)
gpmc_a[27:17]
gpmc_ad[15:0]
167
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
B. FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally
sampled by active functional clock edge. FA5 value must be stored inside AccessTime register bits field.
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-42. GPMC and Multiplexed NOR Flash—Asynchronous Read—Single Word
gpmc_fclk
gpmc_clk
gpmc_csn[x](A)
gpmc_a[27:17]
gpmc_be0n_cle
gpmc_be1n
gpmc_advn_ale
gpmc_wen
gpmc_ad[15:0]
gpmc_wait[x](A)
Address (MSB)
Valid Address (LSB) Data OUT
FA0
FA1
FA9
FA10
FA3
FA25
FA29
FA12
FA27
FA28
FA0
FA10
168
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-43. GPMC and Multiplexed NOR Flash—Asynchronous Write—Single Word
169
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.1.3 GPMC and NAND Flash—Asynchronous Mode
Table 5-46 and Table 5-47 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-44 through Figure 5-47).
Table 5-45. GPMC and NAND Flash Timing Conditions—Asynchronous Mode
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
tRInput signal rise time 0.3 1.8 ns
tFInput signal fall time 0.3 1.8 ns
Output Condition
CLOAD Output load capacitance 3 30 pF
Table 5-46. GPMC and NAND Flash Internal Timing Parameters—Asynchronous Mode(1)(2)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
GNFI1 Delay time, output data gpmc_ad[15:0] generation from internal
functional clock GPMC_FCLK(3) 6.5 6.5 ns
GNFI2 Delay time, input data gpmc_ad[15:0] capture from internal functional
clock GPMC_FCLK(3) 4.0 4.0 ns
GNFI3 Delay time, output chip select gpmc_csn[x] generation from internal
functional clock GPMC_FCLK(3) 6.5 6.5 ns
GNFI4 Delay time, output address valid and address latch enable
gpmc_advn_ale generation from internal functional clock
GPMC_FCLK(3)
6.5 6.5 ns
GNFI5 Delay time, output lower-byte enable and command latch enable
gpmc_be0n_cle generation from internal functional clock
GPMC_FCLK(3)
6.5 6.5 ns
GNFI6 Delay time, output enable gpmc_oen generation from internal functional
clock GPMC_FCLK(3) 6.5 6.5 ns
GNFI7 Delay time, output write enable gpmc_wen generation from internal
functional clock GPMC_FCLK(3) 6.5 6.5 ns
GNFI8 Skew, functional clock GPMC_FCLK(3) 100 100 ps
(1) Internal parameters table must be used to calculate data access time stored in the corresponding CS register bit field.
(2) Internal parameters are referred to the GPMC functional internal clock which is not provided externally.
(3) GPMC_FCLK is general-purpose memory controller internal functional clock.
Table 5-47. GPMC and NAND Flash Timing Requirements—Asynchronous Mode
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
GNF12(1) tacc(d) Access time, input data gpmc_ad[15:0] J(2) J(2) ns
(1) The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
(2) J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)
(3) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
170
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-48. GPMC and NAND Flash Switching Characteristics—Asynchronous Mode
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tR(d) Rise time, output data gpmc_ad[15:0] 2 2 ns
tF(d) Fall time, output data gpmc_ad[15:0] 2 2 ns
GNF0 tw(wenV) Pulse duration, output write enable gpmc_wen
valid A(1) A(1) ns
GNF1 td(csnV-wenV) Delay time, output chip select gpmc_csn[x](2)
valid to output write enable gpmc_wen valid B(3) - 0.2 B(3) + 2.0 B(3) - 0.2 B(3) + 2.0 ns
GNF2 tw(cleH-wenV) Delay time, output lower-byte enable and
command latch enable gpmc_be0n_cle high to
output write enable gpmc_wen valid
C(4) - 0.2 C(4) + 2.0 C(4) - 0.2 C(4) + 2.0 ns
GNF3 tw(wenV-dV) Delay time, output data gpmc_ad[15:0] valid to
output write enable gpmc_wen valid D(5) - 0.2 D(5) + 2.8 D(5) - 0.2 D(5) + 2.0 ns
GNF4 tw(wenIV-dIV) Delay time, output write enable gpmc_wen
invalid to output data gpmc_ad[15:0] invalid E(6) - 0.2 E(6) + 2.8 E(6) - 0.2 E(6) + 2.0 ns
GNF5 tw(wenIV-cleIV) Delay time, output write enable gpmc_wen
invalid to output lower-byte enable and command
latch enable gpmc_be0n_cle invalid
F(7) - 0.2 F(7) + 2.0 F(7) - 0.2 F(7) + 2.0 ns
GNF6 tw(wenIV-csnIV) Delay time, output write enable gpmc_wen
invalid to output chip select gpmc_csn[x](2)
invalid
G(8) - 0.2 G(8) + 2.0 G(8) - 0.2 G(8) + 2.0 ns
GNF7 tw(aleH-wenV) Delay time, output address valid and address
latch enable gpmc_advn_ale high to output write
enable gpmc_wen valid
C(4) - 0.2 C(4) + 2.0 C(4) - 0.2 C(4) + 2.0 ns
GNF8 tw(wenIV-aleIV) Delay time, output write enable gpmc_wen
invalid to output address valid and address latch
enable gpmc_advn_ale invalid
F(7) - 0.2 F(7) + 2.0 F(7) - 0.2 F(7) + 2.0 ns
GNF9 tc(wen) Cycle time, write H(9) H(9) ns
GNF10 td(csnV-oenV) Delay time, output chip select gpmc_csn[x](2)
valid to output enable gpmc_oen valid I(10) - 0.2 I(10) + 2.0 I(10) - 0.2 I(10) + 2.0 ns
GNF13 tw(oenV) Pulse duration, output enable gpmc_oen valid K(11) K(11) ns
GNF14 tc(oen) Cycle time, read L(12) L(12) ns
GNF15 tw(oenIV-csnIV) Delay time, output enable gpmc_oen invalid to
output chip select gpmc_csn[x](2) invalid M(13) - 0.2 M(13) + 2.0 M(13) - 0.2 M(13) + 2.0 ns
(1) A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
(2) In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
(3) B = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
(4) C = ((WEOnTime - ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - ADVExtraDelay)) × GPMC_FCLK(14)
(5) D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK(14)
(6) E = ((WrCycleTime - WEOffTime) × (TimeParaGranularity + 1) - 0.5 × WEExtraDelay) × GPMC_FCLK(14)
(7) F = ((ADVWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)
(8) G = ((CSWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)
(9) H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)
(10) I = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
(11) K = (OEOffTime - OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK(14)
(12) L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)
(13) M = ((CSRdOffTime - OEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - OEExtraDelay)) × GPMC_FCLK(14)
(14) GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
GPMC_FCLK
gpmc_csn[x](A)
gpmc_be0n_cle
gpmc_advn_ale
gpmc_oen
gpmc_wen
gpmc_ad[15:0]
Address
GNF0
GNF1
GNF7
GNF3 GNF4
GNF6
GNF8
GNF9
GPMC_FCLK
gpmc_csn[x](A)
gpmc_be0n_cle
gpmc_advn_ale
gpmc_oen
gpmc_wen
gpmc_ad[15:0] Command
GNF0
GNF1
GNF2
GNF3 GNF4
GNF5
GNF6
171
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
Figure 5-44. GPMC and NAND Flash—Command Latch Cycle
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
Figure 5-45. GPMC and NAND Flash—Address Latch Cycle
GPMC_FCLK
gpmc_csn[x](A)
gpmc_be0n_cle
gpmc_advn_ale
gpmc_oen
gpmc_wen
DATA
GNF0
GNF1
GNF4
GNF9
GNF3
GNF6
gpmc_ad[15:0]
GPMC_FCLK(A)
gpmc_csn[x](C)
gpmc_be0n_cle
gpmc_advn_ale
gpmc_oen
gpmc_wait[x](C)
DATA
GNF10
GNF14
GNF15
GNF12(B)
GNF13
gpmc_ad[15:0]
172
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
B. GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of
GPMC functional clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be
internally sampled by active functional clock edge. GNF12 value must be stored inside AccessTime register bits field.
C. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6. In gpmc_wait[x], x is equal to 0 or 1.
Figure 5-46. GPMC and NAND Flash—Data Read Cycle
A. In gpmc_csn[x], x is equal to 0, 1, 2, 3, 4, 5, or 6.
Figure 5-47. GPMC and NAND Flash—Data Write Cycle
DDR_CK
1
DDR_CKn
173
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2 Memory Interface
The device has a dedicated interface to LPDDR2, DDR3, and DDR3L SDRAM. It supports JEDEC
standard compliant LPDDR2, DDR3, and DDR3L SDRAM devices with a 16- or 32-bit data path to
external SDRAM memory.
For more details on the LPDDR2, DDR3, and DDR3L memory interface, see the EMIF section of the
AM437x Sitara Processors Technical Reference Manual.
5.13.8.2.1 DDR3 and DDR3L Routing Guidelines
This section provides the timing specification for the DDR3 and DDR3L interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable DDR3 or DDR3L
memory system without the need for a complex timing closure process. For more information regarding
the guidelines, see Understanding TI’s PCB Routing Rule-Based DDR Timing Specification. This
application report provides generic guidelines and approach. All the specifications provided in the data
manual take precedence over the generic guidelines and must be adhered to for a reliable DDR3 or
DDR3L interface operation.
NOTE
All references to DDR3 in this section apply to DDR3 and DDR3L devices, unless otherwise
noted.
5.13.8.2.1.1 Board Designs
TI only supports board designs using DDR3 memory that follow the guidelines in this document. The
switching characteristics and timing diagram for the DDR3 memory interface are shown in Table 5-49 and
Figure 5-48.
Table 5-49. Switching Characteristics for DDR3 Memory Interface
NO. PARAMETER MIN MAX UNIT
1tc(DDR_CK)
tc(DDR_CKn) Cycle time, DDR_CK and DDR_CKn 2.5 3.3(1) ns
(1) The JEDEC JESD79-3F Standard defines the maximum clock period of 3.3 ns for all standard-speed bin DDR3 and DDR3L memory
devices. Therefore, all standard-speed bin DDR3 and DDR3L memory devices are required to operate at 303 MHz.
Figure 5-48. DDR3 Memory Interface Clock Timing
174
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) DDR3 devices are mirrored when half of the devices are placed on the top of the board and the other half are placed on the bottom of
the board.
5.13.8.2.1.2 DDR3 Device Combinations
Because there are several possible combinations of device counts and single-side or dual-side mounting,
Table 5-50 summarizes the supported device configurations.
Table 5-50. Supported DDR3 Device Combinations
NUMBER OF DDR3 DEVICES DDR3 DEVICE WIDTH (BITS) MIRRORED? DDR3 EMIF WIDTH (BITS)
1 16 N 16
2 8 Y(1) 16
2 16 Y(1) 32
4 8 Y(1) 32
5.13.8.2.1.3 DDR3 Interface
5.13.8.2.1.3.1 DDR3 Interface Schematic
The DDR3 interface schematic varies, depending upon the width of the DDR3 devices used.
Figure 5-49 shows the schematic connections for 16-bit interface using one x16 DDR3 device. Figure 5-50
shows the schematic connections for 16-bit interface without using VTT termination for the ADDR_CTRL
net class signals. Figure 5-51 shows the schematic connections for 16-bit interface using two x8 DDR3
devices.
Figure 5-52 shows the schematic connections for 32-bit interface using two x16 DDR3 device and
Figure 5-53 shows the schematic connections for 32-bit interface using four x8 DDR3 devices.
When not using all or part of a DDR3 interface, the proper method of handling the unused pins is to tie off
the DDR_DQS[x] pins to the VDDS_DDR supply via a 1-kΩresistor and pulling the DDR_DQSn[x] pins to
ground via a 1k-Ωresistor. This must be done for each byte not used. Although these signals have
internal pullup and pulldown, external pullup and pulldown provide additional protection against external
electrical noise causing activity on the signals. Also, include the 49.9-Ωpulldown for DDR_VTP. The
VDDS_DDR and DDR_VREF power supply terminals need to be connected to their respective power
supplies even if the DDR3 interface is not being used. All other DDR3 interface pins can be left
unconnected. The supported modes for use of the DDR3 EMIF are 32 bits wide, 16 bits wide, or not used.
The device can only source one load connected to the DQS[x] and DQ[x] net class signals and up to four
loads connected to the CK and ADDR_CTRL net class signals. For more information related to net
classes, see Section 5.13.8.2.1.3.9.
DQU7
DQU0
DMU
DQSU
DQSUn
DQL7
DQL0
DML
DQSL
DQSLn
CKn
16-Bit DDR3
Device
0.1 µF
49.9
1 , 20 mW
Ω
% )
0.1 µF 0.1 µF
16-Bit DDR3
Interface
DDR_D15
DDR_D8
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQM0
DDR_DQS0
DDR_DQSn0
DDR_CK
DDR_CKn
DDR_ODT0
DDR_CSn0
DDR_BA0
DDR_BA1
DDR_BA2
DDR_A0
DDR_A15
DDR_CASn
DDR_RASn
DDR_WEn
DDR_CKE0
DDR_RESETn
DDR_VREF
DDR_VTP
8
8
16
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RESETn
CKE
ZQ
VREFDQ
VREFCA
ZQ
Zo
Zo
Zo
Zo
DDR_VREF
DDR_VTT
VDDS_DDR
Termination is required. See terminator comments.
Zo
Value determined according to the DDR3 memory device data sheet.
ZQ
0.1 µF
Copyright © 2016, Texas Instruments Incorporated
175
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-49. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device With VTT Termination
DQU7
DQU0
DMU
DQSU
DQSUn
DQL7
DQL0
DML
DQSL
DQSLn
CKn
16-Bit DDR3
Device
0.1 µF
49.9
1 , 20 mW
Ω
% )
0.1 µF
16-Bit DDR3
Interface
DDR_D15
DDR_D8
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQM0
DDR_DQS0
DDR_DQSn0
DDR_CK
DDR_CKn
DDR_ODT0
DDR_CSn0
DDR_BA0
DDR_BA1
DDR_BA2
DDR_A0
DDR_A15
DDR_CASn
DDR_RASn
DDR_WEn
DDR_CKE0
DDR_RESETn
DDR_VREF
DDR_VTP
8
8
16
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RESETn
CKE
ZQ
VREFDQ
VREFCA
ZQ
Value determined according to the DDR3 memory device data sheet.
ZQ
1 K Ω 1%
VDDS_DDR(A)
0.1 µF
0.1 µF 1 K Ω 1%
DDR_VREF
Copyright © 2016, Texas Instruments Incorporated
176
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
A. VDDS_DDR is the power supply for the DDR3 memories and the DDR3 interface.
Figure 5-50. 16-Bit DDR3 Interface Using One 16-Bit DDR3 Device Without VTT Termination
DQ7
DQ0
DQS
DQSn
DQ7
DQ0
DQS
DQSn
CKn
8-Bit DDR3
Devices
0.1 µF
49.9
1 , 20 mW
Ω
% )
0.1 µF 0.1 µF
16-Bit DDR3
Interface
DDR_D15
DDR_D8
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQS0
DDR_DQSn0
DDR_CK
DDR_CKn
DDR_ODT0
DDR_CSn0
DDR_BA0
DDR_BA1
DDR_BA2
DDR_A0
DDR_A15
DDR_CASn
DDR_RASn
DDR_WEn
DDR_CKE0
DDR_RESETn
DDR_VREF
DDR_VTP
8
8
16
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RESETn
CKE
ZQ
VREFDQ
VREFCA
ZQ
CKn
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RESETn
CKE
ZQ
VREFDQ
VREFCA
Termination is required. See terminator comments.
Zo
Value determined according to the DDR3 memory device data sheet.
ZQ
0.1 µF
ZQ
Zo
Zo
Zo
Zo
DDR_VREF
DDR_VTT
VDDS_DDR
TDQSn
NC
NC TDQSn
0.1 µF
DM/TDQS
DDR_DQM1
DM/TDQS
DDR_DQM0
Copyright © 2016, Texas Instruments Incorporated
177
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-51. 16-Bit DDR3 Interface Using Two 8-Bit DDR3 Devices With VTT Termination
DQU7
DQU0
DMU
DQSU
DQSUn
DQL7
DQL0
DML
DQSL
DQSLn
CKn
DQU7
DMU
DQSU
DQSUn
DDR_D31
DDR_D24
16-Bit DDR3
Devices
0.1 µF
49.9 1 20mWΩ % )
0.1 µF 0.1 µF
32-bit DDR3 EMIF
DDR_ODT1
DDR_CSn1
DDR_DQM3
DDR_DQS3
DDR_DQSn3
DDR_D23
DDR_D16
DDR_DQM2
DDR_DQS2
DDR_DQSn2
DDR_D15
DDR_D8
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQM0
DDR_DQS0
DDR_DQSn0
DDR_CLK
DDR_CLKn
DDR_ODT0
DDR_CSn0
DDR_BA0
DDR_BA1
DDR_BA2
DDR_A0
DDR_A15
DDR_CASn
DDR_RASn
DDR_WEn
DDR_CKE0
DDR_RESETn
DDR_VREF
DDR_VTP
NC
NC
8
8
8
8
16
DQU0
DQL7
DQL0
DML
DQSL
DQSLn
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RSTn
CKE
ZQ
VREFDQ
VREFCA
ZQ
CKn
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RSTn
CKE
ZQ
VREFDQ
VREFCA
ZQ
Zo
Zo
Zo
Zo
DDR_VREF
DDR_VTT
VDDS_DDR
Termination is required. See terminator comments.
Zo
Value determined according to the DDR memory device data sheet.
ZQ
0.1 µF
DDR_CKE1 NC
Copyright © 2016, Texas Instruments Incorporated
178
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-52. 32-Bit DDR3 Interface Using Two 16-Bit DDR3 Devices With VTT Termination
DQ7
DQ0
DM/TQS
DQS
DQSn
DQ7
DQ0
DM/TQS
DQS
DQSn
CKn
DDR_D31
DDR_D24
8-Bit DDR3
Devices
0.1 µF
49.9 1 20mWΩ % )
0.1 µF 0.1 µF
32-bit DDR3 EMIF
DDR_ODT1
DDR_CSn1
DDR_DQM3
DDR_DQS3
DDR_DQSn3
DDR_D23
DDR_D16
DDR_DQM2
DDR_DQS2
DDR_DQSn2
DDR_D15
DDR_D8
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQM0
DDR_DQS0
DDR_DQSn0
DDR_CLK
DDR_CLKn
DDR_ODT0
DDR_CSn0
DDR_BA0
DDR_BA1
DDR_BA2
DDR_A0
DDR_A15
DDR_CASn
DDR_RASn
DDR_WEn
DDR_CKE0
DDR_RESETn
DDR_VREF
DDR_VTP
NC
NC
8
8
8
8
16
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RSTn
CKE
ZQ
VREFDQ
VREFCA
ZQ
CKn
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RSTn
CKE
ZQ
VREFDQ
VREFCA
Termination is required. See terminator comments.
Zo
Value determined according to the DDR memory device data sheet.
ZQ
DQ7
DQ0
DM/TQS
DQS
DQSn
CKn
DQ7
DM/TQS
DQS
DQSn
8-Bit DDR3
Devices
0.1 µF 0.1 µF
DQ0
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RSTn
CKE
ZQ
VREFDQ
VREFCA
CKn
CK
ODT
BA1
BA0
BA2
CSn
A0
A15
CASn
RASn
WEn
RSTn
CKE
ZQ
VREFDQ
VREFCA
ZQ
Zo
Zo
Zo
Zo
DDR_VREF
DDR_VTT
VDDS_DDR
ZQ ZQ
TDQSn
NC
NC TDQSn
TDQSn
NC
TDQSn
NC
0.1 µF
DDR_CKE1 NC
Copyright © 2016, Texas Instruments Incorporated
179
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-53. 32-Bit DDR3 Interface Using Four 8-Bit DDR3 Devices With VTT Termination
180
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.3.2 Compatible JEDEC DDR3 Devices
Table 5-51 shows the parameters of the JEDEC DDR3 devices that are compatible with this interface.
Table 5-51. Compatible JEDEC DDR3 Devices (Per Interface)
NO. PARAMETER CONDITION MIN MAX UNIT
1 JEDEC DDR3 device speed grade tC(DDR_CK) and
tC(DDR_CKn) = 2.5ns DDR3-1600
2 JEDEC DDR3 device bit width x8 x32
3 JEDEC DDR3 device count(1) 1 4 Devices
(1) For valid DDR3 device configurations and device counts, see Section 5.13.8.2.1.3.1,Figure 5-49, and Figure 5-51.
5.13.8.2.1.3.3 DDR3 PCB Stackup
The minimum stackup for routing the DDR3 interface is a four-layer stack up as shown in Table 5-52.
Additional layers may be added to the PCB stackup to accommodate other circuitry, enhance signal
integrity and electromagnetic interference performance, or to reduce the size of the PCB footprint.
Table 5-52. Minimum PCB Stackup(1)
LAYER TYPE DESCRIPTION
1 Signal Top signal routing
2 Plane Ground
3 Plane Split Power Plane
4 Signal Bottom signal routing
(1) All signals that have critical signal integrity requirements should be routed first on layer 1. It may not be possible to route all of these
signals on layer 1 which requires some to be routed on layer 4. When this is done, the signal routes on layer 4 should not cross splits in
the power plane.
Table 5-53. PCB Stackup Specifications(1)
NO. PARAMETER MIN TYP MAX UNIT
1 PCB routing and plane layers 4
2 Signal routing layers 2
3 Full ground reference layers under DDR3 routing region(2) 1
4 Full VDDS_DDR power reference layers under the DDR3 routing region(2) 1
5 Number of reference plane cuts allowed within DDR3 routing region(3) 0
6 Number of layers between DDR3 routing layer and reference plane(4) 0
7 PCB routing feature size 4 mils
8 PCB trace width, w 4 mils
9 PCB BGA escape via pad size(5) 18 20 mils
10 PCB BGA escape via hole size 10 mils
13 Single-ended impedance, Zo(6) 50 75 Ω
14 Impedance control(7)(8) Zo-5 Zo Zo+5 Ω
(1) For the DDR3 device BGA pad size, see the DDR3 device manufacturer documentation.
(2) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer
return current as the trace routes switch routing layers.
(3) No traces should cross reference plane cuts within the DDR3 routing region. High-speed signal traces crossing reference plane cuts
create large return current paths which can lead to excessive crosstalk and EMI radiation.
(4) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.
(5) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available
for power routing. An 18-mil pad is required for minimum layer count escape.
(6) Zo is the nominal singled-ended impedance selected for the PCB.
(7) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo
defined by the single-ended impedance parameter.
(8) Tighter impedance control is required to ensure flight time skew is minimal.
DDR3
Controller
Y
X1
X2 X2 X2
181
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.3.4 DDR3 Placement
Figure 5-54 shows the required placement for the device as well as the DDR3 devices. The dimensions
for this figure are defined in Table 5-54. The placement does not restrict the side of the PCB on which the
devices are mounted. The ultimate purpose of the placement is to limit the maximum trace lengths and
allow for proper routing space.
Figure 5-54. Placement Specifications
Table 5-54. Placement Specifications(1)
NO. PARAMETER MIN MAX UNIT
1 X1(2)(3)(4) 1000 mils
2 X2(2)(3) 600 mils
3 Y Offset(2)(3)(4) 1500 mils
4 Clearance from non-DDR3 signal to DDR3 keepout region(5)(6) 4 w
(1) DDR3 keepout region to encompass entire DDR3 routing area.
(2) For dimension definitions, see Figure 5-54.
(3) Measurements from center of device to center of DDR3 device.
(4) Minimizing X1 and Y improves timing margins.
(5) w is defined as the signal trace width.
(6) Non-DDR3 signals allowed within DDR3 keepout region provided they are separated from DDR3 routing layers by a ground plane.
DDR3 Keepout Region
Encompasses Entire DDR3 Routing Area
DDR3 Controller
182
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.3.5 DDR3 Keepout Region
The region of the PCB used for DDR3 circuitry must be isolated from other signals. The DDR3 keepout
region is defined for this purpose and is shown in Figure 5-55. This region should encompass all DDR3
circuitry and the region size varies with component placement and DDR3 routing. Additional clearances
required for the keepout region are shown in Table 5-54. Non-DDR3 signals should not be routed on the
same signal layer as DDR3 signals within the DDR3 keepout region. Non-DDR3 signals may be routed in
the region provided they are routed on layers separated from DDR3 signal layers by a ground layer. No
breaks should be allowed in the reference ground or VDDS_DDR power plane in this region. In addition,
the VDDS_DDR power plane should cover the entire keepout region.
Figure 5-55. DDR3 Keepout Region
5.13.8.2.1.3.6 DDR3 Bulk Bypass Capacitors
Bulk bypass capacitors are required for moderate speed bypassing of the DDR3 and other circuitry.
Table 5-55 contains the minimum numbers and capacitance required for the bulk bypass capacitors. Note
that this table only covers the bypass needs of the DDR3 interface and DDR3 devices. Additional bulk
bypass capacitance may be needed for other circuitry.
Table 5-55. Bulk Bypass Capacitors(1)
NO. PARAMETER MIN MAX UNIT
1 VDDS_DDR bulk bypass capacitor count 2 Devices
2 VDDS_DDR bulk bypass total capacitance 20 μF
3 DDR3#1 bulk bypass capacitor count 2 Devices
4 DDR3#1 bulk bypass total capacitance 20 μF
5 DDR3#2 bulk bypass capacitor count(2) 2 Devices
6 DDR3#2 bulk bypass total capacitance(2) 20 μF
7 DDR3#3 bulk bypass capacitor count(3) 2 Devices
8 DDR3#3 bulk bypass total capacitance(3) 20 μF
9 DDR3#4bulk bypass capacitor count(3) 2 Devices
10 DDR3#4 bulk bypass total capacitance(3) 20 μF
(1) These devices should be placed near the devices they are bypassing, but preference should be given to the placement of the high-
speed (HS) bypass capacitors and DDR3 signal routing.
(2) Only used when two DDR3 devices are used.
(3) Only used when four DDR3 devices are used.
183
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.3.7 DDR3 High-Speed Bypass Capacitors
High-speed (HS) bypass capacitors are critical for proper DDR3 interface operation. It is particularly
important to minimize the parasitic series inductance of the HS bypass capacitors, device DDR3 power,
and device DDR3 ground connections. Table 5-56 contains the specification for the HS bypass capacitors
as well as for the power connections on the PCB. Generally speaking, it is good to:
1. Fit as many HS bypass capacitors as possible.
2. Minimize the distance from the bypass cap to the power terminals being bypassed.
3. Use the smallest physical sized capacitors possible with the highest capacitance readily available.
4. Connect the bypass capacitor pads to their vias using the widest traces possible and using the largest
hole size via possible.
5. Minimize via sharing. Note the limites on via sharing shown in Table 5-56.
Table 5-56. High-Speed Bypass Capacitors
NO. PARAMETER MIN TYP MAX UNIT
1 HS bypass capacitor package size(1) 0201 0402 10 mils
2 Distance, HS bypass capacitor to VDDS_DDR and VSS terminal being
bypassed(2)(3)(4) 400 mils
3 VDDS_DDR HS bypass capacitor count 20 Devices
4 VDDS_DDR HS bypass capacitor total capacitance 1 μF
5 Trace length from VDDS_DDR and VSS terminal to connection via(2) 35 70 mils
6 Distance, HS bypass capacitor to DDR3 device being bypassed(5) 150 mils
7 DDR3 device HS bypass capacitor count(6) 12 Devices
8 DDR3 device HS bypass capacitor total capacitance(6) 0.85 μF
9 Number of connection vias for each HS bypass capacitor(7)(8) 2 Vias
10 Trace length from bypass capacitor connect to connection via(2)(8) 35 100 mils
11 Number of connection vias for each DDR3 device power and ground
terminal(9) 1 Vias
12 Trace length from DDR3 device power and ground terminal to connection
via(2)(7) 35 60 mils
(1) LxW, 10-mil units; for example, a 0402 is a 40x20-mil surface-mount capacitor.
(2) Closer and shorter is better.
(3) Measured from the nearest VDDS_DDR and ground terminal to the center of the capacitor package.
(4) Three of these capacitors should be underneath the device, between the cluster of VDDS_DDR and ground terminals, between the
DDR3 interfaces on the package.
(5) Measured from the DDR3 device power and ground terminal to the center of the capacitor package.
(6) Per DDR3 device.
(7) An additional HS bypass capacitor can share the connection vias only if it is mounted on the opposite side of the board. No sharing of
vias is permitted on the same side of the board.
(8) An HS bypass capacitor may share a via with a DDR3 device mounted on the same side of the PCB. A wide trace should be used for
the connection and the length from the capacitor pad to the DDR3 device pad should be less than 150 mils.
(9) Up to two pairs of DDR3 power and ground terminals may share a via.
5.13.8.2.1.3.8 Return Current Bypass Capacitors
Use additional bypass capacitors if the return current reference plane changes due to DDR3 signals
hopping from one signal layer to another. The bypass capacitor here provides a path for the return current
to hop planes along with the signal. As many of these return current bypass capacitors should be used as
possible. Because these are returns for signal current, the signal via size may be used for these
capacitors.
184
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.3.9 DDR3 Net Classes
Table 5-57 lists the clock net classes for the DDR3 interface. Table 5-58 lists the signal net classes, and
associated clock net classes, for signals in the DDR3 interface. These net classes are used for the
termination and routing rules that follow.
Table 5-57. Clock Net Class Definitions
CLOCK NET CLASS PIN NAMES
CK DDR_CK and DDR_CKn
DQS0 DDR_DQS0 and DDR_DQSn0
DQS1 DDR_DQS1 and DDR_DQSn1
DQS2 DDR_DQS2 and DDR_DQSn2
DQS3 DDR_DQS3 and DDR_DQSn3
Table 5-58. Signal Net Class Definitions
SIGNAL NET CLASS ASSOCIATED CLOCK
NET CLASS PIN NAMES
ADDR_CTRL CK DDR_BA[2:0], DDR_A[15:0], DDR_CSn0, DDR_CSn1, DDR_CASn,
DDR_RASn, DDR_WEn, DDR_CKE0, DDR_CKE1, DDR_ODT0,
DDR_ODT1
DQ0 DQS0 DDR_D[7:0], DDR_DQM0
DQ1 DQS1 DDR_D[15:8], DDR_DQM1
DQ2 DQS2 DDR_D[23:16], DDR_DQM2
DQ3 DQS3 DDR_D[31:24], DDR_DQM3
5.13.8.2.1.3.10 DDR3 Signal Termination
Signal terminations are required for the CK and ADDR_CTRL net class signals. On-device terminations
(ODTs) are required on the DQS[x] and DQ[x] net class signals. Detailed termination specifications are
covered in the routing rules in the following sections.
Figure 5-50 provides an example DDR3 schematic with one 16-bit DDR3 memory device that does not
have VTT termination on the address and control signals. A typical DDR3 point-to-point topology may
provide acceptable signal integrity without VTT termination. System performance should be verified by
performing signal integrity analysis using specific PCB design details before implementing this topology.
5.13.8.2.1.3.11 DDR3 DDR_VREF Routing
DDR_VREF is used as a reference by the input buffers of the DDR3 memories as well as the device.
DDR_VREF is intended to be half the DDR3 power supply voltage and is typically generated with a
voltage divider connected to the VDDS_DDR power supply. It should be routed as a nominal 20-mil wide
trace with 0.1 µF bypass capacitors near each device connection. Narrowing of DDR_VREF is allowed to
accommodate routing congestion.
5.13.8.2.1.3.12 DDR3 VTT
Like DDR_VREF, the nominal value of the VTT supply is half the DDR3 supply voltage. Unlike
DDR_VREF, VTT is expected to source and sink current, specifically the termination current for the
ADDR_CTRL net class Thevinen terminators. VTT is needed at the end of the address bus and it should
be routed as a power subplane. VTT should be bypassed near the terminator resistors.
A1 A2
Device
Address and Control
Output Buffer
DDR3 Address and Control Input Buffers
A3 AT Vtt
Address and Control
Terminator
Rtt
AS
AS
AS-
AS+
A1 A2
Device
Differential Clock
Output Buffer
DDR3 Differential CK Input Buffers
Routed as Differential Pair
A3 AT
Rcp
Clock Parallel
Terminator
A1 A2 A3 AT
AS-
AS+
Rcp
Cac
VDDS_DDR
0.1 µF
+
++
185
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.4 DDR3 CK and ADDR_CTRL Topologies and Routing Definition
The CK and ADDR_CTRL net classes are routed similarly and are length matched to minimize skew
between them. CK is a bit more complicated because it runs at a higher transition rate and is differential.
The following subsections show the topology and routing for various DDR3 configurations for CK and
ADDR_CTRL. The figures in the following subsections define the terms for the routing specification
detailed in Table 5-59.
5.13.8.2.1.4.1 Using Two DDR3 Devices (x8 or x16)
Two DDR3 devices are supported on the DDR3 interface consisting of two x8 DDR3 devices arranged as
one 16-bit bank or two x16 DDR3 devices arranged as one 32-bit bank. These two devices may be
mounted on one side of the PCB, or may be mirrored in a pair to save board space at a cost of increased
routing complexity and parts on the backside of the PCB.
5.13.8.2.1.4.2 CK and ADDR_CTRL Topologies, Two DDR3 Devices
Figure 5-56 shows the topology of the CK net classes and Figure 5-57 shows the topology for the
corresponding ADDR_CTRL net classes.
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-56. CK Topology for Two DDR3 Devices
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-57. ADDR_CTRL Topology for Two DDR3 Devices
AS
=
Rtt
A1
A2 A3 AT Vtt
AS+
AS-
=
Rcp
Rcp
Cac
VDDS_DDR
0.1 µF
A1
A2 A3 AT
A2 A3 AT
A1
186
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.4.3 CK and ADDR_CTRL Routing, Two DDR3 Devices
Figure 5-58 shows the CK routing for two DDR3 devices placed on the same side of the PCB. Figure 5-59
shows the corresponding ADDR_CTRL routing.
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-58. CK Routing for Two Single-Side DDR3 Devices
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-59. ADDR_CTRL Routing for Two Single-Side DDR3 Devices
AS
=
Rtt
A1
A2 A3 AT Vtt
AS+
AS-
=
Rcp
Rcp
Cac
VDDS_DDR
0.1 µF
A1
A2 A3 AT
A2 A3 AT
A1
187
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
To save PCB space, the two DDR3 memories may be mounted as a mirrored pair at a cost of increased
routing and assembly complexity. Figure 5-60 and Figure 5-61 show the routing for CK and ADDR_CTRL,
respectively, for two DDR3 devices mirrored in a single-pair configuration.
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-60. CK Routing for Two Mirrored DDR3 Devices
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-61. ADDR_CTRL Routing for Two Mirrored DDR3 Devices
A1 A2
Device
Address and Control
Output Buffer
DDR Address and Control Input Buffers
A3 A4 A3 AT Vtt
Address and Control
Terminator
Rtt
AS
AS
AS
AS
AS-
AS+
AS-
AS+
AS-
AS+
A1 A2
Device
Differential Clock
Output Buffer
DDR Differential CK Input Buffers
Routed as Differential Pair
A3 A4 A3 AT
Rcp
Clock Parallel
Terminator
A1 A2 A3 A4 A3 AT
AS-
AS+
Rcp
Cac
VDDS_DDR
0.1 µF
+
++++
188
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.4.4 Using Four 8-Bit DDR3 Devices
Two DDR3 devices are supported on the DDR3 interface consisting of four x8 DDR3 devices arranged as
one 32-bit bank. These four devices may be mounted on one side of the PCB, or may be mirrored in pairs
to save board space at a cost of increased routing complexity and parts on the backside of the PCB.
5.13.8.2.1.4.5 CK and ADDR_CTRL Topologies, Four DDR3 Devices
Figure 5-62 shows the topology of the CK net classes and Figure 5-63 shows the topology for the
corresponding ADDR_CTRL net classes.
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-62. CK Topology for Four DDR3 Devices
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-63. ADDR_CTRL Topology for Four DDR3 Devices
5.13.8.2.1.4.6 CK and ADDR_CTRL Routing, Four DDR3 Devices
Figure 5-64 shows the CK routing for four DDR3 devices placed on the same side of the PCB. Figure 5-65
shows the corresponding ADDR_CTRL routing.
AS
=
Rtt
A1
A2 A3 A4 A3 AT Vtt
AS+
AS-
=
Rcp
Rcp
Cac
VDDS_DDR
0.1 µF
A1
A2 A3 A4 A3
A2 A3 A4 A3
A1
AT
AT
189
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-64. CK Routing for Four Single-Side DDR3 Devices
NOTE: For routing definitions, see Table 5-59,CK and ADDR_CTRL Routing Specification.
Figure 5-65. ADDR_CTRL Routing for Four Single-Side DDR3 Devices
AS
=
Rtt
A1
A2 A3 A4 AT Vtt
A3
AS+
AS-
=
Rcp
Rcp
Cac
VDDS_DDR
0.1 µF
A1
A2 A3 A4
A2 A3 A4
A1
AT
AT
A3
A3
190
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
To save PCB space, the four DDR3 memories may be mounted as a mirrored pair at a cost of increased
routing and assembly complexity. Figure 5-66 and Figure 5-67 show the routing for CK and ADDR_CTRL,
respectively, for four DDR3 devices mirrored in a single-pair configuration.
Figure 5-66. CK Routing for Four Mirrored DDR3 Devices
Figure 5-67. ADDR_CTRL Routing for Four Mirrored DDR3 Devices
A1 A2
Device
Address and Control
Output Buffer
DDR3 Address and Control Input Buffers
AT Vtt
Address and Control
Terminator
Rtt
AS
A1 A2
Device
Differential Clock
Output Buffer
DDR3 Differential CK Input Buffer
Routed as Differential Pair
AT
Rcp
Clock Parallel
Terminator
A1 A2 AT
AS-
AS+
Rcp
Cac
VDDS_DDR
0.1 µF
+
+
191
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.4.7 One 16-Bit DDR3 Device
One DDR3 device is supported on the DDR3 interface consisting of one x16 DDR3 device arranged as
one 16-bit bank.
5.13.8.2.1.4.8 CK and ADDR_CTRL Topologies, One DDR3 Device
Figure 5-68 shows the topology of the CK net classes and Figure 5-69 shows the topology for the
corresponding ADDR_CTRL net classes.
Figure 5-68. CK Topology for One DDR3 Device
Figure 5-69. ADDR_CTRL Topology for One DDR3 Device
AS
=
Rtt
A1
A2 AT Vtt
AS+
AS-
=
Rcp
Rcp
Cac
VDDS_DDR
0.1 µF
A1
A2 AT
A2 AT
A1
192
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.4.9 CK and ADDR_CTRL Routing, One DDR3 Device
Figure 5-70 shows the CK routing for one DDR3 device. Figure 5-71 shows the corresponding
ADDR_CTRL routing.
Figure 5-70. CK Routing for One DDR3 Device
Figure 5-71. ADDR_CTRL Routing for One DDR3 Device
5.13.8.2.1.5 Data Topologies and Routing Definition
No matter the number of DDR3 devices used, the data line topology is always point to point, so its
definition is simple.
5.13.8.2.1.5.1 DQS[x] and DQ[x] Topologies, Any Number of Allowed DDR3 Devices
DQS[x] lines are point-to-point differential, and DQ[x] lines are point-to-point singled ended. Figure 5-72
and Figure 5-73 show these topologies.
DQ[x]
DQS[x]+
DQS[x]-
Routed Differentially
DQS[x]
DQ[x]
Device
DQ[x]
IO Buffer
DDR3
DQ[x]
IO Buffer
Device
DQS[x]
IO Buffer
DDR3
DQS[x]
IO Buffer
Routed Differentially
DQS[x]-
DQS[x]+
193
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
x = 0, 1, 2, 3
Figure 5-72. DQS[x] Topology
x = 0, 1, 2, 3
Figure 5-73. DQ[x] Topology
5.13.8.2.1.5.2 DQS[x] and DQ[x] Routing, Any Number of Allowed DDR3 Devices
Figure 5-74 and Figure 5-75 show the DQS[x] and DQ[x] routing.
x = 0, 1, 2, 3
Figure 5-74. DQS[x] Routing With Any Number of Allowed DDR3 Devices
x = 0, 1, 2, 3
Figure 5-75. DQ[x] Routing With Any Number of Allowed DDR3 Devices
194
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.1.6 Routing Specification
5.13.8.2.1.6.1 CK and ADDR_CTRL Routing Specification
Skew within the CK and ADDR_CTRL net classes directly reduces setup and hold margin and, thus, this
skew must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter
traces up to the length of the longest net in the net class and its associated clock. A metric to establish
this maximum length is Manhattan distance. The Manhattan distance between two points on a PCB is the
length between the points when connecting them only with horizontal or vertical segments. A reasonable
trace route length is to within a percentage of its Manhattan distance. CACLM is defined as Clock Address
Control Longest Manhattan distance.
Given the clock and address pin locations on the device and the DDR3 memories, the maximum possible
Manhattan distance can be determined given the placement. Figure 5-76 shows this distance for two
loads. It is from this distance that the specifications on the lengths of the transmission lines for the
address bus are determined. CACLM is determined similarly for other address bus configurations; that is,
it is based on the longest net of the CK and ADDR_CTRL net class. For CK and ADDR_CTRL routing,
these specifications are contained in Table 5-59.
AS
=
Rtt
A1
A2 A3 AT Vtt
A8(A)
A8(A)
A8(A)
CACLMX
CACLMY
AS
=
Rtt
A1
A2 A3 A4 A3 AT Vtt
A8(A)
A8(A)
A8(A)
A8(A)
A8(A)
CACLMX
CACLMY
195
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. It is very likely that the longest CK and ADDR_CTRL Manhattan distance will be for Address Input 8 (A8) on the
DDR3 memories. CACLM is based on the longest Manhattan distance due to the device placement. Verify the net
class that satisfies this criteria and use as the baseline for CK and ADDR_CTRL skew matching and length control.
The length of shorter CK and ADDR_CTRL stubs as well as the length of the terminator stub are not included in this
length calculation. Nonincluded lengths are grayed out in the figure.
Assuming A8 is the longest, CACLM = CACLMY + CACLMX + 300 mils.
The extra 300 mils allows for routing down lower than the DDR3 memories and returning up to reach A8.
Figure 5-76. CACLM for Two or Four Address Loads on One Side of PCB
Table 5-59. CK and ADDR_CTRL Routing Specification(1)(2)(3)
NO. PARAMETER MIN TYP MAX UNIT
1 A1+A2 length 2500 mils
2 A1+A2 skew 25 mils
3 A3 length 660 mils
4 A3 skew(4) 25 mils
5 A3 skew(5) 125 mils
196
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-59. CK and ADDR_CTRL Routing Specification(1)(2)(3) (continued)
NO. PARAMETER MIN TYP MAX UNIT
6 A4 length 660 mils
7 A4 skew 25 mils
8 AS length 100 mils
9 AS skew 25 mils
10 AS+ and AS- length 70 mils
11 AS+ and AS- skew 5 mils
12 AT length(6) 500 mils
13 AT skew(7) 100 mils
14 AT skew(8) 5 mils
15 CK and ADDR_CTRL nominal trace length(9) CACLM-50 CACLM CACLM+50 mils
16 Center-to-center CK to other DDR3 trace spacing(10) 4 w
17 Center-to-center ADDR_CTRL to other DDR3 trace spacing(10)(11) 4 w
18 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(10) 3 w
19 CK center-to-center spacing(12)
20 CK spacing to other net(10) 4 w
21 Rcp(13) Zo-1 Zo Zo+1 Ω
22 Rtt(13)(14) Zo-5 Zo Zo+5 Ω
(1) CK represents the clock net class, and ADDR_CTRL represents the address and control signal net class.
(2) The use of vias should be minimized.
(3) Additional bypass capacitors are required when using the VDDS_DDR plane as the reference plane to allow the return current to jump
between the VDDS_DDR plane and the ground plane when the net class switches layers at a via.
(4) Mirrored configuration (one DDR3 device on top of the board and one DDR3 device on the bottom).
(5) Nonmirrored configuration (all DDR3 memories on same side of PCB).
(6) While this length can be increased for convenience, its length should be minimized.
(7) ADDR_CTRL net class only (not CK net class). Minimizing this skew is recommended, but not required.
(8) CK net class only.
(9) CACLM is the longest Manhattan distance of the CK and ADDR_CTRL net classes + 300 mils. For definition, see Section 5.13.8.2.1.6.1
and Figure 5-76.
(10) Center-to-center spacing is allowed to fall to minimum (w) for up to 1250 mils of routed length.
(11) Signals from one DQ net class should be considered other DDR3 traces to another DQ net class.
(12) CK spacing set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-ended
impedance defined in Table 5-53.
(13) Source termination (series resistor at driver) is specifically not allowed.
(14) Termination values should be uniform across the net class.
5.13.8.2.1.6.2 DQS[x] and DQ[x] Routing Specification
Skew within the DQS[x] and DQ[x] net classes directly reduces setup and hold margin and, thus, this skew
must be controlled. The only way to practically match lengths on a PCB is to lengthen the shorter traces
up to the length of the longest net in the net class and its associated clock. DQLMn is defined as DQ
Longest Manhattan distance n, where n is the byte number. For a 16-bit interface, there are two DQLMs,
DQLM0 and DQLM1.
NOTE
It is not required, nor is it recommended, to match the lengths across all bytes. Length
matching is only required within each byte.
DQLMY0
3 2
DQLMX1
DQ1
DQ0
DQLMX0
DQ[8:15], DM1, DQS1
DQ[0:7], DM0, DQS0
DQLMY1
DQ0 - DQ3 represent data bytes 0 - 3.
1 0
DQ2 DQ[16:23], DM2, DQS2
DQLMX2
DQ3 DQ[24:31], DM3, DQS3
DQLMX3
DQLMY3 DQLMY2
197
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Given the DQS[x] and DQ[x] pin locations on the device and the DDR3 memories, the maximum possible
Manhattan distance can be determined given the placement. Figure 5-77 shows this distance for a two-
load case. It is from this distance that the specifications on the lengths of the transmission lines for the
data bus are determined. For DQS[x] and DQ[x] routing, these specifications are contained in Table 5-60.
There are four DQLMs, one for each byte (16-bit interface). Each DQLM is the longest Manhattan distance of the
byte; therefore:
DQLM0 = DQLMX0 + DQLMY0
DQLM1 = DQLMX1 + DQLMY1
DQLM2 = DQLMX2 + DQLMY2
DQLM3 = DQLMX3 + DQLMY3
Figure 5-77. DQLM for Any Number of Allowed DDR3 Devices
Table 5-60. DQS[x] and DQ[x] Routing Specification(1)(2)
NO. PARAMETER MIN TYP MAX UNIT
1 DQ0 nominal length(3)(4) DQLM0 mils
2 DQ1 nominal length(3)(5) DQLM1 mils
3 DQ2 nominal length DQLM2 mils
4 DQ3 nominal length DQLM3 mils
5 DQ[x] skew(6) 25 mils
6 DQS[x] skew 5 mils
7 DQS[x]-to-DQ[x] skew(6)(7) 25 mils
8 Center-to-center DQ[x] to other DDR3 trace spacing(8)(9) 4 w
9 Center-to-center DQ[x] to other DQ[x] trace spacing(8)(10) 3 w
10 DQS[x] center-to-center spacing(11)
11 DQS[x] center-to-center spacing to other net(8) 4 w
(1) DQS[x] represents the DQS0 and DQS1 clock net classes, and DQ[x] represents the DQ0 and DQ1 signal net classes.
(2) External termination disallowed. Data termination should use built-in ODT functionality.
(3) DQLMn is the longest Manhattan distance of a byte. For definition, see Section 5.13.8.2.1.6.2 and Figure 5-77.
(4) DQLM0 is the longest Manhattan length for the DQ0 net class.
(5) DQLM1 is the longest Manhattan length for the DQ1 net class.
(6) Length matching is only done within a byte. Length matching across bytes is not required. To maintain tighter delay skew, route the
DQ[x] and DQS[x] signals within a byte to have same number of VIA and layer transitions.
(7) Each DQS clock net class is length matched to its associated DQ signal net class.
(8) Center-to-center spacing is allowed to fall to minimum for up to 1250 mils of routed length.
(9) Other DDR3 trace spacing means signals that are not part of the same DQ[x] signal net class.
(10) This applies to spacing within same DQ[x] signal net class.
(11) DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo × 2, where Zo is the single-
ended impedance defined in Table 5-53.
DDR_CK
1
DDR_CKn
198
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.2 LPDDR2 Routing Guidelines
This section provides the timing specification for the LPDDR2 interface as a PCB design and
manufacturing specification. The design rules constrain PCB trace length, PCB trace skew, signal
integrity, cross-talk, and signal timing. These rules, when followed, result in a reliable LPDDR2 memory
system without the need for a complex timing closure process. For more information regarding guidelines
for using this LPDDR2 specification, see Understanding TI's PCB Routing Rule-Based DDR Timing
Specification. This application report provides generic guidelines and approach. All the specifications
provided in the data manual take precedence over the generic guidelines and must be adhered to for a
reliable LPDDR2 interface operation.
5.13.8.2.2.1 LPDDR2 Board Designs
TI only supports board designs using LPDDR2 memory that follow the guidelines in this document. The
switching characteristics and timing diagram for the LPDDR2 memory interface are shown in Table 5-61
and Figure 5-78.
Table 5-61. Switching Characteristics for LPDDR2 Memory Interface
NO. PARAMETER MIN MAX UNIT
1 tc(DDR_CK) Cycle time, DDR_CK and DDR_CKn 7.52 3.76(1) ns
(1) The JEDEC JESD209-2F standard defines the maximum clock period of 100 ns for all standard-speed bin LPDDR2 memory. The
device has only been tested per the limits published in this table.
Figure 5-78. LPDDR2 Memory Interface Clock Timing
5.13.8.2.2.2 LPDDR2 Device Configurations
There are several possible combinations of device counts and single-side or dual-side mounting. Table 5-
62 lists all the supported configurations.
Table 5-62. Supported LPDDR2 Device Combinations
NUMBER OF LPDDR2
DEVICES LPDDR2 DEVICE WIDTH (BITS) MIRRORED?(1) LPDDR2 EMIF WIDTH (BITS)
1 32 N 32
2(2) 32 N 32
1 16 N 16
2(2) 16 N 16
(1) Two LPDDR2 devices are mirrored when one device is placed on the top of the board and the second device is placed on the bottom of
the board.
(2) Two devices are supported only with twin-die configuration which embeds two devices in the same package.
Details on treating unused pins are listed in Section 5.13.8.2.2.3.1.
DQ15
DQ8
DM1
DQS1_t
DQS1_c
DQ7
DQ0
DM0
DQS0_t
DQS0_c
CK_c
16-Bit LPDDR2
Device
0.1 µF
49.9
1 , 20 mW
Ω
% )
0.1 µF
16-Bit LPDDR2
Interface
DDR_D15
DDR_D8
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_CK
DDR_CKn
DDR_CKE1
DDR_CSn0
DDR_CSn1
DDR_RASn
DDR_CASn
DDR_WEn
DDR_BA0
DDR_BA1
DDR_VREF
DDR_VTP
8
8
CK_t
CS1_n
CS0_n
CA0
CKE1
CA1
CA2
CA7
CA8
ZQ0/1
Vref(CA)
Vref(DQ)
ZQ
DDR_CKE0 CKE0
DDR_BA2
DDR_A1
DDR_A2
DDR_A10
DDR_A13
CA9
CA5
CA6
CA4
CA3
1 K
VDDS_DDR
0.1 µF
0.1 µF 1 K
DDR_VREF
Copyright © 2016, Texas Instruments Incorporated
199
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.2.3 LPDDR2 Interface
5.13.8.2.2.3.1 LPDDR2 Interface Schematic
The LPDDR2 interface schematic varies, depending upon the width of the LPDDR2 devices used.
Figure 5-79 shows the schematic connections for 16-bit interface using one x16 LPDDR2 device. Two x16
LPDDR2 devices are supported for twin-die configuration which embeds two devices in the same
package.
Figure 5-79. 16-Bit Interface Using One 16-Bit LPDDR2 Device
Figure 5-80 shows the schematic connections for 32-bit interface using one x32 LPDDR2 device.
DQ31
DM31
DQS3_t
DQS3_c
DDR_D31
DDR_D24
32-Bit LPDDR2
Device
0.1 µF
49.9 1 20mWΩ % )
0.1 µF
32-Bit LPDDR2
Interface
DDR_DQM3
DDR_DQS3
DDR_DQSn3
DDR_D23
DDR_D16
DDR_DQM2
DDR_DQS2
DDR_DQSn2
DDR_D15
DDR_D8
DDR_DQM1
DDR_DQS1
DDR_DQSn1
DDR_D7
DDR_D0
DDR_DQM0
DDR_DQS0
DDR_DQSn0
DDR_VREF
DDR_VTP
8
8
8
8
DQ24
DQ23
DQ16
DM2
DQS2_t
DQS2_c
ZQ
ZQ0/1
Vref(CA)
Vref(DQ)
DQ15
DQ8
DQ7
DQ0
DM1
DM0
DQS1_t
DQS1_c
DQS0_t
DQS0_c
CK_c
DDR_CK
DDR_CKn
DDR_CKE1
DDR_CSn0
DDR_CSn1
DDR_RASn
DDR_CASn
DDR_WEn
DDR_BA0
DDR_BA1
CK_t
CS1_n
CS0_n
CA0
CKE1
CA1
CA2
CA7
CA8
DDR_CKE0 CKE0
DDR_BA2
DDR_A1
DDR_A2
DDR_A10
DDR_A13
CA9
CA5
CA6
CA4
CA3
1 K
VDDS_DDR
0.1 µF
0.1 µF 1 K
DDR_VREF
Copyright © 2016, Texas Instruments Incorporated
200
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-80. 32-Bit Interface Using One 32-Bit LPDDR2 Device
When not using a part of LPDDR2 interface (using x16 or not using the LPDDR2 interface):
Connect the VDDS_DDR supply to 1.8 V
Connect the DDR_VREF supply to 0.9 V
Tie off DDR_DQS[x] (x=0,1,2,3) that are unused to VSS via 1 kΩ
Tie off DDR_DQSn[x] (x=0,1,2,3) that are unused to VDDS_DDR via 1 kΩ
All other unused pins can be left as NC.
Note: All the unused DDR ADDR_CTRL lines used for DDR3 operation should be left as NC.
201
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.2.3.2 Compatible JEDEC LPDDR2 Devices
Table 5-63 shows the supported LPDDR2 device configurations which are compatible with this interface.
Table 5-63. Compatible JEDEC LPDDR2 Devices (Per Interface)
NO. PARAMETER CONDITION MIN MAX UNIT
1 JEDEC LPDDR2 device speed grade tc(DDR_CK) and tc(DDR_CKn) LPDDR2-533
2 JEDEC LPDDR2 device bit width x16 x32 Bits
3 JEDEC LPDDR2 device count 1 2(1) Devices
(1) Two devices are supported only with twin-die configuration which embeds two devices in the same package.
5.13.8.2.2.3.3 LPDDR2 PCB Stackup
Table 5-64 shows the minimum stackup requirements. Additional layers may be added to the PCB
stackup to accommodate other circuitry, enhance signal integrity and electromagnetic interference
performance, or to reduce the size of the PCB footprint.
Table 5-64. Minimum PCB Stackup
LAYER TYPE DESCRIPTION
1 Signal Top signal routing
2 Plane Ground
3 Plane Power
4 Signal Bottom signal routing
PCB stackup specifications for LPDDR2 interface are listed in Table 5-65.
Table 5-65. PCB Stackup Specifications(1)
NO. PARAMETER MIN TYP MAX UNIT
1 PCB routing and plane layers 4
2 Signal routing layers 2
3 Full ground reference layers under LPDDR2 routing region(1) 1
4 Full VDDS_DDR power reference layers under the LPDDR2 routing
region(1) 1
5 Number of reference plane cuts allowed within LPDDR2 routing region(2) 0
6 Number of layers between LPDDR2 routing layer and reference plane(3) 0
7 PCB routing feature size 4 mils
8 PCB trace width, w 4 mils
9 PCB BGA escape via pad size(4) 18 20 mils
10 PCB BGA escape via hole size 10 mils
11 Single-ended impedance, Zo(5) 50 75 Ω
12 Impedance control(6)(7) Zo-5 Zo Zo+5 Ω
(1) Ground reference layers are preferred over power reference layers. Be sure to include bypass caps to accommodate reference layer
return current as the trace routes switch routing layers.
(2) No traces should cross reference plane cuts within the LPDDR2 routing region. High-speed signal traces crossing reference plane cuts
create large return current paths which can lead to excessive crosstalk and EMI radiation.
(3) Reference planes are to be directly adjacent to the signal plane to minimize the size of the return current loop.
(4) An 18-mil pad assumes Via Channel is the most economical BGA escape. A 20-mil pad may be used if additional layers are available
for power routing. An 18-mil pad is required for minimum layer count escape.
(5) Zo is the nominal singled-ended impedance selected for the PCB.
(6) This parameter specifies the AC characteristic impedance tolerance for each segment of a PCB signal trace relative to the chosen Zo
defined by the single-ended impedance parameter.
(7) Tighter impedance control is required to ensure flight time skew is minimal.
LPDDR2
interface
Y
X1
202
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.2.3.4 LPDDR2 Placement
Figure 5-81 shows the placement rules for the device as well as the LPDDR2 memory device. Placement
restrictions are provided as a guidance to restrict maximum trace lengths and allow for proper routing
space.
Figure 5-81. Placement Specifications
Table 5-66. Placement Specifications(1)
NO. PARAMETER MIN MAX UNIT
1 X1 Offset(2)(3) 1500 mils
2 Y Offset(2)(3)(4) 1500 mils
3 Clearance from non-LPDDR2 signal to LPDDR2 keepout region(4)(5) 4 w
(1) LPDDR2 keepout region to encompass entire LPDDR2 routing area.
(2) Measurements from center of device to center of LPDDR2 device.
(3) Minimizing X1 and Y improves timing margins.
(4) w is defined as the signal trace width.
(5) Non-LPDDR2 signals allowed within LPDDR2 keepout region provided they are separated from LPDDR2 routing layers by a ground
plane.
5.13.8.2.2.3.5 LPDDR2 Keepout Region
The region of the PCB used for LPDDR2 circuitry must be isolated from other signals. The LPDDR2
keepout region is defined for this purpose and is shown in Figure 5-82. This region should encompass all
LPDDR2 circuitry and the region size varies with component placement and LPDDR2 routing. Non-
LPDDR2 signals should not be routed on the same signal layer as LPDDR2 signals within the LPDDR2
keepout region. Non-LPDDR2 signals may be routed in the region provided they are routed on layers
separated from LPDDR2 signal layers by a ground layer. No breaks should be allowed in the reference
ground or VDDS_DDR power plane in this region. In addition, the VDDS_DDR power plane should cover
the entire keepout region.
LPDDR2 Keepout Region
Encompasses Entire
LPDDR2 Routing Area
LPDDR2
interface
203
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-82. LPDDR2 Keepout Region
5.13.8.2.2.3.6 LPDDR2 Net Classes
Table 5-67. Clock Net Class Definitions for the LPDDR2
Interface
CLOCK NET CLASS PIN NAMES
CK DDR_CK and DDR_CKn
DQS0 DDR_DQS0 and DDR_DQSn0
DQS1 DDR_DQS1 and DDR_DQSn1
DQS2 DDR_DQS2 and DDR_DQSn2
DQS3 DDR_DQS3 and DDR_DQSn3
Table 5-68. Signal Net Class and Associated Clock Net Class for LPDDR2 Interface
SIGNAL NET CLASS ASSOCIATED CLOCK
NET CLASS PIN NAMES
ADDR_CTRL CK DDR_BA[2:0], DDR_CSn0, DDR_CSn1, DDR_CKE0, DDR_CKE1,
DDR_RASn, DDR_CASn, DDR_WEn, DDR_A1, DDR_A2, DDR_A10,
DDR_A13
DQ0 DQS0 DDR_D[7:0], DDR_DQM0
DQ1 DQS1 DDR_D[15:8], DDR_DQM1
DQ2 DQS2 DDR_D[23:16], DDR_DQM2
DQ3 DQS3 DDR_D[31:24], DDR_DQM3
5.13.8.2.2.3.7 LPDDR2 Signal Termination
On-device termination (ODT) is available for DQ[3:0] signal net classes, but is not specifically required for
normal operation. System designers may evaluate the need for additional series termination if required
based on signal integrity, EMI and overshoot/undershoot reduction.
5.13.8.2.2.3.8 LPDDR2 DDR_VREF Routing
DDR_VREF is the reference voltage for the input buffers on the LPDDR2 memory as well as the device.
DDR_VREF is intended to be half the LPDDR2 power supply voltage and is typically generated with a
voltage divider connected to the VDDS_DDR power supply. It should be routed as a nominal 20-mil wide
trace with 0.1-µF bypass capacitors near each device connection. Narrowing of DDR_VREF is allowed to
accommodate routing congestion.
DQS[x]+
DQS[x]-
Routed Differentially
DQS[x]
DQ[x]
Device
DQ[x]
IO Buffer
DDR3
DQ[x]
IO Buffer
Device
DQS[x]
IO Buffer
DDR3
DQS[x]
IO Buffer
Routed Differentially
DQS[x]-
DQS[x]+
204
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.8.2.2.4 Routing Specification
5.13.8.2.2.4.1 DQS[x] and DQ[x] Routing Specification
DQS[x] lines are point-to-point differential and DQ[x] lines are point-to-point single ended. Figure 5-83 and
Figure 5-84 represent the supported topologies. Figure 5-85 and Figure 5-86 show the DQS[x] and DQ[x]
routing. Figure 5-87 shows the DQLM for the LPDDR2 interface.
x = 0, 1, 2, 3
Figure 5-83. DQS[x] Topology
x = 0, 1, 2, 3
Figure 5-84. DQ[x] Topology
x = 0, 1, 2, 3
Figure 5-85. DQS[x] Routing
DQLMYi
DQi
DQLMXi
i = 0, 1, 2, 3
LPDDR2
interface
DQLM0 = DQLMX0 + DQLMY0
DQLM2 = DQLMX2 + DQLMY2
DQLM3 = DQLMX3 + DQLMY3
DQLM1 = DQLMX1 + DQLMY1
DQ0 - DQ3 represent data bytes 0 - 3.
DQ[x]
205
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
x = 0, 1, 2, 3
Figure 5-86. DQ[x] Routing
There are four DQLMs, one for each data byte, in a 32-bit interface and two DQLMs, one for each data byte, in a 16-
bit interface. Each DQLM is the longest Manhattan distance of the byte.
Figure 5-87. DQLM for LPDDR2 Interface
Trace routing specifications for the DQ[x] and the DQS[x] are specified in Table 5-69.
Table 5-69. DQS[x] and DQ[x] Routing Specification(1)(2)
NO. PARAMETER MIN TYP MAX UNIT
1 DQ0 nominal length(3)(4) DQLM0 mils
2 DQ1 nominal length(3)(5) DQLM1 mils
3 DQ2 nominal length (3)(6) DQLM2 mils
4 DQ3 nominal length (3)(7) DQLM3 mils
5 DQ[x] skew(8) 50 mils
6 DQS[x] skew 10 mils
7 Via count per each trace in DQ[x], DQS[x] 2
8 Via count difference across a given DQ[x], DQS[x] 0
9 DQS[x]-to-DQ[x] skew(8)(9) 50 mils
10 Center-to-center DQ[x] to other LPDDR2 trace spacing(10)(11) 4 w
11 Center-to-center DQ[x] to other DQ[x] trace spacing(10)(12) 3 w
12 DQS[x] center-to-center spacing(13)
13 DQS[x] center-to-center spacing to other net(10) 4 w
CK+
CK-
Routed Differentially
CK-
ADDR_CTRL
Device
ADDR_CTRL
Output Buffer
LPDDR2
ADDR_CTRL
Input Buffer
Device CK
Output Buffer
LPDDR2
Input Buffer
Routed Differentially
CK-
CK+
206
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) DQS[x] represents the DQS0, DQS1, DQS2, DQS3 clock net classes, and DQ[x] represents the DQ0, DQ1, DQ2, DQ3 signal net
classes.
(2) External termination disallowed. Data termination should use built-in ODT functionality.
(3) DQLMn is the longest Manhattan distance of a byte.
(4) DQLM0 is the longest Manhattan length for the DQ0 net class.
(5) DQLM1 is the longest Manhattan length for the DQ1 net class.
(6) DQLM2 is the longest Manhattan length for the DQ2 net class.
(7) DQLM3 is the longest Manhattan length for the DQ3 net class.
(8) Length matching is only done within a byte. Length matching across bytes is not required.
(9) Each DQS clock net class is length matched to its associated DQ signal net class.
(10) Center-to-center spacing is allowed to fall to minimum for up to 1000 mils of routed length.
(11) Other LPDDR2 trace spacing means signals that are not part of the same DQ[x] signal net class.
(12) This applies to spacing within same DQ[x] signal net class.
(13) DQS[x] pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single-
ended impedance.
5.13.8.2.2.4.2 CK and ADDR_CTRL Routing Specification
CK signals are routed as point-to-point differential, and ADDR_CTRL signals are routed as point-to-point
single ended. The supported topology for CK and ADDR_CTRL are shown in Figure 5-88 through
Figure 5-91. ADDR_CTRL are routed very similar to DQ and CK is routed very similar to DQS.
Figure 5-88. CK Signals Topology
Figure 5-89. ADDR_CTRL Signals Topology
Figure 5-90. CK Signals Routing
CACLMY
CACLMX
CACLM = CACLMX + CACLMY
LPDDR2
interface
ADDR_CTRL
207
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-91. ADDR_CTRL Signals Routing
CACLM is the longest Manhattan distance of the CK/ADDR_CTRL signal class.
Figure 5-92. CACLM for LPDDR2 Interface
Trace routing specifications for the CK and the ADD_CTRL are specified in Table 5-70.
Table 5-70. CK and ADDR_CTRL Routing Specification
NO. PARAMETER MIN TYP MAX UNIT
1 CK and ADDR_CTRL nominal trace length(1) CACLM mils
2 ADDR_CTRL skew 50 mils
3 CK skew 10 mils
4 Via count per each trace ADDR_CTRL, CK 2
5 Via count difference across ADDR_CTRL, CK 0
6 ADDR_CTRL-to-CK skew 50 mils
7 Center-to-center ADDR_CTRL to other LPDDR2 trace spacing(2)(3) 4 w
8 Center-to-center ADDR_CTRL to other ADDR_CTRL trace spacing(2) 3 w
9 CK center-to-center spacing(4)
10 CK center-to-center spacing to other net(2) 4 w
(1) CACLM is the longest Manhattan distance of ADDR_CTRL and CK.
(2) Center-to-center spacing is allowed to fall to minimum for up to 1000 mils of routed length.
(3) Other LPDDR2 trace spacing means signals that are not part of the same CK, ADDR_CTRL signal net class.
(4) CK pair spacing is set to ensure proper differential impedance. Differential impedance should be Zo x 2, where Zo is the single ended
impedance.
208
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.9 Display Subsystem (DSS)
NOTE
For more information, see the Display Subsystem chapter of the AM437x Sitara Processors
Technical Reference Manual.
The display subsystem (DSS) provides the logic to display the video frame from external (SDRAM) or
internal (SRAM) memory on an LCD panel or a TV set. The display subsystem integrates the following
elements:
Display controller (DISPC) module
Remote frame buffer interface (RFBI) module
The DSS can be used in the following configuration: LCD display with parallel interface
5.13.9.1 DSS—Parallel Interface
In parallel interface, the paths of the display subsystem modules are the display controller and the RFBI.
The display controller has two I/O pad modes and could be in the following configuration:
Bypass mode (RFBI disabled), which implements the MIPI DPI protocol
RFBI mode (RFBI enabled), which implements MIPI DBI 2.0 type B protocol
5.13.9.1.1 DSS—Parallel Interface—Bypass Mode
Two types of LCD panel are supported:
Thin film transistor (TFT) or active matrix technology
Supertwisted nematic (STN) or passive matrix technology
Both configurations are discussed in the following paragraphs.
5.13.9.1.1.1 DSS—Parallel Interface—Bypass Mode—TFT Mode
Table 5-72 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-93).
Table 5-71. DSS Timing Conditions—TFT Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance 10 pF
Table 5-72. DSS Switching Characteristics—TFT Mode
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DL0 td(pclkA-hsync) Delay time, output pixel clock dss_pclk active edge to
output horizontal synchronization dss_hsync transition -2.4 2.4 -3.5 2.5 ns
DL1 td(pclkA-vsync) Delay time, output pixel clock dss_pclk active edge to
output vertical synchronization dss_vsync transition -2.4 2.4 -3.5 2.5 ns
DL2 td(pclkA-acbiasA) Delay time, output pixel clock dss_pclk active edge to
output data enable dss_acbias active level -2.4 2.4 -3.5 2.5 ns
DL3 td(pclkA-dV) Delay time, output pixel clock dss_pclk active edge to
output data dss_data[23:0] valid -2.4 2.4 -3.5 2.5 ns
DL4 1 / tc(pclk) Frequency(1), output pixel clock dss_pclk 100 75 MHz
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
DL4 DL5
DL3
DL0
DL2
DL1
209
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-72. DSS Switching Characteristics—TFT Mode (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DL5 tw(pclk) Pulse duration, output pixel clock dss_pclk low or high 0.45P(2) 0.55P(2)(3) 0.45P(2) 0.55P(2)(3) ns
tJ(pclk) Peak-peak jitter, output pixel clock dss_pclk 200 200 ps
(1) The pixel clock frequency is software programmable via the pixel clock DISPC_DIVISOR register.
(2) P = dss_pclk period in ns
(3) tw(pclk) = 0.66P when DISPC_DIVISOR[7:0] PCD = 3
A. The pixel data bus depends on the use of 8-, 9-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
B. The pixel clock frequency is programmable.
C. All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of
dss_pclk too.
D. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.
Figure 5-93. DSS—TFT Mode
5.13.9.1.1.2 DSS—Parallel Interface—Bypass Mode—STN Mode
Table 5-74 assumes testing over the recommended operating conditions and electrical characteristic
conditions below (see Figure 5-94).
Table 5-73. DSS Timing Conditions—STN Mode
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance 40 pF
(1) The DSS in STN mode is used with 4 or 8 pins only; unused pixel data bits always remain low.
(2) The pixel clock frequency is software programmable via the pixel clock divider DISPC_DIVISOR register.
(3) P = dss_pclk period in ns
(4) tW(pclk) = 0.66P when DISPC_DIVISOR[7:0] PCD = 3
Table 5-74. DSS Switching Characteristics—STN Mode(1)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DL3 td(pclkA-dV) Delay time, output pixel clock dss_pclk active edge to
output data dss_data[7:0] valid -6 6 -6 6 ns
DL4 1 / tc(pclk) Frequency(2), output pixel clock dss_pclk 45 45 MHz
DL5 tw(pclk) Pulse duration, output pixel clock dss_pclk low or high 0.45P(3) 0.55P(3)(4) 0.45P(3) 0.55P(3)(4) ns
dss_pclk
dss_vsync
dss_hsync
dss_acbias
dss_data[23:0]
DL4
DL5
DL3
210
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-74. DSS Switching Characteristics—STN Mode(1) (continued)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tJ(pclk) Peak-peak jitter, output pixel clock dss_pclk 200 200 ps
(1) For any information regarding the RFBI registers configuration, see the Display Subsystem / Display Subsystem Environment / LCD
Support / Parallel Interface / Parallel Interface in RFBI Mode (MIPI DBI Protocol) / Transaction Timing Diagrams section of the AM437x
Sitara Processors Technical Reference Manual.
A. The pixel data bus depends on the use of 4-, 8-, 12-, 16-, 18-, or 24-bit per pixel data output pins.
B. All timings not illustrated in the waveform are progammable by software, and control signal polarity and driven edge of
dss_pclk too.
C. dss_vsync width must be programmed to be as small as possible.
D. The pixel clock frequency is programmable.
E. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.
Figure 5-94. DSS—STN Mode
5.13.9.1.2 DSS—Parallel Interface—RFBI Mode—Applications
5.13.9.1.2.1 DSS—Parallel Interface—RFBI Mode—MIPI DBI 2.0—LCD Panel
The Remote Frame Buffer Interface (RFBI) module provides the necessary control signals and data
(MIPI®DBI 2.0 type B protocol) to interface to the LCD driver of the LCD panel.
Table 5-76 and Table 5-77 assume testing over the recommended operating conditions and electrical
characteristic conditions below (see Figure 5-95,Figure 5-96, and Figure 5-97).
Table 5-75. DSS Timing Conditions—RFBI Mode—MIPI DBI 2.0—LCD Panel(1)
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Input Conditions
tRInput signal rise time 7 ns
tFInput signal fall time 7 ns
Output Condition
CLOAD Output load capacitance 30 pF
211
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-76. DSS Timing Requirements—RFBI Mode—MIPI DBI 2.0—LCD Panel
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
DR0 tsu(dV-rdH) Setup time, input data rfbi_da[15:0] valid to output
read enable rfbi_rd high 7 7 ns
DR1 th(rdH-dIV) Hold time, output read enable rfbi_rd high to input data
rfbi_da[15:0] invalid 5 5 ns
td(Data sampled) Input data rfbi_da[15:0] sampled at the end of the
access time N(1) N(1) ns
(1) N = (AccessTime) × (TimeParaGranularity + 1) × L4CLK
Table 5-77. DSS Switching Characteristics—RFBI Mode—MIPI DBI 2.0—LCD Panel
PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tw(wrH) Pulse duration, output write enable rfbi_wr high A(1) A(1) ns
tw(wrL) Pulse duration, output write enable rfbi_wr low B(2) B(2) ns
td(a0-wrL) Delay time, output command/data control rfbi_a0 transition to
output write enable rfbi_wr low C(3) C(3) ns
td(wrH-a0) Delay time, output write enable rfbi_wr high to output
command/data control rfbi_a0 transition D(4) D(4) ns
td(csx-wrL) Delay time, output chip select rfbi_csx(14) low to output write
enable rfbi_wr low E(5) E(5) ns
td(wrH-csxH) Delay time, output write enable rfbi_wr high to output chip select
rfbi_csx(14) high F(6) F(6) ns
td(dV) Output data rfbi_da[15:0] valid G(7) G(7) ns
td(a0H-rdL) Delay time, output command/data control rfbi_a0 high to output
read enable rfbi_rd low H(8) H(8) ns
td(rdlH-a0) Delay time, output read enable rfbi_rd high to output
command/data control rfbi_a0 transition I(9) I(9) ns
tw(rdH) Pulse duration, output read enable rfbi_rd high J(10) J(10) ns
tw(rdL) Pulse duration, output read enable rfbi_rd low K(11) K(11) ns
td(rdL-csxL) Delay time, output read enable rfbi_rd low to output chip select
rfbi_csx(14) low L(12) L(12) ns
td(rdH-csxH) Delay time, output read enable rfbi_rd high to output chip select
rfbi_csx(14) high M(13) M(13) ns
tR(wr) Rise time, output write enable rfbi_wr 7 7 ns
tF(wr) Fall time, output write enable rfbi_wr 7 7 ns
tR(a0) Rise time, output command/data control rfbi_a0 7 7 ns
tF(a0) Fall time, output command/data control rfbi_a0 7 7 ns
tR(csx) Rise time, output chip select rfbi_csx(14) 7 7 ns
tF(csx) Fall time, output chip select rfbi_csx(14) 7 7 ns
tR(d) Rise time, output data rfbi_da[15:0] 7 7 ns
tF(d) Fall time, output data rfbi_da[15:0] 7 7 ns
tR(rd) Rise time, output read enable rfbi_rd 7 7 ns
tF(rd) Fall time, output read enable rfbi_rd 7 7 ns
(1) A = (WECycleTime WEOffTime) × (TimeParaGranularity + 1) × L4CLK
(2) B = (WEOffTime WEOntime) × (TimeParaGranularity + 1) × L4CLK
(3) C = WEOnTime × (TimeParaGranularity + 1) × L4CLK
(4) D = (WECycleTime + CSPulseWidth WEOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is
enabled
(5) E = (WEOnTime CSOnTime) × (TimeParaGranularity + 1) × L4CLK
(6) F = (CSOffTime WEOffTime) × (TimeParaGranularity + 1) × L4CLK
(7) G = WECycleTime × (TimeParaGranularity + 1) × L4CLK
rfbi_a0
rfbi_csx(A)
rfbi_rd
rfbi_da[n:0](B)
rfbi_wr
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
DATA0 DATA1
CsOnTime
ReOffTime
CsPulseWidth
AccessTime
CsOnTime
CsOffTime
ReOnTime
ReOffTime
AccessTime
ReCycleTime
DR1
ReCycleTime
CsOffTime
ReOnTime
DR0
rfbi_a0
rfbi_csx(A)
rfbi_wr
rfbi_da[n:0](B)
rfbi_rd
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
DATA0 DATA1
CsOnTime
CsOffTime
WeOnTime
WeOffTime
CsOnTime
CsOffTime
WeOnTime
WeOffTime
CsPulseWidth
WeCycleTime WeCycleTime
212
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(8) H = REOnTime × (TimeParaGranularity + 1) × L4CLK
(9) I = (RECycleTime + CSPulseWidth REOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is
enabled
(10) J = (RECycleTime REOffTime) × (TimeParaGranularity + 1) × L4CLK
(11) K = (REOffTime REOntime) × (TimeParaGranularity + 1) × L4CLK
(12) L = (REOnTime CSOnTime) × (TimeParaGranularity + 1) × L4CLK
(13) M = (CSOffTime REOffTime) × (TimeParaGranularity + 1) × L4CLK
(14) In rfbi_csx, x is equal to 0 or 1.
A. In rfbi_csx, x is equal to 0 or 1.
B. rfbi_da[n:0], n up to 15
C. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.
Figure 5-95. DSS—RFBI Mode—MIPI DBI 2.0—LCD Panel—Command / Data Write
A. In rfbi_csx, x is equal to 0 or 1.
B. rfbi_da[n:0], n up to 15
C. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.
Figure 5-96. DSS—RFBI Mode—MIPI DBI 2.0—LCD Panel—Command / Data Read
rfbi_a0
rfbi_csx(A)
rfbi_wr
rfbi_rd
rfbi_da[n:0](B)
rfbi_te_vsync[1:0]
rfbi_hsync[1:0]
WRITE READ WRITE
CsOnTime
CsOffTime
WEOffTime
WECycleTime
CsPulseWidth
ReCycleTime
AccessTime
CsOnTime
CsOffTime
ReOffTime
CsPulseWidth
CsOnTime
WEOffTime
CsOffTime
WECycleTime
WEOnTime
ReOnTime
WEOnTime
213
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. In rfbi_csx, x is equal to 0 or 1.
B. rfbi_da[n:0], n up to 15
C. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.
Figure 5-97. DSS—RFBI Mode—MIPI DBI 2.0—LCD Panel—Command / Data Write to Read and Read to
Write Modes
5.13.9.1.2.2 DSS—Parallel Interface—RFBI Mode—Pico DLP
The Remote Frame Buffer Interface (RFBI) module can provide also the necessary control signals and
data to interface to the Pico DLP driver of the Pico DLP panel. Table 5-78 assumes testing over the
recommended operating conditions and electrical characteristic conditions below (see Figure 5-98).
Table 5-78. DSS Timing Conditions—RFBI Mode—Pico DLP
TIMING CONDITION PARAMETER VALUE UNIT
MIN MAX
Output Condition
CLOAD Output load capacitance 5 pF
To use Pico DLP application, RFBI register must be configured as shown in Table 5-79:
Table 5-79. DSS Register Configuration—RFBI Mode—Pico DLP
DESCRIPTION REGISTER AND BIT FIELD(1) BIT VALUES
Selection parallel mode RFBI_CONFIGi and
ParallelMode [1:0] 0b11: 16-bit parallel output interface
selected
Time Granularity (multiplies signal timing
latencies by 2). RFBI_CONFIGi
andTimeGranularity [4] 0b0: x2 latency disable
CS signal assertion time from Start Access
Time RFBI_ONOFF_TIMEi and
CSOnTime [3:0] 0b0000
CS signal deassertion time from Start Access
Time RFBI_ONOFF_TIMEi and
CSOffTime [9:4] 0b000100: 4 cycles
WE signal assertion time from Start Access
Time RFBI_ONOFF_TIMEi and
WEOnTime [13:10] 0b0000
WE signal deassertion time from Start Access
Time RFBI_ONOFF_TIMEi and
WEOffTime [19:14] 0b000010: 2 cycles
RE signal assertion time from Start Access
Time RFBI_ONOFF_TIMEi and
REOnTime [23:20] 0b0000
214
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-79. DSS Register Configuration—RFBI Mode—Pico DLP (continued)
DESCRIPTION REGISTER AND BIT FIELD(1) BIT VALUES
RE signal deassertion time from Start Access
Time RFBI_ONOFF_TIMEi and
REOffTime [29:24] 0b0000
Write cycle time RFBI_CYCLE_TIMEi and
WECycleTime [5:0] 0b000100: 4 cycles
Read cycle time RFBI_CYCLE_TIMEi and
ReCycleTime [11:6] 0b000000
CS pulse width RFBI_CYCLE_TIMEi and
CSPulseWidth [17:12] 0b000000
Read to Write CS pulse width enable RFBI_CYCLE_TIMEi and
RWEnable [18] 0b0
Read to Read CS pulse width enable RFBI_CYCLE_TIMEi and
RREnable [19] 0b0
Write to Write CS pulse width enable RFBI_CYCLE_TIMEi and
WWEnable [20] 0b0
Write to Read CS pulse width enable RFBI_CYCLE_TIMEi and
WREnable [21] 0b0
From Start Access Time to CLK rising edge
used for the first data capture RFBI_CYCLE_TIMEi and
AccessTime [27:22] 0b000000
(1) i is equal to 0 or 1. For more information, see the DSS chapter in the AM437x Sitara Processors Technical Reference Manual.
215
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-80. DSS Switching Characteristics—RFBI Mode—Pico DLP(1)(2)(3)
PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
tw(wrH) Pulse duration, output write enable rfbi_wr high A(4) A(4) ns
tw(wrL) Pulse duration, output write enable rfbi_wr low B(5) B(5) ns
td(a0-wrL) Delay time, output command/data control rfbi_a0
transition to output write enable rfbi_wr low C(6) C(6) ns
td(wrH-a0) Delay time, output write enable rfbi_wr high to output
command/data control rfbi_a0 transition D(7) D(7) ns
td(csx-wrL) Delay time, output chip select rfbi_csx(8) low to output
write enable rfbi_wr low E(9) E(9) ns
td(wrH-csxH) Delay time, output write enable rfbi_wr high to output
chip select rfbi_csx(8) high F(10) F(10) ns
td(dataV) Output data rfbi_da[15:0](11) valid G(12) G(12) ns
td(Skew) Skew between output write enable falling rfbi_wr and
output data rfbi_da[15:0](11) high or low 15.5 15.5 ns
td(a0H-rdL) Delay time, output command/data control rfbi_a0 high to
output read enable rfbi_rd low H(13) H(13) ns
td(rdlH-a0) Delay time, output read enable rfbi_rd high to output
command/data control rfbi_a0 transition I(14) I(14) ns
tw(rdH) Pulse duration, output read enable rfbi_rd high J(15) J(15) ns
tw(rdL) Pulse duration, output read enable rfbi_rd low K(16) K(16) ns
td(rdL-csxL) Delay time, output read enable rfbi_rd low to output chip
select rfbi_csx(8) low L(17) L(17) ns
td(rdL-csxH) Delay time, output read enable rfbi_rd low to output chip
select rfbi_csx(8) high M(18) M(18) ns
tR(wr) Rise time, output write enable rfbi_wr 7 7 ns
tF(wr) Fall time, output write enable rfbi_wr 7 7 ns
tR(a0) Rise time, output command/data control rfbi_a0 7 7 ns
tF(a0) Fall time, output command/data control rfbi_a0 7 7 ns
tR(csx) Rise time, output chip select rfbi_csx(8) 7 7 ns
tF(csx) Fall time, output chip select rfbi_csx(8) 7 7 ns
tR(d) Rise time, output data rfbi_da[15:0](11) 7 7 ns
tF(d) Fall time, output data rfbi_da[15:0](11) 7 7 ns
tR(rd) Rise time, output read enable rfbi_rd 7 7 ns
tF(rd) Fall time, output read enable rfbi_rd 7 7 ns
CsOnTime CS signal assertion time from Start Access Time
RFBI_ONOFF_TIMEi Register 0(19) ns
CsOffTime CS signal deassertion time from Start Access Time
RFBI_ONOFF_TIMEi Register 40(19) ns
WeOnTime WE signal assertion time from Start Access Time
RFBI_ONOFF_TIMEi Register 0(19) ns
WeOffTime WE signal deassertion time from Start Access Time
RFBI_ONOFF_TIMEi Register 20(19) ns
ReOnTime RE signal assertion time from Start Access Time
RFBI_ONOFF_TIMEi Register - ns
ReOffTime RE signal deassertion time from Start Access Time
RFBI_ONOFF_TIMEi Register - ns
WeCycleTime Write cycle time RFBI_CYCLE_TIMEi Register 40(19) ns
ReCycleTime Read cycle time RFBI_CYCLE_TIMEi Register - ns
CsPulseWidth CS pulse width RFBI_CYCLE_TIMEi Register 0(19) ns
rfbi_hsync[1:0]
rfbi_a0
rfbi_csx(A)
rfbi_wr
rfbi_da[n:0](B)
rfbi_rd
rfbi_te_vsync[1:0]
DATA0 DATA1
CsOnTime
CsOffTime
WeOffTime
CsOnTime
CsOffTime
WeOnTime
WeOffTime
CsPulseWidth
WeCycleTime
WeOnTime
WeCycleTime
216
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) See DM Operating Condition Addendum for OPP voltages.
(2) At OPP100, L4 clock is 100 MHz and at OPP50, L4 clock is 50 MHz.
(3) rfbi_wr must be at 25 MHz.
(4) A = (WECycleTime WEOffTime) × (TimeParaGranularity + 1) × L4CLK
(5) B = (WEOffTime WEOntime) × (TimeParaGranularity + 1) × L4CLK
(6) C = WEOnTime × (TimeParaGranularity + 1) × L4CLK
(7) D = (WECycleTime + CSPulseWidth WEOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is
enabled.
(8) In rfbi_csx, x is equal to 0 or 1.
(9) E = (WEOnTime CSOnTime) × (TimeParaGranularity + 1) × L4CLK
(10) F = (CSOffTime WEOffTime) × (TimeParaGranularity + 1) × L4CLK
(11) 16-bit parallel output interface is selected in DSS register.
(12) G = WECycleTime × (TimeParaGranularity + 1) × L4CLK
(13) H = REOnTime × (TimeParaGranularity + 1) × L4CLK
(14) I = (RECycleTime + CSPulseWidth REOffTime) × (TimeParaGranularity + 1) × L4CLK if mode Write to Read or Read to Write is
enabled.
(15) J = (RECycleTime REOffTime) × (TimeParaGranularity + 1) × L4CLK
(16) K = (REOffTime REOntime) × (TimeParaGranularity + 1) × L4CLK
(17) L = (REOnTime CSOnTime) × (TimeParaGranularity + 1) × L4CLK
(18) M = (CSOffTime REOffTime) × (TimeParaGranularity + 1) × L4CLK
(19) These values are calculated by the following formula: RFBI Register (Value) × L4 Clock (ns).
A. In rfbi_csx, x is equal to 0 or 1.
B. rfbi_da[n:0], n up to 15
Figure 5-98. DSS—RFBI Mode—Pico DLP—Command / Data Write
217
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.10 Camera (VPFE)
The camera (VPFE) controller receives input video/image data from external capture devices and stores it
to external memory which is transferred into the external memory via a built-in DMA engine. An internal
buffer block provides a high bandwidth path between the module and the external memory. The Cortex-A9
will process the image data based on application requirements.
5.13.10.1 Camera (VPFE) Timing
The following tables assume testing over recommended operating conditions.
Table 5-81. VPFE Timing Requirements
NO.
1.8 V, 3.3 V
UNITOPP50 OPP100
MIN MAX MIN MAX
VF1 tc(CAMx_CLK) Cycle time, pixel clock input, CAMx_CLK 20 13.3 ns
VF2 tsu(CAMx_D-
CAMx_CLK) Setup time, CAMx_D to CAMx_CLK rising edge 7.5 3.5 ns
VF3 tsu(CAMx_HD-
CAMx_CLK) Setup time, CAMx_HD to CAMx_CLK rising edge 7.5 3.5 ns
VF4 tsu(CAMx_VD-
CAMx_CLK) Setup time, CAMx_VD to CAMx_CLK rising edge 7.5 3.5 ns
VF5 tsu(CAMx_WEN-
CAMx_CLK) Setup time, CAMx_WEN to CAMx_CLK rising edge 7.5 3.5 ns
VF6 tsu(C_FLD-CAMx_CLK) Setup time, CAMx_FIELD to CAMx_CLK rising edge 7.5 3.5 ns
VF7 th(CAMx_CLK-
CAMx_D) Hold time, CAMx_D valid after CAMx_CLK rising edge 6.5 2.5 ns
VF8 th(VDIN-HD-
CAMx_CLK) Hold time, CAMx_HD to CAMx_CLK rising edge 6.5 2.5 ns
VF9 th(CAMx_VD-
CAMx_CLK) Hold time, CAMx_VD to CAMx_CLK rising edge 6.5 2.5 ns
VF10 th(CAMx_WEN-
CAMx_CLK) Hold time, CAMx_WEN to CAMx_CLK rising edge 6.5 2.5 ns
VF11 th(C_FLD-CAMx_CLK) Hold time, CAMx_FIELD to CAMx_CLK rising edge 6.5 2.5 ns
Table 5-82. VPFE Output Switching Characteristics
NO. PARAMETER
1.8 V, 3.3 V
OPP50 OPP100 UNIT
MIN MAX MIN MAX
VF12 td(CAMx_HD-
CAMx_CLK) Output delay time, CAMx_HD to CLK rising edge 9 15 2 9 ns
VF13 td(CAMx_VD-
CAMx_CLK) Output delay time, CAMx_VD to CLK rising edge 9 15 2 9 ns
VF14 td(CAMx_WEN-
CAMx_CLK) Output delay time, CAMx_WEN to CLK rising edge 9 15 2 9 ns
CAMx_D[xx]
CAMx_HD
(Falling Edge)
CAMx_HD
(Rising Edge)
VF19 VF20
VF18
CAMx_CLK
(Falling Edge)
VF12,
VF13, VF14
CAMx_CLK
(Rising Edge)
CAMx_HD,
CAMx_VD,
CAMx_FIELD
VF15, VF16,
VF17 VF12, VF13, VF14
VF15, VF16,
VF17
VF1
CAMx_CLK
(Falling Edge)
VF2 VF7 VF7
VF10
VF8, VF9, VF11
VF3, VF4, VF6
VF5
CAMx_CLK
(Rising Edge)
CAMx_D[xx]
CAMx_HD,
CAMx_VD,
CAMx_FIELD
CAMx_WEN
218
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-99. Camera Input Timings
Figure 5-100. Camera Output Timings
Figure 5-101. Camera Input Timings With VDIN0_HD as Pixel Clock
219
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.11 Inter-Integrated Circuit (I2C)
For more information, see the Inter-Integrated Circuit (I2C) section of the AM437x ARM Cortex-A9
Microprocessors (MPUs) Technical Reference Manual.
5.13.11.1 I2C Electrical Data and Timing
Table 5-83. I2C Timing Conditions - Slave Mode
TIMING CONDITION PARAMETER STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
Output Condition
CbCapacitive load for each bus line 400 400 pF
Table 5-84. Timing Requirements for I2C Input Timings
(see Figure 5-102)
NO. STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
1 tc(SCL) Cycle time, SCL 10 2.5 us
2 tsu(SCLH-SDAL) Setup Time, SCL high before SDA low (for a repeated
START condition) 4.7 0.6 us
3 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a
repeated START condition) 4 0.6 us
4 tw(SCLL) Pulse duration, SCL low 4.7 1.3 us
5 tw(SCLH) Pulse duration, SCL high 4 0.6 us
6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 100(1) ns
7 th(SCLL-SDAV) Hold time, SDA valid after SCL low 0(2) 3.45(3) 0(2) 0.9(3) us
8 tw(SDAH) Pulse duration, SDA high between STOP and START
conditions 4.7 1.3 us
9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb(4) 300 ns
10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb(4) 300 ns
11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb(4) 300 ns
12 tf(SCL) Fall time, SCL 300 20 + 0.1Cb(4) 300 ns
13 tsu(SCLH-SDAH) Setup time, high before SDA high (for STOP condition) 4 0.6 us
14 tw(SP) Pulse duration, spike (must be suppressed) 0 50 0 50 ns
(1) A fast-mode I2C-bus™ device can be used in a standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH)250 ns must then be
met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device stretches the LOW
period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the
standard-mode I2C-Bus Specification) before the SCL line is released.
(2) A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the
undefined region of the falling edge of SCL.
(3) The maximum th(SDA-SCLL) has only to be met if the device does not stretch the low period [tw(SCLL)] of the SCL signal.
(4) Cb is line load in pF.
25
23
19
18
22
27
20
21
17
18
28
Stop Start Repeated
Start
Stop
I2C[x]_SDA
I2C[x]_SCL
16
26 24
10
8
4
3
7
12
5
614
2
3
13
Stop Start Repeated
Start
Stop
I2C[x]_SDA
I2C[x]_SCL
1
11 9
220
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-102. I2C Receive Timing
Table 5-85. Switching Characteristics for I2C Output Timings
(see Figure 5-120)
NO. PARAMETER STANDARD MODE FAST MODE UNIT
MIN MAX MIN MAX
15 tc(SCL) Cycle time, SCL 10 2.5 us
16 tsu(SCLH-SDAL) Setup Time, SCL high before SDA low (for a repeated
START condition) 4.7 0.6 us
17 th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a
repeated START condition) 4 0.6 us
18 tw(SCLL) Pulse duration, SCL low 4.7 1.3 us
19 tw(SCLH) Pulse duration, SCL high 4 0.6 us
20 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 100 ns
21 th(SCLL-SDAV) Hold time, SDA valid after SCL low 0 3.45 0 0.9 us
22 tw(SDAH) Pulse duration, SDA high between STOP and START
conditions 4.7 1.3 us
23 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb(1) 300 ns
24 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb(1) 300 ns
25 tf(SDA) Fall time, SDA 300 20 + 0.1Cb(1) 300 ns
26 tf(SCL) Fall time, SCL 300 20 + 0.1Cb(1) 300 ns
27 tsu(SCLH-SDAH) Setup time, high before SDA high (for STOP condition) 4 0.6 us
(1) Cb is line load in pF.
Figure 5-103. I2C Transmit Timing
221
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.12 Multichannel Audio Serial Port (McASP)
The multichannel audio serial port (McASP) functions as a general-purpose audio serial port optimized for
the needs of multichannel audio applications. The McASP is useful for time-division multiplexed (TDM)
stream, Inter-Integrated Sound (I2S) protocols, and inter-component digital audio interface transmission
(DIT).
5.13.12.1 McASP Device-Specific Information
The device includes two multichannel audio serial port (McASP) interface peripherals (McASP0 and
McASP1). The McASP module consists of a transmit and receive section. These sections can operate
completely independently with different data formats, separate master clocks, bit clocks, and frame syncs
or, alternatively, the transmit and receive sections may be synchronized. The McASP module also
includes shift registers that may be configured to operate as either transmit data or receive data.
The transmit section of the McASP can transmit data in either a time-division-multiplexed (TDM)
synchronous serial format or in a DIT format where the bit stream is encoded for SPDIF, AES-3, IEC-
60958, CP-430 transmission. The receive section of the McASP peripheral supports the TDM
synchronous serial format.
The McASP module can support one transmit data format (either a TDM format or DIT format) and one
receive format at a time. All transmit shift registers use the same format and all receive shift registers use
the same format; however, the transmit and receive formats need not be the same. Both the transmit and
receive sections of the McASP also support burst mode, which is useful for nonaudio data (for example,
passing control information between two devices).
The McASP peripheral has additional capability for flexible clock generation and error detection/handling,
as well as error management.
The device McASP0 and McASP1 modules have up to four serial data pins each. The McASP FIFO size
is 256 bytes and two DMA and two interrupt requests are supported. Buffers are used transparently to
better manage DMA, which can be leveraged to manage data flow more efficiently.
For more detailed information on and the functionality of the McASP peripheral, see the Multichannel
Audio Serial Port (McASP) section of the AM437x ARM Cortex-A9 Microprocessors (MPUs) Technical
Reference Manual.
222
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.12.2 McASP Electrical Data and Timing
Table 5-86. McASP Timing Conditions
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
tRInput signal rise time 1(1) 4(1) ns
tFInput signal fall time 1(1) 4(1) ns
Output Condition
CLOAD Output load capacitance 15 30 pF
(1) Except when specified otherwise.
Table 5-87. Timing Requirements for McASP(1)
(see Figure 5-104)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
1 tc(AHCLKRX) Cycle time, McASP[x]_AHCLKR and
McASP[x]_AHCLKX 20 38.46 ns
2 tw(AHCLKRX) Pulse duration, McASP[x]_AHCLKR and
McASP[x]_AHCLKX high or low 0.5P - 2.5(2) 0.5P - 2.5(2) ns
3 tc(ACLKRX) Cycle time, McASP[x]_ACLKR and
McASP[x]_ACLKX 20 38.46 ns
4 tw(ACLKRX) Pulse duration, McASP[x]_ACLKR and
McASP[x]_ACLKX high or low 0.5R - 2.5(3) 0.5R - 2.5(3) ns
5tsu(AFSRX-
ACLKRX)
Setup time, McASP[x]_AFSR and
McASP[x]_AFSX input valid before
McASP[x]_ACLKR and
McASP[x]_ACLKX
ACLKR and
ACLKX int 12.3 15.5
ns
ACLKR and
ACLKX ext in 4 6
ACLKR and
ACLKX ext out 4 6
6th(ACLKRX-
AFSRX)
Hold time, McASP[x]_AFSR and
McASP[x]_AFSX input valid after
McASP[x]_ACLKR and
McASP[x]_ACLKX
ACLKR and
ACLKX int -1 -1
ns
ACLKR and
ACLKX ext in 1.6 2.3
ACLKR and
ACLKX ext out 1.6 2.3
7 tsu(AXR-ACLKRX) Setup time, McASP[x]_AXR input
valid before McASP[x]_ACLKR and
McASP[x]_ACLKX
ACLKR and
ACLKX int 12.3 15.5
ns
ACLKR and
ACLKX ext in 4 6
ACLKR and
ACLKX ext out 4 6
8 th(ACLKRX-AXR) Hold time, McASP[x]_AXR input
valid after McASP[x]_ACLKR and
McASP[x]_ACLKX
ACLKR and
ACLKX int -1 -1
ns
ACLKR and
ACLKX ext in 1.6 2.3
ACLKR and
ACLKX ext out 1.6 2.3
(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1
ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR=1
ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
(2) P = McASP[x]_AHCLKR and McASP[x]_AHCLKX period in nano seconds (ns).
(3) R = McASP[x]_ACLKR and McASP[x]_ACLKX period in ns.
8
7
4
4
3
2
2
1
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
McASP[x]_ACLKR/X (Falling Edge Polarity)
McASP[x]_AHCLKR/X (Rising Edge Polarity)
McASP[x]_AFSR/X (Bit Width, 0 Bit Delay)
McASP[x]_AFSR/X (Bit Width, 1 Bit Delay)
McASP[x]_AFSR/X (Bit Width, 2 Bit Delay)
McASP[x]_AFSR/X (Slot Width, 0 Bit Delay)
McASP[x]_AFSR/X (Slot Width, 1 Bit Delay)
McASP[x]_AFSR/X (Slot Width, 2 Bit Delay)
McASP[x]_AXR[x] (Data In/Receive)
6
5
McASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(A)
McASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(B)
223
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
Figure 5-104. McASP Input Timing
224
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-88. Switching Characteristics for McASP(1)
(see Figure 5-105)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
9 tc(AHCLKRX) Cycle time, McASP[x]_AHCLKR and
McASP[x]_AHCLKX 20(2) 38.46 ns
10 tw(AHCLKRX) Pulse duration, McASP[x]_AHCLKR and
McASP[x]_AHCLKX high or low 0.5P - 2.5(3) 0.5P - 2.5(3) ns
11 tc(ACLKRX) Cycle time, McASP[x]_ACLKR and
McASP[x]_ACLKX 20 38.46 ns
12 tw(ACLKRX) Pulse duration, McASP[x]_ACLKR and
McASP[x]_ACLKX high or low 0.5P - 2.5(3) 0.5P - 2.5(3) ns
13 td(ACLKRX-AFSRX)
Delay time, McASP[x]_ACLKR and
McASP[x]_ACLKX transmit edge to
McASP[x]_AFSR and
McASP[x]_AFSX output valid
ACLKR and
ACLKX int 0 7.25 0 8.5
ns
ACLKR and
ACLKX ext in 2 14 2.7 18
Delay time, McASP[x]_ACLKR and
McASP[x]_ACLKX transmit edge to
McASP[x]_AFSR and
McASP[x]_AFSX output valid with
Pad Loopback
ACLKR and
ACLKX ext
out 2 14 2.7 18
14 td(ACLKX-AXR)
Delay time, McASP[x]_ACLKX
transmit edge to McASP[x]_AXR
output valid
ACLKX int 0 7.25 0 8.5
ns
ACLKX ext in 2 14 2.7 18
Delay time, McASP[x]_ACLKX
transmit edge to McASP[x]_AXR
output valid with Pad Loopback ACLKX ext
out 2 14 2.7 18
15 tdis(ACLKX-AXR)
Disable time, McASP[x]_ACLKX
transmit edge to McASP[x]_AXR
output high impedance
ACLKX int 0 7.25 0 8.5
ns
ACLKX ext in 2 14 2.7 18
Disable time, McASP[x]_ACLKX
transmit edge to McASP[x]_AXR
output high impedance with Pad
Loopback
ACLKX ext
out 2 14 2.7 18
(1) ACLKR internal: ACLKRCTL.CLKRM = 1, PDIR.ACLKR = 1
ACLKR external input: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0
ACLKR external output: ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1
ACLKX internal: ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1
ACLKX external input: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0
ACLKX external output: ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1
(2) 50 MHz
(3) P = AHCLKR and AHCLKX period.
15
14
13
13
12
12
11
10
10
9
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
13
13
13 1313
McASP[x]_ACLKR/X (Falling Edge Polarity)
McASP[x]_AHCLKR/X (Rising Edge Polarity)
McASP[x]_AFSR/X (Bit Width, 0 Bit Delay)
McASP[x]_AFSR/X (Bit Width, 1 Bit Delay)
McASP[x]_AFSR/X (Bit Width, 2 Bit Delay)
McASP[x]_AFSR/X (Slot Width, 0 Bit Delay)
McASP[x]_AFSR/X (Slot Width, 1 Bit Delay)
McASP[x]_AFSR/X (Slot Width, 2 Bit Delay)
McASP[x]_AXR[x] (Data Out/Transmit)
McASP[x]_ACLKR/X (CLKRP = CLKXP = 1)(A)
McASP[x]_ACLKR/X (CLKRP = CLKXP = 0)(B)
225
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASP
receiver is configured for rising edge (to shift data in).
B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASP
receiver is configured for falling edge (to shift data in).
Figure 5-105. McASP Output Timing
226
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.13 Multichannel Serial Port Interface (McSPI)
For more information, see the Multichannel Serial Port Interface (McSPI) section of the AM437x ARM
Cortex-A9 Microprocessors (MPUs) Technical Reference Manual.
5.13.13.1 McSPI Electrical Data and Timing
The following timings are applicable to the different configurations of McSPI in master or slave mode for
any McSPI and any channel (n).
5.13.13.1.1 McSPI—Slave Mode
Table 5-89. McSPI Timing Conditions—Slave Mode
TIMING CONDITION PARAMETER MIN MAX UNIT
Input Conditions
trInput signal rise time 5 ns
tfInput signal fall time 5 ns
Output Condition
Cload Output load capacitance 20 pF
Table 5-90. Timing Requirements for McSPI Input Timings—Slave Mode
(see Figure 5-106)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
1 tc(SPICLK) Cycle time, SPI_CLK 62.5 83.2 ns
2 tw(SPICLKL) Typical Pulse duration, SPI_CLK low 0.45P(1) 0.45P(1) 0.45P(1) 0.45P(1) ns
3 tw(SPICLKH) Typical Pulse duration, SPI_CLK high 0.45P(1) 0.45P(1) 0.45P(1) 0.45P(1) ns
4 tsu(SIMO-SPICLK) Setup time, SPI_D[x] (SIMO) valid before SPI_CLK
active edge(2)(3) 12 13 ns
5 th(SPICLK-SIMO) Hold time, SPI_D[x] (SIMO) valid after SPI_CLK
active edge(2)(3) 12 13 ns
8 tsu(CS-SPICLK) Setup time, SPI_CS valid before SPI_CLK first
edge(2) 12 13 ns
9 th(SPICLK-CS) Hold time, SPI_CS valid after SPI_CLK last edge(2) 12 13 ns
(1) P = SPI_CLK period.
(2) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and
capture input data.
(3) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.
Table 5-91. Switching Characteristics for McSPI Output Timings—Slave Mode
(see Figure 5-107)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
6 td(SPICLK-SOMI) Delay time, SPI_CLK active edge to
SPI_D[x] (SOMI) transition(1)(2) 17 0 19 ns
7 td(CS-SOMI) Delay time, SPI_CS active edge to SPI_D[x]
(SOMI) transition(2) 26 29 ns
(1) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to drive output data and
capture input data.
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.
SPI_CS[x] (In)
SPI_SCLK (In)
SPI_SCLK (In)
SPI_D[x] (SIMO, In) Bit n-1 Bit n-2 Bit n-3 Bit n-4
Bit 0
PHA=0
EPOL=1
POL=0
POL=1
8
3
4
2
1
3
2
5
SPI_CS[x] (In)
SPI_SCLK (In)
SPI_SCLK (In)
SPI_D[x] ( )SIMO, In Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
PHA=1
EPOL=1
POL=0
POL=1
8
3
2
1
2
3
1
4
5
4
5 5
4
9
1
9
227
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-106. SPI Slave Mode Receive Timing
SPI_CS[x] (In)
SPI_SCLK (In)
SPI_SCLK (In)
SPI_D[x] (SOMI, Out)
Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=0
EPOL=1
POL=0
POL=1
8
3
7
6
2
1
2
1
SPI_CS[x] (In)
SPI_SCLK (In)
SPI_SCLK (In)
SPI_D[x] (SOMI, Out) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
PHA=1
EPOL=1
POL=0
POL=1
8
3
6
6
2
1
2
3
1
6 6
9
6
9
3
228
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-107. SPI Slave Mode Transmit Timing
229
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.13.1.2 McSPI—Master Mode
Table 5-92. McSPI Timing Conditions—Master Mode
TIMING CONDITION PARAMETER LOW LOAD HIGH LOAD UNIT
MIN MAX MIN MAX
Input Conditions
trInput signal rise time 4 8 ns
tfInput signal fall time 4 8 ns
Output Condition
Cload Output load capacitance 5 25 pF
Table 5-93. Timing Requirements for McSPI Input Timings—Master Mode
(see Figure 5-108)
NO.
OPP100 OPP50
UNITLOW LOAD HIGH LOAD LOW LOAD HIGH LOAD
MIN MAX MIN MAX MIN MAX MIN MAX
4 tsu(SOMI-SPICLK)(1) Setup time, SPI_D[x]
(SOMI) valid before
SPI_CLK active edge(2) 3 4.5 4.5 4.5 ns
5 th(SPICLK-SOMI)(1) Hold time, SPI_D[x]
(SOMI) valid after
SPI_CLK active edge(2) 6 6 6 6 ns
(1) This timing applies to all configurations regardless of MCSPIX_CLK polarity and which clock edges are used to capture input data.
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.
Table 5-94. Switching Characteristics for McSPI Output Timings—Master Mode
(see Figure 5-109)
NO. PARAMETER
OPP100 OPP50
UNITLOW LOAD HIGH LOAD LOW LOAD HIGH LOAD
MIN MAX MIN MAX MIN MAX MIN MAX
1 tc(SPICLK) Cycle time, SPI_CLK 20.8 41.6 41.6 41.6 ns
2 tw(SPICLKL) Typical Pulse duration,
SPI_CLK low 0.45P(1) 0.45P(1) 0.45P(1) 0.55P(1) 0.45P(1) 0.45P(1) 0.45P(1) 0.45P(1) ns
3
tw(SPICLKH) Typical Pulse duration,
SPI_CLK high 0.45P(1) 0.45P(1) 0.45P(1) 0.55P(1) 0.45P(1) 0.45P(1) 0.45P(1) 0.45P(1) ns
tr(SPICLK) Rising time, SPI_CLK 3.5 3.5 3.5 3.82 ns
tf(SPICLK) Falling time, SPI_CLK 3.5 3.5 3.5 3.44 ns
6td(SPICLK-
SIMO)
Delay time, SPI_CLK active
edge to SPI_D[x] (SIMO)
transition(2) -1 4.5 -1 6.5 0 6.5 0 6.5 ns
7 td(CS-SIMO) Delay time, SPI_CS active
edge to SPI_D[x] (SIMO)
transition(2) 4.5 6.5 6.5 6.5 ns
8 td(CS-SPICLK) Delay time, SPI_CS
active to SPI_CLK
first edge
Mode 1
and 3(3) A - 4.2(4) A - 4.2(4) A - 5.2(4) A - 5.2(4) ns
Mode 0
and 2(3) B - 4.2(5) B - 4.2(5) B - 5.2(5) B - 5.2(5) ns
9 td(SPICLK-CS) Delay time,
SPI_CLK last edge
to SPI_CS inactive
Mode 1
and 3(3) B - 4.2(5) B - 4.2(5) B - 5.2(5) B - 5.2(5) ns
Mode 0
and 2(3) A - 4.2(4) A - 4.2(4) A - 5.2(4) A - 5.2(4) ns
(1) P = SPI_CLK period.
(2) Pins SPIx_D0 and SPIx_D1 can function as SIMO or SOMI.
(3) The polarity of SPIx_CLK and the active edge (rising or falling) on which mcspix_simo is driven and mcspix_somi is latched is all
software configurable:
SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 1 (Modes 1 and 3).
SPIx_CLK(1) phase programmable with the bit PHA of MCSPI_CH(i)CONF register: PHA = 0 (Modes 0 and 2).
SPI_CS[x] (Out)
SPI_SCLK (Out)
SPI_SCLK (Out)
SPI_D[x] (SOMI, In) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=0
EPOL=1
POL=0
POL=1
8 9
3
4
2
1
2
3
5
SPI_CS[x] (Out)
SPI_SCLK (Out)
SPI_SCLK (Out)
SPI_D[x] (SOMI, In) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
PHA=1
EPOL=1
POL=0
POL=1
8 9
3
2
1
2
3
1
4
5
4
5 5
4
1
230
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(4) Case P = 20.8 ns, A = (TCS+1)*TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register).
Case P > 20.8 ns, A = (TCS+0.5)*Fratio*TSPICLKREF (TCS is a bit field of MCSPI_CH(i)CONF register).
Note: P = SPI_CLK clock period.
(5) B = (TCS+0.5)*TSPICLKREF*Fratio (TCS is a bit field of MCSPI_CH(i)CONF register, Fratio: Even2).
Figure 5-108. SPI Master Mode Receive Timing
SPI_CS[x] (Out)
SPI_SCLK (Out)
SPI_SCLK (Out)
SPI_D[x] (SIMO, Out) Bit n-1 Bit n-2 Bit n-3 Bit n-4 Bit 0
PHA=0
EPOL=1
POL=0
POL=1
8 9
3
7
6
2
1
2
3
1
6
SPI_CS[x] (Out)
SPI_SCLK (Out)
SPI_SCLK (Out)
SPI_D[x] (SIMO, Out) Bit n-1 Bit n-2 Bit n-3 Bit 1 Bit 0
PHA=1
EPOL=1
POL=0
POL=1
8 9
3
6
6
2
1
2
3
1
6 6
231
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-109. SPI Master Mode Transmit Timing
QSPI_CSn
QSPI_CLK
QSPI_D[3:0] n-1 n-2
Command Command
1
Read Data Read Data
0
1
32
4
66
5
8
78
7
maxmin
232
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) Maximum supported frequency is 48 MHz.
(2) P = QSPI_CLK period.
(3) M = Programmable via Data Delay Zero (DD0) register.
5.13.14 Quad Serial Port Interface (QSPI)
The Quad SPI (QSPI) module allows single, dual or quad read access to external SPI devices. This
module provides a memory mapped register interface, which provides a direct interface to access data
from external SPI devices and to simplify software requirements. It functions as a master only. There is
one QSPI module in the device and it is primary intended for fast booting from quad-SPI flash
memories.
General SPI features:
Programmable clock divider
Six pin interface (QSPI_CLK, QSPI_D0, QSPI_D1,QSPI_D2,QSPI_D3, QSPI_CS0)
One external chip select signal
Support for 3-, 4- or 6-pin SPI interface
Programmable CS0 to DATA_OUT delay from 0 to 3 QSPI_CLKs
Only supports SPI MODE 3
NOTE
For more information, see the Quad Serial Port Interface section of the AM437x ARM
Cortex-A9 Microprocessors (MPUs) Technical Reference Manual.
Table 5-95 displays the switching characteristics for the Quad SPI module.
Table 5-95. QSPI Switching Characteristics
(see Figure 5-110 and Figure 5-111)
NO. PARAMETER OPP100 OPP50
MIN MAX MIN MAX UNIT
1 tc(QSPI_CLK) Cycle time, QSPI_CLK 20.8(1) 20.8(1) ns
2 tw(QSPI_CLKL) Pulse duration, QSPI_CLK low 9.77(1) 9.77(1) ns
3 tw(QSPI_CLKH) Pulse duration, QSPI_CLK high 9.77(1) 9.77(1) ns
4 td(CS-QSPI_CLK) Delay time, QSPI_CSn active edge to
QSPI_CLK transition M*P+5(2)(3) M*P+5(2)(3) ns
5 td(QSPI_CLK-
QSPI_CSn) Delay time, QSPI_CLK transition to
QSPI_CSn inactive edge M*P+5(2)(3) M*P+5(2)(3) ns
6 td(QSPI_CLK-D1) Delay time, QSPI_CLK active edge to
QSPI_D[0] transition 0 5.5 0 5.5 ns
7 tsu(D-QSPI_CLK) Setup time, QSPI_D[3:0] valid before active
QSPI_CLK edge 8.5 8.5 ns
8 th(QSPI_CLK-D) Hold time, QSPI_D[3:0] valid after active
QSPI_CLK edge 0 0 ns
Figure 5-110. QSPI Read Active High Polarity
QSPI_CS
QSPI_CLK
QSPI_D[0] n-1 n-2
Command Command
1
Write Data Write Data
QSPI_D[3:1]
1
32
4
0
6
6
6
6
5
min max
min max
233
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-111. QSPI Write Active High Polarity
HDQ
tCYCD
tDW0
tDW1
HDQ
tHW0
tCYCH
tHW1
HDQ
tBtBR
234
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.15 HDQ/1-Wire Interface (HDQ/1-Wire)
NOTE
For more information, see HDQ/1-Wire Interface chapter of the AM437x ARM Cortex-A9
Microprocessors (MPUs) Technical Reference Manual.
The module is intended to work with both HDQ and 1-Wire protocols. The protocols use one wire to
communicate between the master and the slave. The protocols employ an asynchronous return to one
mechanism where, after any command, the line is pulled high.
5.13.15.1 HDQ Protocol
Table 5-96 and Table 5-97 assume testing over the recommended operating conditions (see Figure 5-112,
Figure 5-113,Figure 5-114, and Figure 5-115).
Table 5-96. HDQ Timing Requirements
PARAMETER MIN MAX UNIT
tCYCD Bit window 190 μs
tHW1 Reads 1 32 66 μs
tHW0 Reads 0 70 145 μs
tRSPS Command to host respond time(1) 190 320 μs
(1) Defined by software
Table 5-97. HDQ Switching Characteristics
PARAMETER DESCRIPTION MIN MAX UNIT
tBBreak timing 190 μs
tBR Break recovery 40 μs
tCYCH Bit window 190 250 μs
tDW1 Sends 1 (write) 0.5 50 μs
tDW0 Sends 0 (write) 86 145 μs
Figure 5-112. HDQ Break (Reset) Timing
Figure 5-113. HDQ Read Bit Timing (Data)
Figure 5-114. HDQ Write Bit Timing (Command/Address or Data)
1-WIRE tLOW1
tLOW0
t _and_t
SLOT REC
1-WIRE
t _and_t
SLOT REC
t _and_t
RDV REL
tLOWR
1-WIRE tRTSL tPDH
tRSTH
tPDL
HDQ
Break
0_(LSB)
7_(MSB) 0_(LSB)
Command_byte_written Data_byte_received
16
1
6
tRSPS
235
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-115. HDQ Communication Timing
5.13.15.2 1-Wire Protocol
Table 5-98 and Table 5-99 assume testing over the recommended operating conditions (see Figure 5-116,
Figure 5-117, and Figure 5-118).
Table 5-98. HDQ/1-Wire Timing Requirements—1-Wire Mode
PARAMETER MIN MAX UNIT
tPDH Presence pulse delay high 15 60 μs
tPDL Presence pulse delay low 60 240 μs
tRDV + tREL Read bit-zero time 60 μs
Table 5-99. HDQ/1-Wire Switching Characteristics—1-Wire Mode
PARAMETER DESCRIPTION MIN MAX UNIT
tRSTL Reset time low 480 960 μs
tRSTH Reset time high 480 μs
tSLOT Bit cycle time 60 120 μs
tLOW1 Write bit-one time 1 15 μs
tLOW0 Write bit-zero time 60 120 μs
tREC Recovery time 1 μs
tLOWR Read bit strobe time 1 15 μs
Figure 5-116. 1-Wire Break (Reset) Timing
Figure 5-117. 1-Wire Read Bit Timing (Data)
Figure 5-118. 1-Wire Write Bit Timing (Command/Address or Data)
GPO[n:0]
3
12
GPI[m:0]
3
12
236
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.16 Programmable Real-Time Unit Subsystem and Industrial Communication
Subsystem (PRU-ICSS)
For more information, see the Programmable Real-Time Unit Subsystem and Industrial Communication
Subsystem Interface (PRU-ICSS) section of the AM437x Sitara Processors Technical Reference Manual.
5.13.16.1 Programmable Real-Time Unit (PRU-ICSS PRU)
Table 5-100. PRU-ICSS PRU Timing Conditions
TIMING CONDITION PARAMETER MIN MAX UNIT
Output Condition
Cload Capacitive load for each bus line 3 30 pF
5.13.16.1.1 PRU-ICSS PRU Direct Input/Output Mode Electrical Data and Timing
(1) P = L3_CLK (PRU-ICSS ocp clock) period.
(2) n = 16, 11 for PRU-ICSS1 and 19 for PRU-ICSS0
Table 5-101. PRU-ICSS PRU Timing Requirements - Direct Input Mode
(see Figure 5-119)
NO. MIN MAX UNIT
1 tw(GPI) Pulse width, GPI 2*P(1) ns
2tr(GPI) Rise time, GPI 1.00 3.00 ns
tf(GPI) Fall time, GPI 1.00 3.00
3 tsk(GPI) Internal skew between GPI[n:0] signals(2) 5.00 ns
(1) P = L3_CLK (PRU-ICSS ocp clock) period.
(2) n = 11 for PRU-ICSS1 and 19 for PRU-ICSS0
Figure 5-119. PRU-ICSS PRU Direct Input Timing
Table 5-102. PRU-ICSS PRU Switching Requirements - Direct Output Mode
(see Figure 5-120)
NO. MIN MAX UNIT
1 tw(GPO) Pulse width, GPO 2*P(1) ns
2tr(GPO) Rise time, GPO 1.00 3.00 ns
tf(GPO) Fall time, GPO 1.00 3.00
3 tsk(GPO) Internal skew between GPO[n:0] signals(2) 5.00 ns
Figure 5-120. PRU-ICSS PRU Direct Output Timing
CLOCKIN
DATAIN
1
5
4
2
3
678
CLOCKIN
DATAIN
1
4
5
3
2
678
237
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.16.1.2 PRU-ICSS PRU Parallel Capture Mode Electrical Data and Timing
Table 5-103. PRU-ICSS PRU Timing Requirements - Parallel Capture Mode
(see Figure 5-121 and Figure 5-122)
NO. MIN MAX UNIT
1 tc(CLOCKIN) Cycle time, CLOCKIN 20.00 ns
2 tw(CLOCKIN_L) Pulse duration, CLOCKIN low 10.00 ns
3 tw(CLOCKIN_H) Pulse duration, CLOCKIN high 10.00 ns
4 tr(CLOCKIN) Rising time, CLOCKIN 1.00 3.00 ns
5 tf(CLOCKIN) Falling time, CLOCKIN 1.00 3.00 ns
6 tsu(DATAIN-CLOCKIN) Setup time, DATAIN valid before CLOCKIN 4.00 ns
7 th(CLOCKIN-DATAIN) Hold time, DATAIN valid after CLOCKIN 0 ns
8tr(DATAIN) Rising time, DATAIN 1.00 3.00 ns
tf(DATAIN) Falling time, DATAIN 1.00 3.00
Figure 5-121. PRU-ICSS PRU Parallel Capture Timing - Rising Edge Mode
Figure 5-122. PRU-ICSS PRU Parallel Capture Timing - Falling Edge Mode
5.13.16.1.3 PRU-ICSS PRU Shift Mode Electrical Data and Timing
(1) P = L3_CLK (PRU-ICSS ocp clock) period.
Table 5-104. PRU-ICSS PRU Timing Requirements - Shift In Mode
(see Figure 5-123)
NO. MIN MAX UNIT
1 tc(DATAIN) Cycle time, DATAIN 10.00 ns
2 tw(DATAIN) Pulse width, DATAIN 0.45*P(1) 0.55*P(1) ns
3 tr(DATAIN) Rising time, DATAIN 1.00 3.00 ns
4 tf(DATAIN) Falling time, DATAIN 1.00 3.00 ns
CLOCKOUT
DATAOUT
1
3
4
2
6
5
DATAIN
1
3
4
2
238
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) P = L3_CLK (PRU-ICSS ocp clock) period.
Figure 5-123. PRU-ICSS PRU Shift In Timing
Table 5-105. PRU-ICSS PRU Switching Requirements - Shift Out Mode
(see Figure 5-124)
NO. MIN MAX UNIT
1 tc(CLOCKOUT) Cycle time, CLOCKOUT 10.00 ns
2 tw(CLOCKOUT) Pulse width, CLOCKOUT 0.45*P(1) 0.55*P(1) ns
3 tr(CLOCKOUT) Rising time, CLOCKOUT 1.00 3.00 ns
4 tf(CLOCKOUT) Falling time, CLOCKOUT 1.00 3.00 ns
5 td(CLOCKOUT-
DATAOUT) Delay time, CLOCKOUT to DATAOUT Valid -1.50 3.00 ns
6tr(DATAOUT) Rising time, DATAOUT 1.00 3.00 ns
tf(DATAOUT) Falling time, DATAOUT 1.00 3.00
Figure 5-124. PRU-ICSS PRU Shift Out Timing
5.13.16.1.4 PRU-ICSS Sigma Delta Electrical Data and Timing
Table 5-106. PRU-ICSS Timing Requirements - Sigma Delta Mode
(see Figure 5-125 and Figure 5-126)
NO. MIN MAX UNIT
1 tw(SDx_CLK) Pulse width, SDx_CLK 20.00 ns
2 tr(SDx_CLK) Rising time, SDx_CLK 1.00 3.00 ns
3 tf(SDx_CLK) Falling time, SDx_CLK 1.00 3.00 ns
4 tsu(SDx_D-SDx_CLK) Setup time, SDx_D valid before SDx_CLK active edge 10.00 ns
5 th(SDx_CLK-SDx_D) Hold time, SDx_D valid before SDx_CLK active edge 5.00 ns
6tr(SDx_D) Rising time, SDx_D 1.00 3.00 ns
tf(SDx_D) Falling time, SDx_D 1.00 3.00
SDx_CLK
SDx_D
23
1
6
4 5
SDx_CLK
SDx_D
32
1
6
4 5
239
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-125. PRU-ICSS Sigma Delta Timing - SD_CLK Rising Active Edge
Figure 5-126. PRU-ICSS Sigma Delta Timing - SD_CLK Falling Active Edge
5.13.16.1.5 PRU-ICSS ENDAT Electrical Data and Timing
Table 5-107. PRU-ICSS Timing Requirements - ENDAT Mode
(see Figure 5-127)
NO. MIN MAX UNIT
1 tw(ENDATx_IN) Pulse width, ENDATx_IN 40.00 ns
2 tr(ENDATx_IN) Rising time, ENDATx_IN 1.00 10.00 ns
3 tf(ENDATx_IN) Falling time, ENDATx_IN 1.00 10.00 ns
Table 5-108. PRU-ICSS Switching Requirements - ENDAT Mode
(see Figure 5-127)
NO. MIN MAX UNIT
4 tw(ENDATx_CLK) Pulse width, ENDATx_CLK 20.00 ns
5 tr(ENDATx_CLK) Rising time, ENDATx_CLK 1.00 3.00 ns
6 tf(ENDATx_CLK) Falling time, ENDATx_CLK 1.00 3.00 ns
7 td(ENDATx_OUT-
ENDATx_CLK) Delay time, ENDATx_CLK fall to ENDATx_OUT -10.00 10.00 ns
8tr(ENDATx_OUT) Rising time, ENDATx_OUT 1.00 3.00 ns
tf(ENDATx_OUT) Falling time, ENDATx_OUT 1.00 3.00
9 td(ENDATx_OUT_EN-
ENDATx_CLK) Delay time, ENDATx_CLK Fall to ENDATx_OUT_EN -10.00 10.00 ns
ENDATx_IN
ENDATx_CLK
65
4
8
3
2
1
9
ENDATx_OUT
ENDATx_OUT_EN
240
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-127. PRU-ICSS ENDAT Timing
5.13.16.2 PRU-ICSS EtherCAT (PRU-ICSS ECAT)
Table 5-109. PRU-ICSS ECAT Timing Conditions
TIMING CONDITION PARAMETER MIN MAX UNIT
Output Condition
Cload Capacitive load for each bus line 30 pF
5.13.16.2.1 PRU-ICSS ECAT Electrical Data and Timing
Table 5-110. PRU-ICSS ECAT Timing Requirements - Input Validated With LATCH_IN
(see Figure 5-128)
NO. MIN MAX UNIT
1 tw(EDIO_LATCH_IN) Pulse width, EDIO_LATCH_IN 100.00 ns
2 tr(EDIO_LATCH_IN) Rising time, EDIO_LATCH_IN 1.00 3.00 ns
3 tf(EDIO_LATCH_IN) Falling time, EDIO_LATCH_IN 1.00 3.00 ns
4 tsu(EDIO_DATA_IN-
EDIO_LATCH_IN) Setup time, EDIO_DATA_IN valid before
EDIO_LATCH_IN active edge 20.00 ns
5 th(EDIO_LATCH_IN-
EDIO_DATA_IN) Hold time, EDIO_DATA_IN valid after EDIO_LATCH_IN
active edge 20.00 ns
6tr(EDIO_DATA_IN) Rising time, EDIO_DATA_IN 1.00 3.00 ns
tf(EDIO_DATA_IN) Falling time, EDIO_DATA_IN 1.00 3.00
EDC_SYNCx_OUT
3
2
6
5
1
4
EDIO_DATA_IN[7:0]
EDIO_LATCH_IN
3
2
6
5
1
4
EDIO_DATA_IN[7:0]
241
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Figure 5-128. PRU-ICSS ECAT Input Validated With LATCH_IN Timing
Table 5-111. PRU-ICSS ECAT Timing Requirements - Input Validated With SYNCx
(see Figure 5-129)
NO. MIN MAX UNIT
1 tw(EDC_SYNCx_OUT) Pulse width, EDC_SYNCx_OUT 100.00 ns
2 tr(EDC_SYNCx_OUT) Rising time, EDC_SYNCx_OUT 1.00 3.00 ns
3 tf(EDC_SYNCx_OUT) Falling time, EDC_SYNCx_OUT 1.00 3.00 ns
4 tsu(EDIO_DATA_IN-
EDC_SYNCx_OUT) Setup time, EDIO_DATA_IN valid before
EDC_SYNCx_OUT active edge 24.50 ns
5 th(EDC_SYNCx_OUT-
EDIO_DATA_IN) Hold time, EDIO_DATA_IN valid after EDC_SYNCx_OUT
active edge 22.00 ns
6tr(EDIO_DATA_IN) Rising time, EDIO_DATA_IN 1.00 3.00 ns
tf(EDIO_DATA_IN) Falling time, EDIO_DATA_IN 1.00 3.00
Figure 5-129. PRU-ICSS ECAT Input Validated With SYNCx Timing
EDC_LATCHx_IN
3
2
1
EDIO_SOF
3
2
6
5
1
4
EDIO_DATA_IN[7:0]
242
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
(1) P = PRU-ICSS IEP clock source period.
Table 5-112. PRU-ICSS ECAT Timing Requirements - Input Validated With Start of Frame (SOF)
(see Figure 5-130)
NO. MIN MAX UNIT
1 tw(EDIO_SOF) Pulse duration, EDIO_SOF 4*P(1) 5*P(1) ns
2 tr(EDIO_SOF) Rising time, EDIO_SOF 1.00 3.00 ns
3 tf(EDIO_SOF) Falling time, EDIO_SOF 1.00 3.00 ns
4 tsu(EDIO_DATA_IN-
EDIO_SOF) Setup time, EDIO_DATA_IN valid before EDIO_SOF
active edge 20.00 ns
5 th(EDIO_SOF-EDIO_DATA_IN) Hold time, EDIO_DATA_IN valid after EDIO_SOF active
edge 20.00 ns
6tr(EDIO_DATA_IN) Rising time, EDIO_DATA_IN 1.00 3.00 ns
tf(EDIO_DATA_IN) Falling time, EDIO_DATA_IN 1.00 3.00
Figure 5-130. PRU-ICSS ECAT Input Validated With SOF
(1) P = PRU-ICSS IEP clock source period.
Table 5-113. PRU-ICSS ECAT Timing Requirements - LATCHx_IN
(see Figure 5-131)
NO. MIN MAX UNIT
1 tw(EDC_LATCHx_IN) Pulse duration, EDC_LATCHx_IN 3*P(1) ns
2 tr(EDC_LATCHx_IN) Rising time, EDC_LATCHx_IN 1.00 3.00 ns
3 tf(EDC_LATCHx_IN) Falling time, EDC_LATCHx_IN 1.00 3.00 ns
Figure 5-131. PRU-ICSS ECAT LATCHx_IN Timing
MDIO_CLK (Output)
1
2
MDIO_DATA (Input)
243
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
(1) P = PRU-ICSS IEP clock source period.
Table 5-114. PRU-ICSS ECAT Switching Requirements - Digital IOs
NO. MIN MAX UNIT
1 tw(EDIO_OUTVALID) Pulse duration, EDIO_OUTVALID 14*P(1) 32*P(1) ns
2 tr(EDIO_OUTVALID) Rising time, EDIO_OUTVALID 1.00 3.00 ns
3 tf(EDIO_OUTVALID) Falling time, EDIO_OUTVALID 1.00 3.00 ns
4 td(EDIO_OUTVALID-
EDIO_DATA_OUT) Delay time, EDIO_OUTVALID to EDIO_DATA_OUT 0.00 18*P(1) ns
5 tr(EDIO_DATA_OUT) Rising time, EDIO_DATA_OUT 1.00 3.00 ns
6 tf(EDIO_DATA_OUT) Falling time, EDIO_DATA_OUT 1.00 3.00 ns
7 tsk(EDIO_DATA_OUT) EDIO_DATA_OUT skew 8.00 ns
5.13.16.3 PRU-ICSS MII_RT and Switch
(1) Except when specified otherwise.
Table 5-115. PRU-ICSS MII_RT Switch Timing Conditions
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
trInput signal rise time 1(1) 5(1) ns
tfInput signal fall time 1(1) 5(1) ns
Output Condition
CLOAD Output load capacitance 20 pF
5.13.16.3.1 PRU-ICSS MDIO Electrical Data and Timing
Table 5-116. PRU-ICSS MDIO Timing Requirements - MDIO_DATA
(see Figure 5-132)
NO. MIN TYP MAX UNIT
1 tsu(MDIO-MDC) Setup time, MDIO valid before MDC high 90 ns
2 th(MDIO-MDC) Hold time, MDIO valid from MDC high 0 ns
Figure 5-132. PRU-ICSS MDIO_DATA Timing - Input Mode
Table 5-117. PRU-ICSS MDIO Switching Characteristics - MDIO_CLK
(see Figure 5-133)
NO. MIN TYP MAX UNIT
1 tc(MDC) Cycle time, MDC 400 ns
2 tw(MDCH) Pulse duration, MDC high 160 ns
3 tw(MDCL) Pulse duration, MDC low 160 ns
4 tt(MDC) Transition time, MDC 5 ns
MII_RXCLK
23
14
4
1
MDIO_CLK (Output)
MDIO_DATA (Output)
MDIO_CLK
23
14
4
244
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-133. PRU-ICSS MDIO_CLK Timing
Table 5-118. PRU-ICSS MDIO Switching Characteristics - MDIO_DATA
(see Figure 5-134)
NO. MIN TYP MAX UNIT
1 td(MDC-MDIO) Delay time, MDC high to MDIO valid 10 390 ns
Figure 5-134. PRU-ICSS MDIO_DATA Timing - Output Mode
5.13.16.3.2 PRU-ICSS MII_RT Electrical Data and Timing
Table 5-119. PRU-ICSS MII_RT Timing Requirements - MII_RXCLK
(see Figure 5-135)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1 tc(RX_CLK) Cycle time, RX_CLK 399.96 400.04 39.996 40.004 ns
2 tw(RX_CLKH) Pulse Duration, RX_CLK high 140 260 14 26 ns
3 tw(RX_CLKL) Pulse Duration, RX_CLK low 140 260 14 26 ns
4 tt(RX_CLK) Transition time, RX_CLK 3 3 ns
Figure 5-135. PRU-ICSS MII_RXCLK Timing
MII_MRCLK (Input)
1
2
MII_RXD[3:0],
MII_RXDV,
MII_RXER (Inputs)
MII_TXCLK
23
14
4
245
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-120. PRU-ICSS MII_RT Timing Requirements - MII[x]_TXCLK
(see Figure 5-136)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1 tc(TX_CLK) Cycle time, TX_CLK 399.96 400.04 39.996 40.004 ns
2 tw(TX_CLKH) Pulse Duration, TX_CLK high 140 260 14 26 ns
3 tw(TX_CLKL) Pulse Duration, TX_CLK low 140 260 14 26 ns
4 tt(TX_CLK) Transition time, TX_CLK 3 3 ns
Figure 5-136. PRU-ICSS MII_TXCLK Timing
Table 5-121. PRU-ICSS MII_RT Timing Requirements - MII_RXD[3:0], MII_RXDV, and MII_RXER
(see Figure 5-137)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1tsu(RXD-RX_CLK) Setup time, RXD[3:0] valid before RX_CLK 8 8 nstsu(RX_DV-RX_CLK) Setup time, RX_DV valid before RX_CLK
tsu(RX_ER-RX_CLK) Setup time, RX_ER valid before RX_CLK
2th(RX_CLK-RXD) Hold time RXD[3:0] valid after RX_CLK 8 8 nsth(RX_CLK-RX_DV) Hold time RX_DV valid after RX_CLK
th(RX_CLK-RX_ER) Hold time RX_ER valid after RX_CLK
Figure 5-137. PRU-ICSS MII_RXD[3:0], MII_RXDV, and MII_RXER Timing
3
2
Start
Bit
Data Bits
UART_TXD
5
Data Bits
Bit
Start
4
UART_RXD
1
MII_TXCLK (input)
MII_TXD[3:0],
MII_TXEN (outputs)
246
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-122. PRU-ICSS MII_RT Switching Characteristics - MII_TXD[3:0] and MII_TXEN
(see Figure 5-138)
NO. 10 Mbps 100 Mbps UNIT
MIN TYP MAX MIN TYP MAX
1td(TX_CLK-TXD) Delay time, TX_CLK high to TXD[3:0] valid 5 25 5 25 ns
td(TX_CLK-TX_EN) Delay time, TX_CLK to TX_EN valid
Figure 5-138. PRU-ICSS MII_TXD[3:0], MII_TXEN Timing
5.13.16.4 PRU-ICSS Universal Asynchronous Receiver Transmitter (PRU-ICSS UART)
(1) U = UART baud time = 1/programmed baud rate.
Table 5-123. Timing Requirements for PRU-ICSS UART Receive
(see Figure 5-139)
NO. MIN MAX UNIT
3 tw(RX) Pulse width, receive start, stop, data bit 0.96U(1) 1.05U(1) ns
(1) U = UART baud time = 1/programmed baud rate.
Table 5-124. Switching Characteristics Over Recommended Operating Conditions for PRU-ICSS UART
Transmit
(see Figure 5-139)
NO. MIN MAX UNIT
1 fbaud(baud) Maximum programmable baud rate 0 12 MHz
2 tw(TX) Pulse width, transmit start, stop, data bit U - 2(1) U + 2(1) ns
Figure 5-139. PRU-ICSS UART Timing
247
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.17 Multimedia Card (MMC) Interface
For more information, see the Multimedia Card (MMC) section of the AM437x ARM Cortex-A9
Microprocessors (MPUs) Technical Reference Manual.
5.13.17.1 MMC Electrical Data and Timing
Table 5-125. MMC Timing Conditions
TIMING CONDITION PARAMETER MIN TYP MAX UNIT
Input Conditions
trInput signal rise time 1 5 ns
tfInput signal fall time 1 5 ns
Output Condition
Cload Output load capacitance 3 30 pF
Table 5-126. Timing Requirements for MMC[0]_CMD and MMC[0]_DAT[7:0]
(see Figure 5-140)
NO.
OPP50/OPP100
UNIT1.8 V 3.3 V
MIN TYP MAX MIN TYP MAX
1 tsu(CMDV-CLKH) Setup time, MMC_CMD valid before
MMC_CLK rising clock edge 4.1 4.1 ns
2 th(CLKH-CMDV) Hold time, MMC_CMD valid after
MMC_CLK rising clock edge 1.5 1.5 ns
3 tsu(DATV-CLKH) Setup time, MMC_DATx valid before
MMC_CLK rising clock edge 4.1 4.1 ns
4 th(CLKH-DATV) Hold time, MMC_DATx valid after
MMC_CLK rising clock edge 1.5 1.5 ns
Table 5-127. Timing Requirements for MMC[1/2]_CMD and MMC[1/2]_DAT[7:0]
(see Figure 5-140)
NO.
OPP50/OPP100
UNIT1.8 V 3.3 V
MIN TYP MAX MIN TYP MAX
1 tsu(CMDV-CLKH) Setup time, MMC_CMD valid before
MMC_CLK rising clock edge 4.1 4.1 ns
2 th(CLKH-CMDV) Hold time, MMC_CMD valid after
MMC_CLK rising clock edge 2.55 3.76 ns
3 tsu(DATV-CLKH) Setup time, MMC_DATx valid before
MMC_CLK rising clock edge 4.1 4.1 ns
4 th(CLKH-DATV) Hold time, MMC_DATx valid after
MMC_CLK rising clock edge 2.55 3.76 ns
MMC[x]_CLK (Output)
1
2
MMC[x]_CMD (Input)
MMC[x]_DAT[7:0] (Inputs)
3
4
248
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Figure 5-140. MMC[x]_CMD and MMC[x]_DAT[7:0] Input Timing
10
MMC[x]_CLK (Output)
MMC[x]_CMD (Output)
MMC[x]_DAT[7:0] (Outputs)
11
MMC[x]_CLK (Output)
5
7
6
89
249
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-128. Switching Characteristics for MMC[x]_CLK
(see Figure 5-141)
NO. PARAMETER STANDARD MODE HIGH-SPEED MODE UNIT
MIN TYP MAX MIN TYP MAX
5
fop(CLK) Operating frequency, MMC_CLK 24 48 MHz
tcop(CLK) Operating period: MMC_CLK 41.7 20.8 ns
fid(CLK) Identification mode frequency, MMC_CLK 400 400 kHz
tcid(CLK) Identification mode period: MMC_CLK 2500 2500 ns
6 tw(CLKL) Pulse duration, MMC_CLK low (0.5*P) - tf(CLK)(1) (0.5*P) - tf(CLK)(1) ns
7 tw(CLKH) Pulse duration, MMC_CLK high (0.5*P) - tr(CLK)(1) (0.5*P) - tr(CLK)(1) ns
8 tr(CLK) Rise time, All Signals (10% to 90%) 2.2 2.2 ns
9 tf(CLK) Fall time, All Signals (10% to 90%) 2.2 2.2 ns
(1) P = MMC_CLK period.
Figure 5-141. MMC[x]_CLK Timing
Table 5-129. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—HSPE=0
(see Figure 5-142)
NO. PARAMETER
OPP50/OPP100
UNIT1.8 V 3.3 V
MIN TYP MAX MIN TYP MAX
10 td(CLKL-CMD) Delay time, MMC_CLK falling clock
edge to MMC_CMD transition -4 14 -4 17.5 ns
11 td(CLKL-DAT) Delay time, MMC_CLK falling clock
edge to MMC_DATx transition -4 14 -4 17.5 ns
Figure 5-142. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—HSPE=0
12
MMC[x]_CLK (Output)
MMC[x]_CMD (Output)
MMC[x]_DAT[7:0] (Outputs)
13
250
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
Table 5-130. Switching Characteristics for MMC[x]_CMD and MMC[x]_DAT[7:0]—HSPE=1
(see Figure 5-143)OPP50/OPP100
NO. PARAMETER 1.8 V 3.3 V UNIT
MIN TYP MAX MIN TYP MAX
12 td(CLKL-CMD) Delay time, MMC_CLK rising clock
edge to MMC_CMD transition 0.8 7.4 0.8 7.4 ns
13 td(CLKL-DAT) Delay time, MMC_CLK rising clock
edge to MMC_DATx transition 0.8 7.4 0.8 7.4 ns
Figure 5-143. MMC[x]_CMD and MMC[x]_DAT[7:0] Output Timing—HSPE=1
2
2
Start
Bit
Data Bits
UARTx_TXD
3
Data Bits
Bit
Start
3
UARTx_RXD
2
3
Stop Bit
Stop Bit
251
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
5.13.18 Universal Asynchronous Receiver/Transmitter (UART)
For more information, see the Universal Asynchronous Receiver/Transmitter (UART) section of the
AM437x ARM Cortex-A9 Microprocessors (MPUs) Technical Reference Manual.
5.13.18.1 UART Electrical Data and Timing
Table 5-131. Timing Requirements for UARTx Receive
(see Figure 5-144)
NO. MIN MAX UNIT
3 tw(RX) Pulse width, receive start, stop, data bit 0.96U(1) 1.05U(1) ns
(1) U = UART baud time = 1/programmed baud rate.
Table 5-132. Switching Characteristics for UARTx Transmit
(see Figure 5-144)
NO. PARAMETER MIN MAX UNIT
1 fbaud(baud) Maximum programmable baud rate 3.6864 MHz
2 tw(TX) Pulse width, transmit start, stop, data bit U - 2(1) U + 2(1) ns
(1) U = UART baud time = 1/programmed baud rate.
Figure 5-144. UART Timings
Pulse Duration
50%
50% 50%
Pulse Duration
252
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.13.18.2 UART IrDA Interface
The IrDA module operates in three different modes:
Slow infrared (SIR) (115.2 kbps)
Medium infrared (MIR) (0.576 Mbps and 1.152 Mbps)
Fast infrared (FIR) (4 Mbps).
Figure 5-145 shows the UART IrDA pulse parameters. Table 5-133 and Table 5-134 list the signaling
rates and pulse durations for UART IrDA receive and transmit modes.
Figure 5-145. UART IrDA Pulse Parameters
Table 5-133. UART IrDA—Signaling Rate and Pulse Duration—Receive Mode
SIGNALING RATE ELECTRICAL PULSE DURATION UNIT
MIN MAX
SIR
2.4 kbps 1.41 88.55 µs
9.6 kbps 1.41 22.13 µs
19.2 kbps 1.41 11.07 µs
38.4 kbps 1.41 5.96 µs
57.6 kbps 1.41 4.34 µs
115.2 kbps 1.41 2.23 µs
MIR
0.576 Mbps 297.2 518.8 ns
1.152 Mbps 149.6 258.4 ns
FIR
4 Mbps (Single pulse) 67 164 ns
4 Mbps (Double pulse) 190 289 ns
253
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
SpecificationsCopyright © 2014–2016, Texas Instruments Incorporated
Table 5-134. UART IrDA—Signaling Rate and Pulse Duration—Transmit Mode
SIGNALING RATE ELECTRICAL PULSE DURATION UNIT
MIN MAX
SIR
2.4 kbps 78.1 78.1 µs
9.6 kbps 19.5 19.5 µs
19.2 kbps 9.75 9.75 µs
38.4 kbps 4.87 4.87 µs
57.6 kbps 3.25 3.25 µs
115.2 kbps 1.62 1.62 µs
MIR
0.576 Mbps 414 419 ns
1.152 Mbps 206 211 ns
FIR
4 Mbps (Single pulse) 123 128 ns
4 Mbps (Double pulse) 248 253 ns
3
TCK
TDO
TDI/TMS
2
4
1
1a 1b
254
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Specifications Copyright © 2014–2016, Texas Instruments Incorporated
5.14 Emulation and Debug
5.14.1 IEEE 1149.1 JTAG
5.14.1.1 JTAG Electrical Data and Timing
Table 5-135. Timing Requirements for JTAG
(see Figure 5-146)
NO. OPP100 OPP50 UNIT
MIN MAX MIN MAX
1 tc(TCK) Cycle time, TCK 60 60 ns
1a tw(TCKH) Pulse duration, TCK high (40% of tc) 24 24 ns
1b tw(TCKL) Pulse duration, TCK low (40% of tc) 24 24 ns
3tsu(TDI-TCKH) Input setup time, TDI valid to TCK high 3 3 ns
tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 3 3 ns
4th(TCKH-TDI) Input hold time, TDI valid from TCK high 8 8 ns
th(TCKH-TMS) Input hold time, TMS valid from TCK high 8 8 ns
Table 5-136. Switching Characteristics for JTAG
(see Figure 5-146)
NO. PARAMETER OPP100 OPP50 UNIT
MIN MAX MIN MAX
2 td(TCKL-TDO) Delay time, TCK low to TDO valid 0 23 0 23 ns
Figure 5-146. JTAG Timing
255
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device and Documentation SupportCopyright © 2014–2016, Texas Instruments Incorporated
6 Device and Documentation Support
6.1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
processors and support tools. Each device has one of three prefixes: X, P, or null (no prefix) (for example,
XAM4379xZDN). Texas Instruments recommends two of three possible prefix designators for its support
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from
engineering prototypes (TMDX) through fully qualified production devices and tools (TMDS).
Device development evolutionary flow:
XExperimental device that is not necessarily representative of the final device's electrical
specifications and may not use production assembly flow.
PPrototype device that is not necessarily the final silicon die and may not necessarily meet
final electrical specifications.
null Production version of the silicon die that is fully qualified.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal
qualification testing.
TMDS Fully-qualified development-support product.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices and TMDS development-support tools have been characterized fully, and the quality
and reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system
because their expected end-use failure rate still is undefined. Only qualified production devices are to be
used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the
package type (for example, ZDN), the temperature range (for example, blank is the default commercial
temperature range), and the device speed range, in megahertz (for example, 80 is 800 MHz). Figure 6-1
provides a legend for reading the complete device name for any device.
For orderable part numbers of AM437x devices in the ZDN package type, see the Package Option
Addendum of this document, the TI website, or contact your TI sales representative.
For additional description of the device nomenclature markings on the die, see the AM437x Sitara
Processors Silicon Errata.
ARM Cortex-A9 MPU:
AM4372
AM4376
AM4379
AM4377
AM4378
DEVICE(A)
PREFIX
AM4379
X = Experimental device
Blank = Qualified device
ZDN
PACKAGE TYPE(B)
ZDN = 491-pin plastic BGA, with Pb-free solder balls
DEVICE SPEED RANGE
30 = 300-MHZ Cortex-A9
80 = 800-MHz
60 = 600-MHz Cortex-A9
Cortex-A9
100 = 1000-MHz Cortex-A9
( )
TEMPERATURE RANGE
Blank = 0°C to 90°C (commercial junction temperature)
A = –40 extended junction temperature)
D = –40 industrial junction temperature)
°C to 105°C (
°C to 90°C (
( )
A
DEVICE REVISION CODE
A = silicon revision 1.1
B = silicon revision 1.2
X
SUFFIX
Blank = Only Public Boot Supported
S = High-Security (AM437xHS) device, Secure Boot Supported
S
256
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device and Documentation Support Copyright © 2014–2016, Texas Instruments Incorporated
A. The device shown in this device nomenclature example is one of several valid part numbers for this family of devices.
For orderable device part numbers, see the Package Option Addendum of this document.
B. BGA = Ball Grid Array.
Figure 6-1. Device Nomenclature
6.2 Tools and Software
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the
device, generate code, and develop solutions are listed below.
Models
AM437x BSDL Model ZDN package BSDL model.
AM437x IBIS Model ZDN package IBIS model.
Design Kits and Evaluation Modules
AM437x Evaluation Module Enables developers to immediately start evaluating the AM437x processor
family (AM4372, AM4376, AM4377, AM4378 and AM4379 ) and begin building applications
such as portable navigation, patient monitoring, home/building automation, barcode
scanners, portable data terminals and others.
AM437x Industrial Development Kit (IDK) An application development platform for evaluating the
industrial communication and control capabilities of Sitara AM4379 and AM4377 processors
for industrial applications.
AM437x Starter Kit Provides a stable and affordable platform to quickly start evaluation of Sitara ARM
Cortex-A9 AM437x Processors (AM4372, AM4376, AM4378) and accelerate development
for HMI, industrial and networking applications. It is a low-cost development platform based
on the ARM Cortex-A9 processor that is integrated with options such as Dual Gigabit
Ethernet, DDR3L, Camera and Capacitive Touch Screen LCD.
TI Designs
ARM MPU with Integrated BiSS C Master Interface Reference Design Impelementation of BiSS C
Master protocol on Industrial Communication Sub-System (PRU-ICSS). The design provides
full documentation and source code for Programmable Realtime Unit (PRU).
Sercos III Slave For AM437x Communication Development Platform Reference Design Combines
the AM437x Sitara processor family from Texas Instruments (TI) and the Sercos III media
access control (MAC) layer into a single system-on-chip (SoC) solution. Targeted for Sercos
III slave communications, the TIDEP0039 allows designers to implement the real-time
Sercos III communication standard for a broad range of industrial automation equipment.
EnDat 2.2 System Reference Design Implements the EnDat 2.2 Master protocol stack and hardware
interface solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary
encoders. The design is composed of the EnDat 2.2 Master protocol stack, half-duplex
communications using RS485 transceivers and the line termination implemented on the
Sitara AM437x Industrial Development Kit.
257
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device and Documentation SupportCopyright © 2014–2016, Texas Instruments Incorporated
Acontis EtherCAT Master Stack Reference Design A highly portable software stack that can be used
on various embedded platforms. The EC-Master supports the high performane TI Sitara
MPUs, it provides a sophisticated EtherCAT Master solution which customers can use to
implement EtherCAT communication interface boards, EtherCAT based PLC or motion
control applications.
SPI Master with Signal Path Delay Compensation Reference Design Describes the implementation of
the SPI master protocol with signal path delay compensation on PRU-ICSS. It supports the
32-bit communication protocol of ADS8688 with a SPI clock frequency of up to 16.7MHz.
Isolated Current Shunt and Voltage Measurement Reference Design for Motor Drives Using
AM437x
Uses the AMC130x reinforced isolated delta-sigma modulators along with AM437x Sitara
ARM Cortex-A9 Processor, which implements Sinc filters on PRU-ICSS. The design
provides an ability to evaluate the performance of these measurements: three motor
currents, three inverter voltages, and the DC Link voltage.
Single Chip Drive for Industrial Communications and Motor Control Implements a hardware interface
solution based on the HEIDENHAIN EnDat 2.2 standard for position or rotary encoders. The
platform also allows designers to implement real-time EtherCAT communications standards
in a broad range of industrial automation equipment.
AM437x Low Power Suspend Mode with LPDDR2 Realizes processor power consumption less than 0.1
mW while keeping LPDDR2 memory in self refresh consuming ~ 1.6 mW. The system
solution is comprised of AM437x Sitara processor, LPDDR2 memory and TPS65218 power
management IC and optimized for new low power mode along with support for legacy low
power modes.
AM437x Discrete Power Reference Design Provides flexibility to power designers. This reference
design implementation is a BOM-optimized discrete power solution for the AM437x
processor with a minimal number of discrete ICs and basic feature set. T
Embedded USB 2.0 Reference Design The USB 2.0 reference design guidelines are extremely
important for designers considering USB2.0 electrical compliance testing. The guidelines are
applicable to AM335x and AM437x but also generic to other processors. The approach taken
for these guidelines is highly practical, without complex formulas or theory.
ARM MPU with Integrated HIPERFACE DSL Master Interface Reference Design Implementation of
HIPERFACE DSL Master protocol on Industrial Communication Sub-System (PRU-ICSS).
The two wire interface allows for integration of position feedback wires into motor cable.
Complete solution consists of AM437x PRU-ICSS firmware and TIDA-00177 transceiver
reference design.
Software
Processor SDK for AM437X Sitara Processors - Linux and TI-RTOS Support A unified software
platform for TI embedded processors providing easy setup and fast out-of-the-box access to
benchmarks and demos. All releases of Processor SDK are consistent across TI’s broad
portfolio, allowing developers to seamlessly reuse and migrate software across devices.
Programmable Real-time Unit (PRU) Software Support Package An add-on package that provides a
framework and examples for developing software for the Programmable Real-time Unit sub-
system and Industrial Communication Sub-System (PRU-ICSS) in the supported TI
processors.
SYS/BIOS Industrial Software Development Kit (SDK) for Sitara Processors Gives customers the
ability to easily add real-time industrial communications to their design so they can focus on
differentiating their application code.
TI Dual-Mode Bluetooth®Stack Comprised of Single-Mode and Dual-Mode offerings implementing the
Bluetooth 4.0 specification. The Bluetooth stack is fully Bluetooth Special Interest Group
(SIG) qualified, certified and royalty-free, provides simple command line sample applications
to speed development, and upon request has MFI capability.
258
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device and Documentation Support Copyright © 2014–2016, Texas Instruments Incorporated
Development Tools
Clock Tree Tool for Sitara ARM Processors Interactive clock tree configuration software that provides
information about the clocks and modules in Sitara devices.
Pin Mux Tool Provides a Graphical User Interface for configuring pin multiplexing settings, resolving
conflicts and specifying I/O cell characteristics for TI MPUs. Results are output as C
header/code files that can be imported into software development kits (SDK) or used to
configure customer's custom software. Version 3 of the Pin Mux utility adds the capability of
automatically selecting a mux configuration that satisfies the entered requirements.
Power Estimation Tool (PET) Provides users the ability to gain insight in to the power consumption of
select TI processors. The tool includes the ability for the user to choose multiple application
scenarios and understand the power consumption as well as how advanced power saving
techniques can be applied to further reduce overall power consumption.
XDS200 USB Debug Probe Connects to the target board via a TI 20-pin connector (with multiple
adapters for TI 14-pin, ARM 10-pin and ARM 20-pin) and to the host PC via USB2.0 High
Speed (480Mbps). It also requires a license of Code Composer Studio IDE running on the
host PC.
XDS560v2 System Trace USB and Ethernet Debug Probe Adds system pin trace in its large external
memory buffer. Available for selected TI devices, this external memory buffer captures
device-level information that allows obtaining accurate bus performance activity and
throughput, as well as power management of core and peripherals. Also, all XDS debug
probes support Core and System Trace in all ARM and DSP processors that feature an
Embedded Trace Buffer (ETB).
XDS560v2 System Trace USB Debug Probe Adds system pin trace in its large external memory buffer.
Available for selected TI devices, this external memory buffer captures device-level
information that allows obtaining accurate bus performance activity and throughput, as well
as power management of core and peripherals. Also, all XDS debug probes support Core
and System Trace in all ARM and DSP processors that feature an Embedded Trace Buffer
(ETB).
6.3 Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the
upper right corner, click on Alert me to register and receive a weekly digest of any product information that
has changed. For change details, review the revision history included in any revised document.
The current documentation that describes the processor, related peripherals, and other technical collateral
is listed below.
Errata
AM437x Sitara Processors Silicon Errata Describes the known exceptions to the functional
specifications for this microprocessor.
Application Reports
High-Speed Interface Layout Guidelines As modern bus interface frequencies scale higher, care must
be taken in the printed circuit board (PCB) layout phase of a design to ensure a robust
solution.
User's Guides
AM437x Sitara Processors Technical Reference Manual Collection of documents providing detailed
information on the device including power, reset, and clock control, interrupts, memory map,
and switch fabric interconnect. Detailed information on the microprocessor unit (MPU)
subsystem as well as a functional description of the peripherals supported is also included.
Discrete Power Solution for AM437x Details the implementation of a BOM-optimized discrete power
solution for the AM437x processor with a minimal number of discrete ICs and basic feature
set. The solution represents a baseline for a discrete power solution that can be extended for
additional features of the AM437x processor.
Powering the AM335x/AM437x with TPS65218 A reference for connectivity between the TPS65218
power management IC and the AM335x or AM437x processor.
259
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device and Documentation SupportCopyright © 2014–2016, Texas Instruments Incorporated
AM437x GP EVM Hardware User's Guide Describes the hardware architecture of the AM437x
Evaluation Module (EVM) (part number TMDXEVM437X), which is based on the Texas
Instruments (TI) AM437x processor. This EVM is also commonly known as the AM437x
General Purpose (GP) EVM.
White Papers
Highly Integrated industrial Drive to Connect, Control and Communicate Discusses the overall drive
architecture with emphasis on the highly integrated industrial drive solution by Texas
Instruments.
Ensuring Real-Time Predictability High-performance processors like ARM Cortex-A cores have an
entirely different set of resources and pro- cessing capabilities than those of real-time
processing cores, like the Programmable Real-Time Unit (PRU) coprocessor in TI’s Sitara
processors.
Mainline Linux Ensures Stability and Innovation Enabling and empowering the rapid development of
new functionality starts at the foundational level of the system’s software environment that
is, at the level of the Linux kernel and builds upward from there.
Scalable Solutions for HMI A well designed HMI system decreases that gap between the production
process and operator through an intuitive visualization system, layers of detail to allow for a
bird’s eye view down to the minute details, as well as training material and documentation at
the operators’ fingertips.
Linaro Speeds Development in TI Linux SDKs Linaro’s software is not a Linux distribution; in fact, it is
distribution neutral. The focus of the organization’s 120 engineers is on optimizing base-level
open-source software in areas that interact directly with the silicon such as multimedia,
graphics, power management, the Linux kernel and booting processes.
Getting Started on TI ARM Embedded Processor Development Beginning with an overview of ARM
technology and available processor platforms, this paper will then explore the fundamentals
of embedded design that influence a system’s architecture and, consequently, impact
processor selection.
The Yocto Project: Changing the Way Embedded Linux Software Solutions are Developed Enabling
complex silicon devices such as SoC with operating firmware and application software can
be a challenge for equipment manufacturers who often are more comfortable with hardware
than software issues.
Other Documents
Sitara AM437x Processor With ARM Cortex-A9 Core TI continues to optimize and expand its portfolio
of Sitara processor solutions for the embedded market. With the Sitara AM437x processors
support for the ARM Cortex-A9 core, extending performance by up to 40 percent over the
current Sitara AM335x processor line.
Sitara Processors Using the ARM Cortex-A series of cores, are optimized system solutions that go
beyond the core, delivering products that support rich graphics capabilities, LCD displays
and multiple industrial protocols.
AM437x Evaluation Module Quick Start Guide Designed to help you through the initial setup of the
EVM. This EVM allows you to experience Linux and other operating systems (OSs) that
showcase the AM437x Cortex-A9 processor, 3D graphics and more.
The following documents are related to the processor. Copies of these documents can be obtained
directly from the internet or from your Texas Instruments representative. To determine the revision of the
Cortex-A9 core used on your device, see the device-specific errata.
Cortex-A9 Technical Reference Manual Technical reference manual for the Cortex-A9 processor.
ARM Core Cortex-A9 (AT400/AT401) Errata Notice Provides a list of advisories for the different
revisions of the Cortex-A9 processor. For a copy of this document, contact your TI
representative.
260
AM4372, AM4376, AM4377, AM4378, AM4379
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
www.ti.com
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Device and Documentation Support Copyright © 2014–2016, Texas Instruments Incorporated
6.4 Related Links
Table 6-1 lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 6-1. Related Links
PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL
DOCUMENTS TOOLS &
SOFTWARE SUPPORT &
COMMUNITY
AM4372 Click here Click here Click here Click here Click here
AM4376 Click here Click here Click here Click here Click here
AM4377 Click here Click here Click here Click here Click here
AM4378 Click here Click here Click here Click here Click here
AM4379 Click here Click here Click here Click here Click here
6.5 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Online Community The TI engineer-ro-engineer (E2E) community was created to foster
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,
explore ideas and help solve problems with fellow engineers.
TI Embedded Processors Wiki Established to help developers get started with Embedded Processors
from Texas Instruments and to foster innovation and growth of general knowledge about the
hardware and software surrounding these devices.
6.6 Trademarks
Sitara, E2E are trademarks of Texas Instruments.
NEON is a trademark of ARM Ltd or its subsidiaries.
ARM, Cortex are registered trademarks of ARM Ltd or its subsidiaries.
Bluetooth is a registered trademark of Bluetooth SIG.
EtherCAT is a registered trademark of EtherCAT Technology Group.
PowerVR SGX is a trademark of Imagination Technologies Limited.
Linux is a registered trademark of Linus Torvalds.
1-Wire is a registered trademark of Maxim Integrated Products, Inc.
EtherNet/IP is a trademark of ODVA, Inc.
PROFIBUS, PROFINET are registered trademarks of PROFIBUS & PROFINET International (PI).
All other trademarks are the property of their respective owners.
6.7 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with
appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more
susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
6.8 Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
261
AM4372, AM4376, AM4377, AM4378, AM4379
www.ti.com
SPRS851D JUNE 2014REVISED SEPTEMBER 2016
Submit Documentation Feedback
Product Folder Links: AM4372 AM4376 AM4377 AM4378 AM4379
Mechanical, Packaging, and Orderable InformationCopyright © 2014–2016, Texas Instruments Incorporated
7 Mechanical, Packaging, and Orderable Information
7.1 Via Channel
The ZDN package has been specially engineered with Via Channel technology. This technology allows
larger than normal PCB via and trace sizes and reduced PCB signal layers to be used in a PCB design
with the 0.65-mm pitch package, and substantially reduces PCB costs. It allows PCB routing in only two
signal layers (four layers total) due to the increased layer efficiency of the Via Channel BGA technology.
NOTE
Via Channel technology implemented on the this package makes it possible to build a
product with a 4-layer PCB, but a 4-layer PCB may not meet system performance goals.
Therefore, system performance using a 4-layer PCB design must be evaluated during
product design.
7.2 Packaging Information
The following packaging information and addendum reflect the most current data available for the
designated device. This data is subject to change without notice and without revision of this document.
The following figure is a preliminary package drawing for the ZDN package option.
Note: The ZDN package is shown with a 17-mm × 17-mm array of 491 solder balls with 0.65-mm pitch,
with via channel array (VCA) technology.
PACKAGE OPTION ADDENDUM
www.ti.com 29-Dec-2016
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
AM4372BZDN60 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM4372BZDN60
AM4372BZDN80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM4372BZDN80
AM4372BZDNA60 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4372BZDNA60
AM4372BZDNA80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4372BZDNA80
AM4376BZDN100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM4376BZDN100
AM4376BZDN80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM4376BZDN80
AM4376BZDNA100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4376BZDNA100
AM4376BZDNA80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4376BZDNA80
AM4376BZDND100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4376BZDND100
AM4376BZDND30 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4376BZDND30
AM4376BZDND80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4376BZDND80
AM4377BZDNA100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4377BZDNA100
AM4377BZDNA80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4377BZDNA80
AM4377BZDND100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4377BZDND100
AM4377BZDND80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4377BZDND80
AM4378BZDN100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM4378BZDN100
AM4378BZDN80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR 0 to 90 AM4378BZDN80
PACKAGE OPTION ADDENDUM
www.ti.com 29-Dec-2016
Addendum-Page 2
Orderable Device Status
(1)
Package Type Package
Drawing Pins Package
Qty Eco Plan
(2)
Lead/Ball Finish
(6)
MSL Peak Temp
(3)
Op Temp (°C) Device Marking
(4/5)
Samples
AM4378BZDNA100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4378BZDNA100
AM4378BZDNA80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4378BZDNA80
AM4378BZDND100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4378BZDND100
AM4378BZDND80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 90 AM4378BZDND80
AM4379BZDNA100 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4379BZDNA100
AM4379BZDNA80 ACTIVE NFBGA ZDN 491 90 Green (RoHS
& no Sb/Br) SNAGCU Level-3-260C-168 HR -40 to 105 AM4379BZDNA80
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation
of the previous line and the two combined represent the entire Device Marking for that device.
PACKAGE OPTION ADDENDUM
www.ti.com 29-Dec-2016
Addendum-Page 3
(6) Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish
value exceeds the maximum column width.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Texas Instruments:
AM4376BZDNA100 AM4376BZDN80 AM4376BZDN100 AM4376BZDND80 AM4376BZDND30 AM4376BZDND100
AM4376BZDNA80