Features * High Performance, Low Power Atmel(R) AVR(R) 8-Bit Microcontroller * Advanced RISC Architecture * * * * * * * * - 130 Powerful Instructions - Most Single Clock Cycle Execution - 32 x 8 General Purpose Working Registers - Fully Static Operation - Up to 16 MIPS Throughput at 16 MHz - On-Chip 2-cycle Multiplier High Endurance Non-volatile Memory segments - 16 Kbytes of In-System Self-programmable Flash program memory - 512 Bytes EEPROM - 1 Kbytes Internal SRAM - Write/Erase cycles: 10,000 Flash/100,000 EEPROM - Data retention: 20 years at 85C/100 years at 25C(1) - Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation - Programming Lock for Software Security JTAG (IEEE std. 1149.1 compliant) Interface - Boundary-scan Capabilities According to the JTAG Standard - Extensive On-chip Debug Support - Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface Peripheral Features - 4 x 25 Segment LCD Driver - Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode - One 16-bit Timer/Counter with Separate Prescaler, Compare Mode, and Capture Mode - Real Time Counter with Separate Oscillator - Four PWM Channels - 8-channel, 10-bit ADC - Programmable Serial USART - Master/Slave SPI Serial Interface - Universal Serial Interface with Start Condition Detector - Programmable Watchdog Timer with Separate On-chip Oscillator - On-chip Analog Comparator - Interrupt and Wake-up on Pin Change Special Microcontroller Features - Power-on Reset and Programmable Brown-out Detection - Internal Calibrated Oscillator - External and Internal Interrupt Sources - Five Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, and Standby I/O and Packages - 54 Programmable I/O Lines - 64-lead TQFP, 64-pad QFN/MLF and 64-pad DRQFN Speed Grade: - ATmega169PV: 0 - 4 MHz @ 1.8V - 5.5V, 0 - 8 MHz @ 2.7V - 5.5V - ATmega169P: 0 - 8 MHz @ 2.7V - 5.5V, 0 - 16 MHz @ 4.5V - 5.5V Temperature range: - -40C to 85C Industrial Ultra-Low Power Consumption - Active Mode: 1 MHz, 1.8V: 330 A 32 kHz, 1.8V: 10 A (including Oscillator) 32 kHz, 1.8V: 25 A (including Oscillator and LCD) - Power-down Mode: 0.1 A at 1.8V - Power-save Mode: 0.6 A at 1.8V (Including 32 kHz RTC) 8-bit Microcontroller with 16K Bytes In-System Programmable Flash ATmega169P ATmega169PV Preliminary Rev. 8018P-AVR-08/10 ATmega169P 1. Pin Configurations Pinout - TQFP/QFN/MLF LCDCAP 1 (RXD/PCINT0) PE0 2 GND AREF PF0 (ADC0) PF1 (ADC1) PF2 (ADC2) PF3 (ADC3) PF4 (ADC4/TCK) PF5 (ADC5/TMS) PF6 (ADC6/TDO) PF7 (ADC7/TDI) GND VCC PA0 (COM0) PA1 (COM1) PA2 (COM2) 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 64A (TQFP) and 64M1 (QFN/MLF) Pinout ATmega169P AVCC Figure 1-1. 64 1.1 48 PA3 (COM3) 47 PA4 (SEG0) INDEX CORNER (SCK/PCINT9) PB1 11 38 PC3 (SEG9) (MOSI/PCINT10) PB2 12 37 PC2 (SEG10) (MISO/PCINT11) PB3 13 36 PC1 (SEG11) (OC0A/PCINT12) PB4 14 35 PC0 (SEG12) (OC1A/PCINT13) PB5 15 34 PG1 (SEG13) (OC1B/PCINT14) PB6 16 33 PG0 (SEG14) Note: (SEG15) PD7 32 39 PC4 (SEG8) (SEG16) PD6 31 10 (SEG17) PD5 30 (SS/PCINT8) PB0 29 40 PC5 (SEG7) (SEG18) PD4 9 28 (CLKO/PCINT7) PE7 (SEG19) PD3 41 PC6 (SEG6) 27 8 (SEG20) PD2 (DO/PCINT6) PE6 26 42 PC7 (SEG5) (INT0/SEG21) PD1 7 25 (DI/SDA/PCINT5) PE5 (ICP1/SEG22) PD0 43 PG2 (SEG4) 24 6 (TOSC1) XTAL1 (USCK/SCL/PCINT4) PE4 23 44 PA7 (SEG3) (TOSC2) XTAL2 5 22 (AIN1/PCINT3) PE3 GND 45 PA6 (SEG2) VCC 21 4 RESET/PG5 20 (XCK/AIN0/PCINT2) PE2 (T0/SEG23) PG4 19 46 PA5 (SEG1) (T1/SEG24) PG3 18 3 (OC2A/PCINT15) PB7 17 (TXD/PCINT1) PE1 The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board. 2 8018P-AVR-08/10 ATmega169P Pinout - DRQFN 64MC (DRQFN) Pinout ATmega169P A25 A23 B20 A4 A22 B4 B19 A21 B5 B18 A5 A6 A7 B7 Table 1-1. A34 B29 A33 B30 A31 B28 A32 B3 A3 A4 B4 A5 B18 B5 A20 B17 A19 B6 A6 A7 B7 B16 A18 A8 A17 B15 A16 B15 A17 B13 A15 B14 B8 A10 B9 A11 B10 A12 B11 A13 B12 A14 A23 B20 A2 B19 A21 A18 A9 A8 B2 A22 A20 B17 A19 B16 B6 B21 A9 B3 A3 B1 A10 B8 B21 B22 A24 B10 A11 B9 B2 A2 A1 A25 A13 B11 A12 B22 A24 A16 B14 A15 B1 B26 A30 B27 A26 A27 B23 A26 A1 B23 A27 B24 Bottom view B25 A28 B24 A34 B30 A33 B29 A32 B28 A31 B27 A30 B26 A29 Top view A28 B25 A29 Figure 1-2. B13 A14 B12 1.2 DRQFN-64 Pinout ATmega169P. A1 PE0 A9 PB7 A18 PG1 (SEG13) A26 PA2 (COM2) B1 VLCDCAP B8 PB6 B16 PG0 (SEG14) B23 PA3 (COM3) A2 PE1 A10 PG3 A19 PC0 (SEG12) A27 PA1 (COM1) B2 PE2 B9 PG4 B17 PC1 (SEG11) B24 PA0 (COM0) A3 PE3 A11 RESET A20 PC2 (SEG10) A28 VCC B3 PE4 B10 VCC B18 PC3 (SEG9) B25 GND A4 PE5 A12 GND A21 PC4 (SEG8) A29 PF7 B4 PE6 B11 XTAL2 (TOSC2) B19 PC5 (SEG7) B26 PF6 A5 PE7 A13 XTAL1 (TOSC1) A22 PC6 (SEG6) A30 PF5 B5 PB0 B12 PD0 (SEG22) B20 PC7 (SEG5) B27 PF4 A6 PB1 A14 PD1 (SEG21) A23 PG2 (SEG4) A31 PF3 B6 PB2 B13 PD2 (SEG20) B21 PA7 (SEG3) B28 PF2 A7 PB3 A15 PD3 (SEG19) A24 PA6 (SEG2) A32 PF1 B7 PB5 B14 PD4 (SEG18) B22 PA4 (SEG0) B29 PF0 A8 PB4 A16 PD5 (SEG17) A25 PA5 (SEG1) A33 AREF B15 PD7 (SEG15) B30 AVCC A17 PD6 (SEG16) A34 GND 3 8018P-AVR-08/10 ATmega169P 2. Overview The ATmega169P is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega169P achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed. Block Diagram Block Diagram PF0 - PF7 PA0 - PA7 XTAL2 Figure 2-1. XTAL1 2.1 PC0 - PC7 VCC GND PORTA DRIVERS PORTF DRIVERS DATA DIR. REG. PORTF DATA REGISTER PORTF PORTC DRIVERS DATA DIR. REG. PORTA DATA REGISTER PORTA DATA REGISTER PORTC DATA DIR. REG. PORTC 8-BIT DATA BUS AVCC CALIB. OSC INTERNAL OSCILLATOR ADC AREF OSCILLATOR JTAG TAP PROGRAM COUNTER STACK POINTER WATCHDOG TIMER ON-CHIP DEBUG PROGRAM FLASH SRAM MCU CONTROL REGISTER BOUNDARYSCAN INSTRUCTION REGISTER TIMING AND CONTROL LCD CONTROLLER/ DRIVER TIMER/ COUNTERS GENERAL PURPOSE REGISTERS INSTRUCTION DECODER CONTROL LINES + - INTERRUPT UNIT ALU EEPROM STATUS REGISTER AVR CPU ANALOG COMPARATOR Z Y RESET X PROGRAMMING LOGIC USART UNIVERSAL SERIAL INTERFACE DATA REGISTER PORTE DATA DIR. REG. PORTE PORTE DRIVERS PE0 - PE7 SPI DATA REGISTER PORTB DATA DIR. REG. PORTB PORTB DRIVERS PB0 - PB7 DATA REGISTER PORTD DATA DIR. REG. PORTD DATA REG. PORTG DATA DIR. REG. PORTG PORTD DRIVERS PORTG DRIVERS PD0 - PD7 PG0 - PG4 4 8018P-AVR-08/10 ATmega169P The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers. The ATmega169P provides the following features: 16 Kbytes of In-System Programmable Flash with Read-While-Write capabilities, 512 bytes EEPROM, 1 Kbyte SRAM, 53 general purpose I/O lines, 32 general purpose working registers, a JTAG interface for Boundary-scan, On-chip Debugging support and programming, a complete On-chip LCD controller with internal step-up voltage, three flexible Timer/Counters with compare modes, internal and external interrupts, a serial programmable USART, Universal Serial Interface with Start Condition Detector, an 8channel, 10-bit ADC, a programmable Watchdog Timer with internal Oscillator, an SPI serial port, and five software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or hardware reset. In Power-save mode, the asynchronous timer and the LCD controller continues to run, allowing the user to maintain a timer base and operate the LCD display while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except asynchronous timer, LCD controller and ADC, to minimize switching noise during ADC conversions. In Standby mode, the crystal/resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low-power consumption. The device is manufactured using Atmel's high density non-volatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed In-System through an SPI serial interface, by a conventional non-volatile memory programmer, or by an On-chip Boot program running on the AVR core. The Boot program can use any interface to download the application program in the Application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega169P is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications. The ATmega169P AVR is supported with a full suite of program and system development tools including: C Compilers, Macro Assemblers, Program Debugger/Simulators, In-Circuit Emulators, and Evaluation kits. 5 8018P-AVR-08/10 ATmega169P 2.2 2.2.1 Pin Descriptions VCC Digital supply voltage. 2.2.2 GND Ground. 2.2.3 Port A (PA7:PA0) Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port A also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port A" on page 73. 2.2.4 Port B (PB7:PB0) Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port B has better driving capabilities than the other ports. Port B also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port B" on page 74. 2.2.5 Port C (PC7:PC0) Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port C also serves the functions of special features of the ATmega169P as listed on "Alternate Functions of Port C" on page 77. 2.2.6 Port D (PD7:PD0) Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port D also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port D" on page 79. 6 8018P-AVR-08/10 ATmega169P 2.2.7 Port E (PE7:PE0) Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port E also serves the functions of various special features of the ATmega169P as listed on "Alternate Functions of Port E" on page 81. 2.2.8 Port F (PF7:PF0) Port F serves as the analog inputs to the A/D Converter. Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs. Port F also serves the functions of the JTAG interface, see "Alternate Functions of Port F" on page 83. 2.2.9 Port G (PG5:PG0) Port G is a 6-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running. Port G also serves the functions of various special features of the ATmega169P as listed on page 85. 2.2.10 RESET Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 28-4 on page 333. Shorter pulses are not guaranteed to generate a reset. 2.2.11 XTAL1 Input to the inverting Oscillator amplifier and input to the internal clock operating circuit. 2.2.12 XTAL2 Output from the inverting Oscillator amplifier. 2.2.13 AVCC AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to VCC, even if the ADC is not used. If the ADC is used, it should be connected to VCC through a low-pass filter. 7 8018P-AVR-08/10 ATmega169P 2.2.14 AREF This is the analog reference pin for the A/D Converter. 2.2.15 LCDCAP An external capacitor (typical > 470 nF) must be connected to the LCDCAP pin as shown in Figure 23-2 on page 236. This capacitor acts as a reservoir for LCD power (V LCD ). A large capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target value. 8 8018P-AVR-08/10 ATmega169P 3. Resources A comprehensive set of development tools, application notes and datasheets are available for download on http://www.atmel.com/avr. Note: 1. 4. Data Retention Reliability Qualification results show that the projected data retention failure rate is much less than 1 PPM over 20 years at 85C or 100 years at 25C. 9 8018P-AVR-08/10 ATmega169P 5. About Code Examples This documentation contains simple code examples that briefly show how to use various parts of the device. Be aware that not all C compiler vendors include bit definitions in the header files and interrupt handling in C is compiler dependent. Please confirm with the C compiler documentation for more details. These code examples assume that the part specific header file is included before compilation. For I/O registers located in extended I/O map, "IN", "OUT", "SBIS", "SBIC", "CBI", and "SBI" instructions must be replaced with instructions that allow access to extended I/O. Typically "LDS" and "STS" combined with "SBRS", "SBRC", "SBR", and "CBR". 10 8018P-AVR-08/10 ATmega169P 6. AVR CPU Core 6.1 Introduction This section discusses the AVR core architecture in general. The main function of the CPU core is to ensure correct program execution. The CPU must therefore be able to access memories, perform calculations, control peripherals, and handle interrupts. 6.2 Architectural Overview Figure 6-1. Block Diagram of the AVR Architecture Data Bus 8-bit Flash Program Memory Program Counter Status and Control 32 x 8 General Purpose Registrers Control Lines Direct Addressing Instruction Decoder Indirect Addressing Instruction Register Interrupt Unit SPI Unit Watchdog Timer ALU Analog Comparator I/O Module1 Data SRAM I/O Module 2 I/O Module n EEPROM I/O Lines In order to maximize performance and parallelism, the AVR uses a Harvard architecture - with separate memories and buses for program and data. Instructions in the program memory are executed with a single level pipelining. While one instruction is being executed, the next instruction is pre-fetched from the program memory. This concept enables instructions to be executed in every clock cycle. The program memory is In-System Reprogrammable Flash memory. 11 8018P-AVR-08/10 ATmega169P The fast-access Register File contains 32 x 8-bit general purpose working registers with a single clock cycle access time. This allows single-cycle Arithmetic Logic Unit (ALU) operation. In a typical ALU operation, two operands are output from the Register File, the operation is executed, and the result is stored back in the Register File - in one clock cycle. Six of the 32 registers can be used as three 16-bit indirect address register pointers for Data Space addressing - enabling efficient address calculations. One of the these address pointers can also be used as an address pointer for look up tables in Flash program memory. These added function registers are the 16-bit X-, Y-, and Z-register, described later in this section. The ALU supports arithmetic and logic operations between registers or between a constant and a register. Single register operations can also be executed in the ALU. After an arithmetic operation, the Status Register is updated to reflect information about the result of the operation. Program flow is provided by conditional and unconditional jump and call instructions, able to directly address the whole address space. Most AVR instructions have a single 16-bit word format. Every program memory address contains a 16-bit or 32-bit instruction. Program Flash memory space is divided in two sections, the Boot Program section and the Application Program section. Both sections have dedicated Lock bits for write and read/write protection. The SPM instruction that writes into the Application Flash memory section must reside in the Boot Program section. During interrupts and subroutine calls, the return address Program Counter (PC) is stored on the Stack. The Stack is effectively allocated in the general data SRAM, and consequently the Stack size is only limited by the total SRAM size and the usage of the SRAM. All user programs must initialize the SP in the Reset routine (before subroutines or interrupts are executed). The Stack Pointer (SP) is read/write accessible in the I/O space. The data SRAM can easily be accessed through the five different addressing modes supported in the AVR architecture. The memory spaces in the AVR architecture are all linear and regular memory maps. A flexible interrupt module has its control registers in the I/O space with an additional Global Interrupt Enable bit in the Status Register. All interrupts have a separate Interrupt Vector in the Interrupt Vector table. The interrupts have priority in accordance with their Interrupt Vector position. The lower the Interrupt Vector address, the higher the priority. The I/O memory space contains 64 addresses for CPU peripheral functions as Control Registers, SPI, and other I/O functions. The I/O Memory can be accessed directly, or as the Data Space locations following those of the Register File, 0x20 - 0x5F. In addition, the ATmega169P has Extended I/O space from 0x60 - 0xFF in SRAM where only the ST/STS/STD and LD/LDS/LDD instructions can be used. 6.3 ALU - Arithmetic Logic Unit The high-performance AVR ALU operates in direct connection with all the 32 general purpose working registers. Within a single clock cycle, arithmetic operations between general purpose registers or between a register and an immediate are executed. The ALU operations are divided into three main categories - arithmetic, logical, and bit-functions. Some implementations of the architecture also provide a powerful multiplier supporting both signed/unsigned multiplication and fractional format. See the "Instruction Set" section for a detailed description. 12 8018P-AVR-08/10 ATmega169P 6.4 Stack Pointer The Stack is mainly used for storing temporary data, for storing local variables and for storing return addresses after interrupts and subroutine calls. Note that the Stack is implemented as growing from higher to lower memory locations. The Stack Pointer Register always points to the top of the Stack. The Stack Pointer points to the data SRAM Stack area where the Subroutine and Interrupt Stacks are located. A Stack PUSH command will decrease the Stack Pointer. The Stack in the data SRAM must be defined by the program before any subroutine calls are executed or interrupts are enabled. Initial Stack Pointer value equals the last address of the internal SRAM and the Stack Pointer must be set to point above start of the SRAM, see Figure 7-2 on page 21. See Table 6-1 for Stack Pointer details. Table 6-1. Stack Pointer instructions Instruction Stack pointer Description PUSH Decremented by 1 Data is pushed onto the stack CALL ICALL RCALL Decremented by 2 Return address is pushed onto the stack with a subroutine call or interrupt POP Incremented by 1 Data is popped from the stack RET RETI Incremented by 2 Return address is popped from the stack with return from subroutine or return from interrupt The AVR Stack Pointer is implemented as two 8-bit registers in the I/O space. The number of bits actually used is implementation dependent. Note that the data space in some implementations of the AVR architecture is so small that only SPL is needed. In this case, the SPH Register will not be present. 13 8018P-AVR-08/10 ATmega169P 6.4.1 SPH and SPL - Stack Pointer Bit 15 14 13 12 11 10 9 8 0x3E (0x5E) - - - - - SP10 SP9 SP8 SPH 0x3D (0x5D) SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 SPL 7 6 5 4 3 2 1 0 Read/Write Initial Value 6.5 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Instruction Execution Timing This section describes the general access timing concepts for instruction execution. The AVR CPU is driven by the CPU clock clkCPU, directly generated from the selected clock source for the chip. No internal clock division is used. Figure 6-2 shows the parallel instruction fetches and instruction executions enabled by the Harvard architecture and the fast-access Register File concept. This is the basic pipelining concept to obtain up to 1 MIPS per MHz with the corresponding unique results for functions per cost, functions per clocks, and functions per power-unit. Figure 6-2. The Parallel Instruction Fetches and Instruction Executions T1 T2 T3 T4 clkCPU 1st Instruction Fetch 1st Instruction Execute 2nd Instruction Fetch 2nd Instruction Execute 3rd Instruction Fetch 3rd Instruction Execute 4th Instruction Fetch Figure 6-3 shows the internal timing concept for the Register File. In a single clock cycle an ALU operation using two register operands is executed, and the result is stored back to the destination register. Figure 6-3. Single Cycle ALU Operation T1 T2 T3 T4 clkCPU Total Execution Time Register Operands Fetch ALU Operation Execute Result Write Back 14 8018P-AVR-08/10 ATmega169P 6.6 Reset and Interrupt Handling The AVR provides several different interrupt sources. These interrupts and the separate Reset Vector each have a separate program vector in the program memory space. All interrupts are assigned individual enable bits which must be written logic one together with the Global Interrupt Enable bit in the Status Register in order to enable the interrupt. Depending on the Program Counter value, interrupts may be automatically disabled when Boot Lock bits BLB02 or BLB12 are programmed. This feature improves software security. See the section "Memory Programming" on page 296 for details. The lowest addresses in the program memory space are by default defined as the Reset and Interrupt Vectors. The complete list of vectors is shown in "Interrupts" on page 56. The list also determines the priority levels of the different interrupts. The lower the address the higher is the priority level. RESET has the highest priority, and next is INT0 - the External Interrupt Request 0. The Interrupt Vectors can be moved to the start of the Boot Flash section by setting the IVSEL bit in the MCU Control Register (MCUCR). Refer to "Interrupts" on page 56 for more information. The Reset Vector can also be moved to the start of the Boot Flash section by programming the BOOTRST Fuse, see "Boot Loader Support - Read-While-Write Self-Programming" on page 280. When an interrupt occurs, the Global Interrupt Enable I-bit is cleared and all interrupts are disabled. The user software can write logic one to the I-bit to enable nested interrupts. All enabled interrupts can then interrupt the current interrupt routine. The I-bit is automatically set when a Return from Interrupt instruction - RETI - is executed. There are basically two types of interrupts. The first type is triggered by an event that sets the Interrupt Flag. For these interrupts, the Program Counter is vectored to the actual Interrupt Vector in order to execute the interrupt handling routine, and hardware clears the corresponding Interrupt Flag. Interrupt Flags can also be cleared by writing a logic one to the flag bit position(s) to be cleared. If an interrupt condition occurs while the corresponding interrupt enable bit is cleared, the Interrupt Flag will be set and remembered until the interrupt is enabled, or the flag is cleared by software. Similarly, if one or more interrupt conditions occur while the Global Interrupt Enable bit is cleared, the corresponding Interrupt Flag(s) will be set and remembered until the Global Interrupt Enable bit is set, and will then be executed by order of priority. The second type of interrupts will trigger as long as the interrupt condition is present. These interrupts do not necessarily have Interrupt Flags. If the interrupt condition disappears before the interrupt is enabled, the interrupt will not be triggered. When the AVR exits from an interrupt, it will always return to the main program and execute one more instruction before any pending interrupt is served. Note that the Status Register is not automatically stored when entering an interrupt routine, nor restored when returning from an interrupt routine. This must be handled by software. When using the CLI instruction to disable interrupts, the interrupts will be immediately disabled. No interrupt will be executed after the CLI instruction, even if it occurs simultaneously with the CLI instruction. The following example shows how this can be used to avoid interrupts during the timed EEPROM write sequence. 15 8018P-AVR-08/10 ATmega169P Assembly Code Example in r16, SREG cli ; store SREG value ; disable interrupts during timed sequence sbi EECR, EEMWE ; start EEPROM write sbi EECR, EEWE out SREG, r16 ; restore SREG value (I-bit) C Code Example char cSREG; cSREG = SREG; /* store SREG value */ /* disable interrupts during timed sequence */ __disable_interrupt(); EECR |= (1< ... ... ... SPL,r16 ; Enable interrupts xxx ... When the BOOTRST Fuse is unprogrammed, the Boot section size set to 2 Kbytes and the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is: Address Labels Code Comments 0x0000 RESET: ldi 0x0001 out SPH,r16 r16,high(RAMEND); Main program start 0x0002 ldi r16,low(RAMEND) 0x0003 0x0004 out sei SPL,r16 0x0005 ; Set Stack Pointer to top of RAM ; Enable interrupts xxx ; .org 0x1C02 0x1C02 jmp EXT_INT0 ; IRQ0 Handler 0x1C04 jmp PCINT0 ; PCINT0 Handler ... ... ... ; 0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler When the BOOTRST Fuse is programmed and the Boot section size set to 2 Kbytes, the most typical and general program setup for the Reset and Interrupt Vector Addresses is: Address Labels Code Comments .org 0x0002 0x0002 jmp EXT_INT0 ; IRQ0 Handler 0x0004 jmp PCINT0 ; PCINT0 Handler ... ... ... ; 0x002C jmp SPM_RDY ; Store Program Memory Ready Handler ; .org 0x1C00 0x1C00 RESET: ldi r16,high(RAMEND); Main program start 0x1C01 out SPH,r16 0x1C02 ldi r16,low(RAMEND) 0x1C03 0x1C04 out sei SPL,r16 0x1C05 ; Set Stack Pointer to top of RAM ; Enable interrupts xxx When the BOOTRST Fuse is programmed, the Boot section size set to 2 Kbytes and the IVSEL bit in the MCUCR Register is set before any interrupts are enabled, the most typical and general program setup for the Reset and Interrupt Vector Addresses is: Address Labels Code Comments ; .org 0x1C00 0x1C00 0x1C02 jmp jmp RESET EXT_INT0 ; Reset handler ; IRQ0 Handler 0x1C04 jmp PCINT0 ; PCINT0 Handler ... ... ... ; 0x1C2C jmp SPM_RDY ; Store Program Memory Ready Handler 58 8018P-AVR-08/10 ATmega169P ; 11.2 0x1C2E RESET: ldi r16,high(RAMEND); Main program start 0x1C2F out SPH,r16 0x1C30 ldi r16,low(RAMEND) 0x1C31 0x1C32 out sei SPL,r16 0x1C33 ; Set Stack Pointer to top of RAM ; Enable interrupts xxx Moving Interrupts Between Application and Boot Space The General Interrupt Control Register controls the placement of the Interrupt Vector table, see "MCUCR - MCU Control Register" on page 60. To avoid unintentional changes of Interrupt Vector tables, a special write procedure must be followed to change the IVSEL bit: a. Write the Interrupt Vector Change Enable (IVCE) bit to one. b. Within four cycles, write the desired value to IVSEL while writing a zero to IVCE. Interrupts will automatically be disabled while this sequence is executed. Interrupts are disabled in the cycle IVCE is set, and they remain disabled until after the instruction following the write to IVSEL. If IVSEL is not written, interrupts remain disabled for four cycles. The I-bit in the Status Register is unaffected by the automatic disabling. Note: If Interrupt Vectors are placed in the Boot Loader section and Boot Lock bit BLB02 is programmed, interrupts are disabled while executing from the Application section. If Interrupt Vectors are placed in the Application section and Boot Lock bit BLB12 is programed, interrupts are disabled while executing from the Boot Loader section. Refer to the section "Boot Loader Support - Read-WhileWrite Self-Programming" on page 280 for details on Boot Lock bits. The following example shows how interrupts are moved. 59 8018P-AVR-08/10 ATmega169P Assembly Code Example Move_interrupts: ; Get MCUCR in r16, MCUCR mov r17, r16 ; Enable change of Interrupt Vectors ori r16, (1<2) LCDEN * (LCDMUX>1) LCDEN * (LCDMUX>0) LCDEN PUOV 0 0 0 0 DDOE LCDEN * (LCDMUX>2) LCDEN * (LCDMUX>1) LCDEN * (LCDMUX>0) LCDEN DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE LCDEN * (LCDMUX>2) LCDEN * (LCDMUX>1) LCDEN * (LCDMUX>0) LCDEN DIEOV 0 0 0 0 DI - - - - AIO COM3 COM2 COM1 COM0 Alternate Functions of Port B The Port B pins with alternate functions are shown in Table 13-6. Table 13-6. Port Pin Port B Pins Alternate Functions Alternate Functions PB7 OC2A/PCINT15 (Output Compare and PWM Output A for Timer/Counter2 or Pin Change Interrupt15). PB6 OC1B/PCINT14 (Output Compare and PWM Output B for Timer/Counter1 or Pin Change Interrupt14). PB5 OC1A/PCINT13 (Output Compare and PWM Output A for Timer/Counter1 or Pin Change Interrupt13). PB4 OC0A/PCINT12 (Output Compare and PWM Output A for Timer/Counter0 or Pin Change Interrupt12). PB3 MISO/PCINT11 (SPI Bus Master Input/Slave Output or Pin Change Interrupt11). PB2 MOSI/PCINT10 (SPI Bus Master Output/Slave Input or Pin Change Interrupt10). PB1 SCK/PCINT9 (SPI Bus Serial Clock or Pin Change Interrupt9). PB0 SS/PCINT8 (SPI Slave Select input or Pin Change Interrupt8). The alternate pin configuration is as follows: * OC2A/PCINT15, Bit 7 OC2, Output Compare Match A output: The PB7 pin can serve as an external output for the Timer/Counter2 Output Compare A. The pin has to be configured as an output (DDB7 set (one)) to serve this function. The OC2A pin is also the output pin for the PWM mode timer function. PCINT15, Pin Change Interrupt source 15: The PB7 pin can serve as an external interrupt source. 74 8018P-AVR-08/10 ATmega169P * OC1B/PCINT14, Bit 6 OC1B, Output Compare Match B output: The PB6 pin can serve as an external output for the Timer/Counter1 Output Compare B. The pin has to be configured as an output (DDB6 set (one)) to serve this function. The OC1B pin is also the output pin for the PWM mode timer function. PCINT14, Pin Change Interrupt Source 14: The PB6 pin can serve as an external interrupt source. * OC1A/PCINT13, Bit 5 OC1A, Output Compare Match A output: The PB5 pin can serve as an external output for the Timer/Counter1 Output Compare A. The pin has to be configured as an output (DDB5 set (one)) to serve this function. The OC1A pin is also the output pin for the PWM mode timer function. PCINT13, Pin Change Interrupt Source 13: The PB5 pin can serve as an external interrupt source. * OC0A/PCINT12, Bit 4 OC0A, Output Compare Match A output: The PB4 pin can serve as an external output for the Timer/Counter0 Output Compare A. The pin has to be configured as an output (DDB4 set (one)) to serve this function. The OC0A pin is also the output pin for the PWM mode timer function. PCINT12, Pin Change Interrupt Source 12: The PB4 pin can serve as an external interrupt source. * MISO/PCINT11 - Port B, Bit 3 MISO: Master Data input, Slave Data output pin for SPI. When the SPI is enabled as a Master, this pin is configured as an input regardless of the setting of DDB3. When the SPI is enabled as a Slave, the data direction of this pin is controlled by DDB3. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB3 bit. PCINT11, Pin Change Interrupt Source 11: The PB3 pin can serve as an external interrupt source. * MOSI/PCINT10 - Port B, Bit 2 MOSI: SPI Master Data output, Slave Data input for SPI. When the SPI is enabled as a Slave, this pin is configured as an input regardless of the setting of DDB2. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB2. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB2 bit. PCINT10, Pin Change Interrupt Source 10: The PB2 pin can serve as an external interrupt source. * SCK/PCINT9 - Port B, Bit 1 SCK: Master Clock output, Slave Clock input pin for SPI. When the SPI is enabled as a Slave, this pin is configured as an input regardless of the setting of DDB1. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB1. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB1 bit. PCINT9, Pin Change Interrupt Source 9: The PB1 pin can serve as an external interrupt source. * SS/PCINT8 - Port B, Bit 0 SS: Slave Port Select input. When the SPI is enabled as a Slave, this pin is configured as an input regardless of the setting of DDB0. As a Slave, the SPI is activated when this pin is driven 75 8018P-AVR-08/10 ATmega169P low. When the SPI is enabled as a Master, the data direction of this pin is controlled by DDB0. When the pin is forced to be an input, the pull-up can still be controlled by the PORTB0 bit. PCINT8, Pin Change Interrupt Source 8: The PB0 pin can serve as an external interrupt source. Table 13-7 and Table 13-8 on page 77 relate the alternate functions of Port B to the overriding signals shown in Figure 13-5 on page 71. SPI MSTR INPUT and SPI SLAVE OUTPUT constitute the MISO signal, while MOSI is divided into SPI MSTR OUTPUT and SPI SLAVE INPUT. Table 13-7. Overriding Signals for Alternate Functions in PB7..PB4 Signal Name PB7/OC2A/ PCINT15 PB6/OC1B/ PCINT14 PB5/OC1A/ PCINT13 PB4/OC0A/ PCINT12 PUOE 0 0 0 0 PUOV 0 0 0 0 DDOE 0 0 0 0 DDOV 0 0 0 0 PVOE OC2A ENABLE OC1B ENABLE OC1A ENABLE OC0A ENABLE PVOV OC2A OC1B OC1A OC0A PTOE - - - - DIEOE PCINT15 * PCIE1 PCINT14 * PCIE1 PCINT13 * PCIE1 PCINT12 * PCIE1 DIEOV 1 1 1 1 DI PCINT15 INPUT PCINT14 INPUT PCINT13 INPUT PCINT12 INPUT AIO - - - - 76 8018P-AVR-08/10 ATmega169P Table 13-8. 13.3.3 Overriding Signals for Alternate Functions in PB3..PB0 Signal Name PB3/MISO/ PCINT11 PB2/MOSI/ PCINT10 PB1/SCK/ PCINT9 PB0/SS/ PCINT8 PUOE SPE * MSTR SPE * MSTR SPE * MSTR SPE * MSTR PUOV PORTB3 * PUD PORTB2 * PUD PORTB1 * PUD PORTB0 * PUD DDOE SPE * MSTR SPE * MSTR SPE * MSTR SPE * MSTR DDOV 0 0 0 0 PVOE SPE * MSTR SPE * MSTR SPE * MSTR 0 PVOV SPI SLAVE OUTPUT SPI MSTR OUTPUT SCK OUTPUT 0 PTOE - - - - DIEOE PCINT11 * PCIE1 PCINT10 * PCIE1 PCINT9 * PCIE1 PCINT8 * PCIE1 DIEOV 1 1 1 1 DI PCINT11 INPUT SPI MSTR INPUT PCINT10 INPUT SPI SLAVE INPUT PCINT9 INPUT SCK INPUT PCINT8 INPUT SPI SS AIO - - - - Alternate Functions of Port C The Port C has an alternate function as the SEG5:12 for the LCD Controller. Table 13-9. Port C Pins Alternate Functions Port Pin Alternate Function PC7 SEG5 (LCD Front Plane 5) PC6 SEG6 (LCD Front Plane 6) PC5 SEG7 (LCD Front Plane 7) PC4 SEG8 (LCD Front Plane 8) PC3 SEG9 (LCD Front Plane 9) PC2 SEG10 (LCD Front Plane 10) PC1 SEG11 (LCD Front Plane 11) PC0 SEG12 (LCD Front Plane 12) 77 8018P-AVR-08/10 ATmega169P Table 13-10 and Table 13-11 relate the alternate functions of Port C to the overriding signals shown in Figure 13-5 on page 71. Table 13-10. Overriding Signals for Alternate Functions in PC7..PC4 Signal Name PC7/SEG5 PC6/SEG6 PC5/SEG7 PC4/SEG8 PUOE LCDEN LCDEN LCDEN LCDEN PUOV 0 0 0 0 DDOE LCDEN LCDEN LCDEN LCDEN DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE LCDEN LCDEN LCDEN LCDEN DIEOV 0 0 0 0 DI - - - - AIO SEG5 SEG6 SEG7 SEG8 Table 13-11. Overriding Signals for Alternate Functions in PC3..PC0 Signal Name PC3/SEG9 PC2/SEG10 PC1/SEG11 PC0/SEG12 PUOE LCDEN LCDEN LCDEN LCDEN PUOV 0 0 0 0 DDOE LCDEN LCDEN LCDEN LCDEN DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE LCDEN LCDEN LCDEN LCDEN DIEOV 0 0 0 0 DI - - - - AIO SEG9 SEG10 SEG11 SEG12 78 8018P-AVR-08/10 ATmega169P 13.3.4 Alternate Functions of Port D The Port D pins with alternate functions are shown in Table 13-12. Table 13-12. Port D Pins Alternate Functions Port Pin Alternate Function PD7 SEG15 (LCD front plane 15) PD6 SEG16 (LCD front plane 16) PD5 SEG17 (LCD front plane 17) PD4 SEG18 (LCD front plane 18) PD3 SEG19 (LCD front plane 19) PD2 SEG20 (LCD front plane 20) PD1 INT0/SEG21 (External Interrupt0 Input or LCD front plane 21) PD0 ICP1/SEG22 (Timer/Counter1 Input Capture pin or LCD front plane 22) The alternate pin configuration is as follows: * SEG15 - SEG20 - Port D, Bit 7:2 SEG15-SEG20, LCD front plane 15-20. * INT0/SEG21 - Port D, Bit 1 INT0, External Interrupt Source 0. The PD1 pin can serve as an external interrupt source to the MCU. SEG21, LCD front plane 21. * ICP1/SEG22 - Port D, Bit 0 ICP1 - Input Capture pin1: The PD0 pin can act as an Input Capture pin for Timer/Counter1. SEG22, LCD front plane 22. 79 8018P-AVR-08/10 ATmega169P Table 13-13 and Table 13-14 relates the alternate functions of Port D to the overriding signals shown in Figure 13-5 on page 71. Table 13-13. Overriding Signals for Alternate Functions PD7..PD4 Signal Name PD7/SEG15 PD6/SEG16 PD5/SEG17 PD4/SEG18 PUOE LCDEN * (LCDPM>1) LCDEN * (LCDPM>1) LCDEN * (LCDPM>2) LCDEN * (LCDPM>2) PUOV 0 0 0 0 DDOE LCDEN * (LCDPM>1) LCDEN * (LCDPM>1) LCDEN * (LCDPM>2) LCDEN * (LCDPM>2) DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE LCDEN * (LCDPM>1) LCDEN * (LCDPM>1) LCDEN * (LCDPM>2) LCDEN * (LCDPM>2) DIEOV 0 0 0 0 DI - - - - AIO SEG15 SEG16 SEG17 SEG18 Table 13-14. Overriding Signals for Alternate Functions in PD3..PD0 Signal Name PD3/SEG19 PD2/SEG20 PD1/INT0/SEG21 PD0/ICP1/SEG22 PUOE LCDEN * (LCDPM>3) LCDEN * (LCDPM>3) LCDEN * (LCDPM>4) LCDEN * (LCDPM>4) PUOV 0 0 0 0 DDOE LCDEN * (LCDPM>3) LCDEN * (LCDPM>3) LCDEN * (LCDPM>4) LCDEN * (LCDPM>4) DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE LCDEN * (LCDPM>3) LCDEN * (LCDPM>3) LCDEN + (INT0 ENABLE) LCDEN * (LCDPM>4) DIEOV 0 0 LCDEN * (INT0 ENABLE) 0 DI - - INT0 INPUT ICP1 INPUT AIO - - 80 8018P-AVR-08/10 ATmega169P 13.3.5 Alternate Functions of Port E The Port E pins with alternate functions are shown in Table 13-15. Table 13-15. Port E Pins Alternate Functions Port Pin Alternate Function PE7 PCINT7 (Pin Change Interrupt7) CLKO (Divided System Clock) PE6 DO/PCINT6 (USI Data Output or Pin Change Interrupt6) PE5 DI/SDA/PCINT5 (USI Data Input or TWI Serial DAta or Pin Change Interrupt5) PE4 USCK/SCL/PCINT4 (USART External Clock Input/Output or TWI Serial Clock or Pin Change Interrupt4) PE3 AIN1/PCINT3 (Analog Comparator Negative Input or Pin Change Interrupt3) PE2 XCK/AIN0/ PCINT2 (USART External Clock or Analog Comparator Positive Input or Pin Change Interrupt2) PE1 TXD/PCINT1 (USART Transmit Pin or Pin Change Interrupt1) PE0 RXD/PCINT0 (USART Receive Pin or Pin Change Interrupt0) * PCINT7 - Port E, Bit 7 PCINT7, Pin Change Interrupt Source 7: The PE7 pin can serve as an external interrupt source. CLKO, Divided System Clock: The divided system clock can be output on the PE7 pin. The divided system clock will be output if the CKOUT Fuse is programmed, regardless of the PORTE7 and DDE7 settings. It will also be output during reset. * DO/PCINT6 - Port E, Bit 6 DO, Universal Serial Interface Data output. PCINT6, Pin Change Interrupt Source 6: The PE6 pin can serve as an external interrupt source. * DI/SDA/PCINT5 - Port E, Bit 5 DI, Universal Serial Interface Data input. SDA, Two-wire Serial Interface Data: PCINT5, Pin Change Interrupt Source 5: The PE5 pin can serve as an external interrupt source. * USCK/SCL/PCINT4 - Port E, Bit 4 USCK, Universal Serial Interface Clock. SCL, Two-wire Serial Interface Clock. PCINT4, Pin Change Interrupt Source 4: The PE4 pin can serve as an external interrupt source. * AIN1/PCINT3 - Port E, Bit 3 AIN1 - Analog Comparator Negative input. This pin is directly connected to the negative input of the Analog Comparator. PCINT3, Pin Change Interrupt Source 3: The PE3 pin can serve as an external interrupt source. 81 8018P-AVR-08/10 ATmega169P * XCK/AIN0/PCINT2 - Port E, Bit 2 XCK, USART External Clock. The Data Direction Register (DDE2) controls whether the clock is output (DDE2 set) or input (DDE2 cleared). The XCK pin is active only when the USART operates in synchronous mode. AIN0 - Analog Comparator Positive input. This pin is directly connected to the positive input of the Analog Comparator. PCINT2, Pin Change Interrupt Source 2: The PE2 pin can serve as an external interrupt source. * TXD/PCINT1 - Port E, Bit 1 TXD0, UART0 Transmit pin. PCINT1, Pin Change Interrupt Source 1: The PE1 pin can serve as an external interrupt source. * RXD/PCINT0 - Port E, Bit 0 RXD, USART Receive pin. Receive Data (Data input pin for the USART). When the USART Receiver is enabled this pin is configured as an input regardless of the value of DDE0. When the USART forces this pin to be an input, a logical one in PORTE0 will turn on the internal pull-up. PCINT0, Pin Change Interrupt Source 0: The PE0 pin can serve as an external interrupt source. Table 13-16 and Table 13-17 on page 83 relates the alternate functions of Port E to the overriding signals shown in Figure 13-5 on page 71. Table 13-16. Overriding Signals for Alternate Functions PE7:PE4 Signal Name PE7/PCINT7 PE6/DO/ PCINT6 PE5/DI/SDA/ PCINT5 PE4/USCK/SCL/ PCINT4 PUOE 0 0 USI_TWO-WIRE USI_TWO-WIRE PUOV 0 0 0 0 DDOE CKOUT(1) 0 USI_TWO-WIRE USI_TWO-WIRE DDOV 1 0 (SDA + PORTE5) * DDE5 (USI_SCL_HOLD * PORTE4) + DDE4 PVOE CKOUT(1) USI_THREEWIRE USI_TWO-WIRE * DDE5 USI_TWO-WIRE * DDE4 PVOV clkI/O DO 0 0 PTOE - - 0 USITC DIEOE PCINT7 * PCIE0 PCINT6 * PCIE0 (PCINT5 * PCIE0) + USISIE (PCINT4 * PCIE0) + USISIE DIEOV 1 1 1 1 DI PCINT7 INPUT PCINT6 INPUT DI/SDA INPUT PCINT5 INPUT USCKL/SCL INPUT PCINT4 INPUT AIO - - - - Note: 1. CKOUT is one if the CKOUT Fuse is programmed 82 8018P-AVR-08/10 ATmega169P Table 13-17. Overriding Signals for Alternate Functions in PE3:PE0 Signal Name PE3/AIN1/ PCINT3 PE2/XCK/AIN0/ PCINT2 PE1/TXD/ PCINT1 PE0/RXD/PCINT0 PUOE 0 0 TXENn RXENn PUOV 0 0 0 PORTE0 * PUD DDOE 0 0 TXENn RXENn DDOV 0 0 1 0 PVOE 0 XCK OUTPUT ENABLE TXENn 0 PVOV 0 XCK TXD 0 PTOE - - - - DIEOE (PCINT3 * PCIE0) + AIN1D(1) (PCINT2 * PCIE0) + AIN0D(1) PCINT1 * PCIE0 PCINT0 * PCIE0 DIEOV PCINT3 * PCIE0 PCINT2 * PCIE0 1 1 DI PCINT3 INPUT XCK/PCINT2 INPUT PCINT1 INPUT RXD/PCINT0 INPUT AIO AIN1 INPUT AIN0 INPUT - - Note: 13.3.6 1. AIN0D and AIN1D is described in "DIDR1 - Digital Input Disable Register 1" on page 215. Alternate Functions of Port F The Port F has an alternate function as analog input for the ADC as shown in Table 13-18. If some Port F pins are configured as outputs, it is essential that these do not switch when a conversion is in progress. This might corrupt the result of the conversion. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS) and PF4(TCK) will be activated even if a reset occurs. Table 13-18. Port F Pins Alternate Functions Port Pin Alternate Function PF7 ADC7/TDI (ADC input channel 7 or JTAG Test Data Input) PF6 ADC6/TDO (ADC input channel 6 or JTAG Test Data Output) PF5 ADC5/TMS (ADC input channel 5 or JTAG Test mode Select) PF4 ADC4/TCK (ADC input channel 4 or JTAG Test ClocK) PF3 ADC3 (ADC input channel 3) PF2 ADC2 (ADC input channel 2) PF1 ADC1 (ADC input channel 1) PF0 ADC0 (ADC input channel 0) * TDI, ADC7 - Port F, Bit 7 ADC7, Analog to Digital Converter, Channel 7. TDI, JTAG Test Data In: Serial input data to be shifted in to the Instruction Register or Data Register (scan chains). When the JTAG interface is enabled, this pin can not be used as an I/O pin. 83 8018P-AVR-08/10 ATmega169P * TDO, ADC6 - Port F, Bit 6 ADC6, Analog to Digital Converter, Channel 6. TDO, JTAG Test Data Out: Serial output data from Instruction Register or Data Register. When the JTAG interface is enabled, this pin can not be used as an I/O pin. In TAP states that shift out data, the TDO pin drives actively. In other states the pin is pulled high. * TMS, ADC5 - Port F, Bit 5 ADC5, Analog to Digital Converter, Channel 5. TMS, JTAG Test mode Select: This pin is used for navigating through the TAP-controller state machine. When the JTAG interface is enabled, this pin can not be used as an I/O pin. * TCK, ADC4 - Port F, Bit 4 ADC4, Analog to Digital Converter, Channel 4. TCK, JTAG Test Clock: JTAG operation is synchronous to TCK. When the JTAG interface is enabled, this pin can not be used as an I/O pin. * ADC3 - ADC0 - Port F, Bit 3:0 Analog to Digital Converter, Channel 3-0. Table 13-19. Overriding Signals for Alternate Functions in PF7:PF4 Signal Name PF7/ADC7/TDI PF6/ADC6/TDO PF5/ADC5/TMS PF4/ADC4/TCK PUOE JTAGEN JTAGEN JTAGEN JTAGEN PUOV 1 1 1 1 DDOE JTAGEN JTAGEN JTAGEN JTAGEN DDOV 0 SHIFT_IR + SHIFT_DR 0 0 PVOE 0 JTAGEN 0 0 PVOV 0 TDO 0 0 PTOE - - - - DIEOE JTAGEN JTAGEN JTAGEN JTAGEN DIEOV 0 0 0 1 DI - - - - AIO TDI ADC7 INPUT ADC6 INPUT TMS ADC5 INPUT TCK ADC4 INPUT 84 8018P-AVR-08/10 ATmega169P Table 13-20. Overriding Signals for Alternate Functions in PF3:PF0 13.3.7 Signal Name PF3/ADC3 PF2/ADC2 PF1/ADC1 PF0/ADC0 PUOE 0 0 0 0 PUOV 0 0 0 0 DDOE 0 0 0 0 DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE 0 0 0 0 DIEOV 0 0 0 0 DI - - - - AIO ADC3 INPUT ADC2 INPUT ADC1 INPUT ADC0 INPUT Alternate Functions of Port G The alternate pin configuration is as follows: Table 13-21. Port G Pins Alternate Functions(1) Port Pin Note: Alternate Function PG5 RESET PG4 T0/SEG23 (Timer/Counter0 Clock Input or LCD Front Plane 23) PG3 T1/SEG24 (Timer/Counter1 Clock Input or LCD Front Plane 24) PG2 SEG4 (LCD Front Plane 4) PG1 SEG13 (LCD Front Plane 13) PG0 SEG14 (LCD Front Plane 14) 1. Port G, PG5 is input only. Pull-up is always on. See Table 27-3 on page 297 for RSTDISBL fuse. The alternate pin configuration is as follows: * RESET - Port G, Bit 5 RESET: External Reset input. When the RSTDISBL Fuse is programmed (`0'), PG5 will function as input with pull-up always on. * T0/SEG23 - Port G, Bit 4 T0, Timer/Counter0 Counter Source. SEG23, LCD front plane 23 * T1/SEG24 - Port G, Bit 3 T1, Timer/Counter1 Counter Source. SEG24, LCD front plane 24 85 8018P-AVR-08/10 ATmega169P * SEG4 - Port G, Bit 2 SEG4, LCD front plane 4 * SEG13 - Port G, Bit 1 SEG13, Segment driver 13 * SEG14 - Port G, Bit 0 SEG14, LCD front plane 14 Table 13-21 on page 85 and Table 13-22 relates the alternate functions of Port G to the overriding signals shown in Figure 13-5 on page 71. Table 13-22. Overriding Signals for Alternate Functions in PG4 Signal Name PG4/T0/SEG23 PUOE LCDEN * (LCDPM>5) PUOV 0 DDOE LCDEN * (LCDPM>5) DDOV 1 PVOE 0 PVOV 0 PTOE - - - - DIEOE LCDEN * (LCDPM>5) DIEOV 0 DI T0 INPUT AIO SEG23 86 8018P-AVR-08/10 ATmega169P Table 13-23. Overriding Signals for Alternate Functions in PG3:0 Signal Name PG3/T1/SEG24 PG2/SEG4 PG1/SEG13 PG0/SEG14 PUOE LCDEN * (LCDPM>6) LCDEN LCDEN * (LCDPM>0) LCDEN * (LCDPM>0) PUOV 0 0 0 0 DDOE LCDEN * (LCDPM>6) LCDEN LCDEN * (LCDPM>0) LCDEN * (LCDPM>0) DDOV 0 0 0 0 PVOE 0 0 0 0 PVOV 0 0 0 0 PTOE - - - - DIEOE LCDEN * (LCDPM>6) LCDEN LCDEN * (LCDPM>0) LCDEN * (LCDPM>0) DIEOV 0 0 0 0 DI T1 INPUT - - - AIO SEG24 SEG4 SEG13 SEG14 87 8018P-AVR-08/10 ATmega169P 13.4 13.4.1 Register Description for I/O-Ports MCUCR - MCU Control Register Bit 7 6 5 4 3 2 1 0 0x35 (0x55) JTD - - PUD - - IVSEL IVCE Read/Write R/W R R R/W R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 MCUCR * Bit 4 - PUD: Pull-up Disable When this bit is written to one, the pull-ups in the I/O ports are disabled even if the DDxn and PORTxn Registers are configured to enable the pull-ups ({DDxn, PORTxn} = 0b01). See "Configuring the Pin" on page 66 for more details about this feature. 13.4.2 PORTA - Port A Data Register Bit 13.4.3 7 6 5 4 3 2 1 0 0x02 (0x22) PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 DDRA - Port A Data Direction Register Bit 13.4.4 7 6 5 4 3 2 1 0 0x01 (0x21) DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0x00 (0x20) PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value N/A N/A N/A N/A N/A N/A N/A N/A 7 6 5 4 3 2 1 0 0x05 (0x25) PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 PORTB DDRB - Port B Data Direction Register Bit 13.4.7 PINA PORTB - Port B Data Register Bit 13.4.6 DDRA PINA - Port A Input Pins Address Bit 13.4.5 PORTA 7 6 5 4 3 2 1 0 0x04 (0x24) DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 DDRB PINB - Port B Input Pins Address Bit 7 6 5 4 3 2 1 0 0x03 (0x23) PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value N/A N/A N/A N/A N/A N/A N/A N/A PINB 88 8018P-AVR-08/10 ATmega169P 13.4.8 PORTC - Port C Data Register Bit 13.4.9 7 6 5 4 3 2 1 0 0x08 (0x28) PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 DDRC - Port C Data Direction Register Bit 13.4.10 7 6 5 4 3 2 1 0 0x07 (0x27) DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0x06 (0x26) PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value N/A N/A N/A N/A N/A N/A N/A N/A 7 6 5 4 3 2 1 0 0x0B (0x2B) PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0x0A (0x2A) DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0x09 (0x29) PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value N/A N/A N/A N/A N/A N/A N/A N/A PIND PORTE - Port E Data Register Bit 13.4.15 DDRD PIND - Port D Input Pins Address Bit 13.4.14 PORTD DDRD - Port D Data Direction Register Bit 13.4.13 PINC PORTD - Port D Data Register Bit 13.4.12 DDRC PINC - Port C Input Pins Address Bit 13.4.11 PORTC 7 6 5 4 3 2 1 0 0x0E (0x2E) PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 PORTE DDRE - Port E Data Direction Register Bit 7 6 5 4 3 2 1 0 DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 0x0D (0x2D) DDRE 89 8018P-AVR-08/10 ATmega169P 13.4.16 PINE - Port E Input Pins Address Bit 7 6 5 4 3 2 1 0 PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value N/A N/A N/A N/A N/A N/A N/A N/A 0x0C (0x2C) 13.4.17 PORTF - Port F Data Register Bit 13.4.18 7 6 5 4 3 2 1 0 0x11 (0x31) PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 7 6 5 4 3 2 1 0 0x10 (0x30) DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 13.4.21 13.4.22 DDRF PINF - Port F Input Pins Address Bit 13.4.20 PORTF DDRF - Port F Data Direction Register Bit 13.4.19 PINE 7 6 5 4 3 2 1 0 0x0F (0x2F) PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value N/A N/A N/A N/A N/A N/A N/A N/A PINF PORTG - Port G Data Register Bit 7 6 5 4 3 2 1 0 0x14 (0x34) - - PORTG4 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 Read/Write R R R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 PORTG DDRG - Port G Data Direction Register Bit 7 6 5 4 3 2 1 0 0x13 (0x33) - - DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 Read/Write R R R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 DDRG PING - Port G Input Pins Address Bit 7 6 5 4 3 2 1 0 0x12 (0x32) - - PING5 PING4 PING3 PING2 PING1 PING0 Read/Write R R R R/W R/W R/W R/W R/W Initial Value 0 0 0 N/A N/A N/A N/A N/A PING 90 8018P-AVR-08/10 ATmega169P 14. 8-bit Timer/Counter0 with PWM 14.1 Features * * * * * * * 14.2 Single Compare Unit Counter Clear Timer on Compare Match (Auto Reload) Glitch-free, Phase Correct Pulse Width Modulator (PWM) Frequency Generator External Event Counter 10-bit Clock Prescaler Overflow and Compare Match Interrupt Sources (TOV0 and OCF0A) Overview Timer/Counter0 is a general purpose, single compare unit, 8-bit Timer/Counter module. A simplified block diagram is shown in Figure 14-1. For the actual placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the "8-bit Timer/Counter Register Description" on page 102. Figure 14-1. 8-bit Timer/Counter Block Diagram TCCRn count TOVn (Int.Req.) clear Control Logic direction clk Tn Clock Select Edge Detector DATA BUS BOTTOM Tn TOP ( From Prescaler ) Timer/Counter TCNTn = =0 = 0xFF OCn (Int.Req.) Waveform Generation OCn OCRn 14.2.1 Registers The Timer/Counter (TCNT0) and Output Compare Register (OCR0A) are 8-bit registers. Interrupt request (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR0). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK0). TIFR0 and TIMSK0 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T0 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT0). 91 8018P-AVR-08/10 ATmega169P The double buffered Output Compare Register (OCR0A) is compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pin (OC0A). See "Output Compare Unit" on page 93. for details. The compare match event will also set the Compare Flag (OCF0A) which can be used to generate an Output Compare interrupt request. 14.2.2 Definitions Many register and bit references in this section are written in general form. A lower case "n" replaces the Timer/Counter number, in this case 0. A lower case "x" replaces the Output Compare unit number, in this case unit A. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT0 for accessing Timer/Counter0 counter value and so on. The definitions in Table 14-1 are also used extensively throughout the document. Table 14-1. 14.3 Timer/Counter Definitions BOTTOM The counter reaches the BOTTOM when it becomes 0x00. MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR0A Register. The assignment is dependent on the mode of operation. Timer/Counter Clock Sources The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock Select logic which is controlled by the Clock Select (CS02:0) bits located in the Timer/Counter Control Register (TCCR0A). For details on clock sources and prescaler, see "Timer/Counter0 and Timer/Counter1 Prescalers" on page 135. 14.4 Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 14-2 shows a block diagram of the counter and its surroundings. Figure 14-2. Counter Unit Block Diagram TOVn (Int.Req.) DATA BUS Clock Select count TCNTn clear Control Logic clkTn Edge Detector Tn direction ( From Prescaler ) bottom top 92 8018P-AVR-08/10 ATmega169P Signal description (internal signals): count Increment or decrement TCNT0 by 1. direction Select between increment and decrement. clear Clear TCNT0 (set all bits to zero). clkTn Timer/Counter clock, referred to as clkT0 in the following. top Signalize that TCNT0 has reached maximum value. bottom Signalize that TCNT0 has reached minimum value (zero). Depending of the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT0). clkT0 can be generated from an external or internal clock source, selected by the Clock Select bits (CS02:0). When no clock source is selected (CS02:0 = 0) the timer is stopped. However, the TCNT0 value can be accessed by the CPU, regardless of whether clkT0 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the WGM01 and WGM00 bits located in the Timer/Counter Control Register (TCCR0A). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare output OC0A. For more details about advanced counting sequences and waveform generation, see "Modes of Operation" on page 96. The Timer/Counter Overflow Flag (TOV0) is set according to the mode of operation selected by the WGM01:0 bits. TOV0 can be used for generating a CPU interrupt. 14.5 Output Compare Unit The 8-bit comparator continuously compares TCNT0 with the Output Compare Register (OCR0A). Whenever TCNT0 equals OCR0A, the comparator signals a match. A match will set the Output Compare Flag (OCF0A) at the next timer clock cycle. If enabled (OCIE0A = 1 and Global Interrupt Flag in SREG is set), the Output Compare Flag generates an Output Compare interrupt. The OCF0A Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF0A Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM01:0 bits and Compare Output mode (COM0A1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (See "Modes of Operation" on page 96.). Figure 14-3 on page 94 shows a block diagram of the Output Compare unit. 93 8018P-AVR-08/10 ATmega169P Figure 14-3. Output Compare Unit, Block Diagram DATA BUS OCRnx TCNTn = (8-bit Comparator ) OCFnx (Int.Req.) top bottom Waveform Generator OCnx FOCn WGMn1:0 COMnx1:0 The OCR0A Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR0 Compare Register to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR0A Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR0A Buffer Register, and if double buffering is disabled the CPU will access the OCR0A directly. 14.5.1 Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC0A) bit. Forcing compare match will not set the OCF0A Flag or reload/clear the timer, but the OC0A pin will be updated as if a real compare match had occurred (the COM0A1:0 bits settings define whether the OC0A pin is set, cleared or toggled). 14.5.2 Compare Match Blocking by TCNT0 Write All CPU write operations to the TCNT0 Register will block any compare match that occur in the next timer clock cycle, even when the timer is stopped. This feature allows OCR0A to be initialized to the same value as TCNT0 without triggering an interrupt when the Timer/Counter clock is enabled. 94 8018P-AVR-08/10 ATmega169P 14.5.3 Using the Output Compare Unit Since writing TCNT0 in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNT0 when using the Output Compare unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT0 equals the OCR0A value, the compare match will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT0 value equal to BOTTOM when the counter is down counting. The setup of the OC0A should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC0A value is to use the Force Output Compare (FOC0A) strobe bits in Normal mode. The OC0A Register keeps its value even when changing between Waveform Generation modes. Be aware that the COM0A1:0 bits are not double buffered together with the compare value. Changing the COM0A1:0 bits will take effect immediately. 14.6 Compare Match Output Unit The Compare Output mode (COM0A1:0) bits have two functions. The Waveform Generator uses the COM0A1:0 bits for defining the Output Compare (OC0A) state at the next compare match. Also, the COM0A1:0 bits control the OC0A pin output source. Figure 14-4 shows a simplified schematic of the logic affected by the COM0A1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O port control registers (DDR and PORT) that are affected by the COM0A1:0 bits are shown. When referring to the OC0A state, the reference is for the internal OC0A Register, not the OC0A pin. If a System Reset occur, the OC0A Register is reset to "0". Figure 14-4. Compare Match Output Unit, Schematic COMnx1 COMnx0 FOCn Waveform Generator D Q 1 OCnx DATA BUS D 0 OCn Pin Q PORT D Q DDR clk I/O The general I/O port function is overridden by the Output Compare (OC0A) from the Waveform Generator if either of the COM0A1:0 bits are set. However, the OC0A pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC0A pin (DDR_OC0A) must be set as output before the OC0A value is visible on the pin. The port override function is independent of the Waveform Generation mode. 95 8018P-AVR-08/10 ATmega169P The design of the Output Compare pin logic allows initialization of the OC0A state before the output is enabled. Note that some COM0A1:0 bit settings are reserved for certain modes of operation. See "8-bit Timer/Counter Register Description" on page 102. 14.6.1 Compare Output Mode and Waveform Generation The Waveform Generator uses the COM0A1:0 bits differently in Normal, CTC, and PWM modes. For all modes, setting the COM0A1:0 = 0 tells the Waveform Generator that no action on the OC0A Register is to be performed on the next compare match. For compare output actions in the non-PWM modes refer to Table 14-3 on page 103. For fast PWM mode, refer to Table 144 on page 103, and for phase correct PWM refer to Table 14-5 on page 103. A change of the COM0A1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOC0A strobe bits. 14.7 Modes of Operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM01:0) and Compare Output mode (COM0A1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM0A1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For nonPWM modes the COM0A1:0 bits control whether the output should be set, cleared, or toggled at a compare match (See "Compare Match Output Unit" on page 95.). For detailed timing information refer to Figure 14-8, Figure 14-9, Figure 14-10 and Figure 14-11 in "Timer/Counter Timing Diagrams" on page 100. 14.7.1 Normal Mode The simplest mode of operation is the Normal mode (WGM01:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV0) will be set in the same timer clock cycle as the TCNT0 becomes zero. The TOV0 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV0 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 14.7.2 Clear Timer on Compare Match (CTC) Mode In Clear Timer on Compare or CTC mode (WGM01:0 = 2), the OCR0A Register is used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT0) matches the OCR0A. The OCR0A defines the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. 96 8018P-AVR-08/10 ATmega169P The timing diagram for the CTC mode is shown in Figure 14-5. The counter value (TCNT0) increases until a compare match occurs between TCNT0 and OCR0A, and then counter (TCNT0) is cleared. Figure 14-5. CTC Mode, Timing Diagram OCnx Interrupt Flag Set TCNTn OCn (Toggle) Period (COMnx1:0 = 1) 1 2 3 4 An interrupt can be generated each time the counter value reaches the TOP value by using the OCF0A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR0A is lower than the current value of TCNT0, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can occur. For generating a waveform output in CTC mode, the OC0A output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COM0A1:0 = 1). The OC0A value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero (0x00). The waveform frequency is defined by the following equation: f clk_I/O f OCnx = ------------------------------------------------2 N ( 1 + OCRnx ) The N variable represents the prescale factor (1, 8, 64, 256, or 1024). As for the Normal mode of operation, the TOV0 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x00. 14.7.3 Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM01:0 = 3) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match between TCNT0 and OCR0A, and set at BOTTOM. In inverting Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), and therefore reduces total system cost. 97 8018P-AVR-08/10 ATmega169P In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 14-6. The TCNT0 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0. Figure 14-6. Fast PWM Mode, Timing Diagram OCRnx Interrupt Flag Set OCRnx Update and TOVn Interrupt Flag Set TCNTn OCn (COMnx1:0 = 2) OCn (COMnx1:0 = 3) Period 1 2 3 4 5 6 7 The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches MAX. If the interrupt is enabled, the interrupt handler routine can be used for updating the compare value. In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM0A1:0 to three (See Table 14-4 on page 103). The actual OC0A value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC0A Register at the compare match between OCR0A and TCNT0, and clearing (or setting) the OC0A Register at the timer clock cycle the counter is cleared (changes from MAX to BOTTOM). The PWM frequency for the output can be calculated by the following equation: f clk_I/O f OCnxPWM = ----------------N 256 The N variable represents the prescale factor (1, 8, 64, 256, or 1024). The extreme values for the OCR0A Register represents special cases when generating a PWM waveform output in the fast PWM mode. If the OCR0A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR0A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by the COM0A1:0 bits). A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC0A to toggle its logical level on each compare match (COM0A1:0 = 1). The waveform generated will have a maximum frequency of fOC0 = fclk_I/O/2 when OCR0A is set to zero. This 98 8018P-AVR-08/10 ATmega169P feature is similar to the OC0A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 14.7.4 Phase Correct PWM Mode The phase correct PWM mode (WGM01:0 = 1) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In noninverting Compare Output mode, the Output Compare (OC0A) is cleared on the compare match between TCNT0 and OCR0A while upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode the counter is incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count direction. The TCNT0 value will be equal to MAX for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 14-7. The TCNT0 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT0 slopes represent compare matches between OCR0A and TCNT0. Figure 14-7. Phase Correct PWM Mode, Timing Diagram OCnx Interrupt Flag Set OCRnx Update TOVn Interrupt Flag Set TCNTn OCn (COMnx1:0 = 2) OCn (COMnx1:0 = 3) Period 1 2 3 The Timer/Counter Overflow Flag (TOV0) is set each time the counter reaches BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value. In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC0A pin. Setting the COM0A1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the COM0A1:0 to three (See Table 14-5 on page 103). The actual OC0A value will only be visible on the port pin if the data direction for the port pin is 99 8018P-AVR-08/10 ATmega169P set as output. The PWM waveform is generated by clearing (or setting) the OC0A Register at the compare match between OCR0A and TCNT0 when the counter increments, and setting (or clearing) the OC0A Register at compare match between OCR0A and TCNT0 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: f clk_I/O f OCnxPCPWM = ----------------N 510 The N variable represents the prescale factor (1, 8, 64, 256, or 1024). The extreme values for the OCR0A Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR0A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. At the very start of period 2 in Figure 14-7 on page 99 OCn has a transition from high to low even though there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without Compare Match. * OCR0A changes its value from MAX, like in Figure 14-7 on page 99. When the OCR0A value is MAX the OCn pin value is the same as the result of a down-counting Compare Match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match. * The timer starts counting from a value higher than the one in OCR0A, and for that reason misses the Compare Match and hence the OCn change that would have happened on the way up. 14.8 Timer/Counter Timing Diagrams The Timer/Counter is a synchronous design and the timer clock (clkT0) is therefore shown as a clock enable signal in the following figures. The figures include information on when Interrupt Flags are set. Figure 14-8 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase correct PWM mode. Figure 14-8. Timer/Counter Timing Diagram, no Prescaling clkI/O clkTn (clkI/O /1) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 14-9 on page 101 shows the same timing data, but with the prescaler enabled. 100 8018P-AVR-08/10 ATmega169P Figure 14-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 14-10 shows the setting of OCF0A in all modes except CTC mode. Figure 14-10. Timer/Counter Timing Diagram, Setting of OCF0A, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn OCRnx - 1 OCRnx OCRnx OCRnx + 1 OCRnx + 2 OCRnx Value OCFnx Figure 14-11 shows the setting of OCF0A and the clearing of TCNT0 in CTC mode. Figure 14-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn (CTC) OCRnx TOP - 1 TOP BOTTOM BOTTOM + 1 TOP OCFnx 101 8018P-AVR-08/10 ATmega169P 14.9 8-bit Timer/Counter Register Description 14.9.1 TCCR0A - Timer/Counter Control Register A Bit 7 6 5 4 3 2 1 0 0x24 (0x44) FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 Read/Write W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 TCCR0A * Bit 7 - FOC0A: Force Output Compare A The FOC0A bit is only active when the WGM00 bit specifies a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR0A is written when operating in PWM mode. When writing a logical one to the FOC0A bit, an immediate compare match is forced on the Waveform Generation unit. The OC0A output is changed according to its COM0A1:0 bits setting. Note that the FOC0A bit is implemented as a strobe. Therefore it is the value present in the COM0A1:0 bits that determines the effect of the forced compare. A FOC0A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR0A as TOP. The FOC0A bit is always read as zero. * Bit 6, 3 - WGM01:0: Waveform Generation Mode These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and what type of waveform generation to be used. Modes of operation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table 14-2 and "Modes of Operation" on page 96. Table 14-2. Waveform Generation Mode Bit Description() Mode WGM01 (CTC0) WGM00 (PWM0) Timer/Counter Mode of Operation TOP Update of OCR0A at TOV0 Flag Set on 0 0 0 Normal 0xFF Immediate MAX 1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM 2 1 0 CTC OCR0A Immediate MAX 3 1 1 Fast PWM 0xFF BOTTOM MAX Note: 1. The CTC0 and PWM0 bit definition names are now obsolete. Use the WGM01:0 definitions. However, the functionality and location of these bits are compatible with previous versions of the timer. * Bit 5:4 - COM0A1:0: Compare Match Output Mode These bits control the Output Compare pin (OC0A) behavior. If one or both of the COM0A1:0 bits are set, the OC0A output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC0A pin must be set in order to enable the output driver. 102 8018P-AVR-08/10 ATmega169P When OC0A is connected to the pin, the function of the COM0A1:0 bits depends on the WGM01:0 bit setting. Table 14-3 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to a normal or CTC mode (non-PWM). Table 14-3. Compare Output Mode, non-PWM Mode COM0A1 COM0A0 Description 0 0 Normal port operation, OC0A disconnected. 0 1 Toggle OC0A on compare match 1 0 Clear OC0A on compare match 1 1 Set OC0A on compare match Table 14-4 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to fast PWM mode. Table 14-4. Compare Output Mode, Fast PWM Mode(1) COM0A1 COM0A0 0 0 Normal port operation, OC0A disconnected. 0 1 Reserved 1 0 Clear OC0A on compare match, set OC0A at BOTTOM (non-inverting mode) 1 1 Set OC0A on compare match, clear OC0A at BOTTOM (inverting mode) Note: Description 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the compare match is ignored, but the set or clear is done at BOTTOM. See "Fast PWM Mode" on page 97 for more details. Table 14-5 shows the COM0A1:0 bit functionality when the WGM01:0 bits are set to phase correct PWM mode. Table 14-5. Compare Output Mode, Phase Correct PWM Mode(1) COM0A1 COM0A0 0 0 Normal port operation, OC0A disconnected. 0 1 Reserved 1 0 Clear OC0A on compare match when up-counting. Set OC0A on compare match when down counting. 1 1 Set OC0A on compare match when up-counting. Clear OC0A on compare match when down counting. Note: Description 1. A special case occurs when OCR0A equals TOP and COM0A1 is set. In this case, the compare match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode" on page 99 for more details. * Bit 2:0 - CS02:0: Clock Select The three Clock Select bits select the clock source to be used by the Timer/Counter. 103 8018P-AVR-08/10 ATmega169P Table 14-6. Clock Select Bit Description CS02 CS01 CS00 Description 0 0 0 No clock source (Timer/Counter stopped) 0 0 1 clkI/O/(No prescaling) 0 1 0 clkI/O/8 (From prescaler) 0 1 1 clkI/O/64 (From prescaler) 1 0 0 clkI/O/256 (From prescaler) 1 0 1 clkI/O/1024 (From prescaler) 1 1 0 External clock source on T0 pin. Clock on falling edge. 1 1 1 External clock source on T0 pin. Clock on rising edge. If external pin modes are used for the Timer/Counter0, transitions on the T0 pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting. 14.9.2 TCNT0 - Timer/Counter Register Bit 7 6 5 0x26 (0x46) 4 3 2 1 0 TCNT0[7:0] TCNT0 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT0 Register blocks (removes) the compare match on the following timer clock. Modifying the counter (TCNT0) while the counter is running, introduces a risk of missing a compare match between TCNT0 and the OCR0A Register. 14.9.3 OCR0A - Output Compare Register A Bit 7 6 5 0x27 (0x47) 4 3 2 1 0 OCR0A[7:0] OCR0A Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNT0). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC0A pin. 14.9.4 TIMSK0 - Timer/Counter 0 Interrupt Mask Register Bit 7 6 5 4 3 2 1 0 (0x6E) - - - - - - OCIE0A TOIE0 Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIMSK0 104 8018P-AVR-08/10 ATmega169P * Bit 1 - OCIE0A: Timer/Counter0 Output Compare Match A Interrupt Enable When the OCIE0A bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0 Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter0 occurs, that is, when the OCF0A bit is set in the Timer/Counter 0 Interrupt Flag Register - TIFR0. * Bit 0 - TOIE0: Timer/Counter0 Overflow Interrupt Enable When the TOIE0 bit is written to one, and the I-bit in the Status Register is set (one), the Timer/Counter0 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter0 occurs, that is, when the TOV0 bit is set in the Timer/Counter 0 Interrupt Flag Register - TIFR0. 14.9.5 TIFR0 - Timer/Counter 0 Interrupt Flag Register Bit 7 6 5 4 3 2 1 0 0x15 (0x35) - - - - - - OCF0A TOV0 Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIFR0 * Bit 1 - OCF0A: Output Compare Flag 0 A The OCF0A bit is set (one) when a compare match occurs between the Timer/Counter0 and the data in OCR0A - Output Compare Register0. OCF0A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF0A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE0A (Timer/Counter0 Compare match Interrupt Enable), and OCF0A are set (one), the Timer/Counter0 Compare match Interrupt is executed. * Bit 0 - TOV0: Timer/Counter0 Overflow Flag The bit TOV0 is set (one) when an overflow occurs in Timer/Counter0. TOV0 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV0 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE0 (Timer/Counter0 Overflow Interrupt Enable), and TOV0 are set (one), the Timer/Counter0 Overflow interrupt is executed. In phase correct PWM mode, this bit is set when Timer/Counter0 changes counting direction at 0x00. 105 8018P-AVR-08/10 ATmega169P 15. 16-bit Timer/Counter1 15.1 Features * * * * * * * * * * * 15.2 True 16-bit Design (that is, allows 16-bit PWM) Two independent Output Compare Units Double Buffered Output Compare Registers One Input Capture Unit Input Capture Noise Canceler Clear Timer on Compare Match (Auto Reload) Glitch-free, Phase Correct Pulse Width Modulator (PWM) Variable PWM Period Frequency Generator External Event Counter Four independent interrupt Sources (TOV1, OCF1A, OCF1B, and ICF1) Overview The 16-bit Timer/Counter unit allows accurate program execution timing (event management), wave generation, and signal timing measurement. Most register and bit references in this section are written in general form. A lower case "n" replaces the Timer/Counter number, and a lower case "x" replaces the Output Compare unit number. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT1 for accessing Timer/Counter1 counter value and so on. A simplified block diagram of the 16-bit Timer/Counter is shown in Figure 15-1 on page 107. For the actual placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the Section 15.11 "16-bit Timer/Counter Register Description" on page 128. The PRTIM1 bit in Section 9.9.2 "PRR - Power Reduction Register" on page 45 must be written to zero to enable Timer/Counter1 module. 106 8018P-AVR-08/10 ATmega169P Figure 15-1. 16-bit Timer/Counter Block Diagram(1) Count Clear Direction TOVn (Int.Req.) Control Logic clkTn Clock Select Edge Detector TOP Tn BOTTOM ( From Prescaler ) Timer/Counter TCNTn = =0 OCnA (Int.Req.) Waveform Generation = OCnA DATA BUS OCRnA OCnB (Int.Req.) Fixed TOP Values Waveform Generation = OCRnB OCnB ( From Analog Comparator Ouput ) ICFn (Int.Req.) Edge Detector ICRn Noise Canceler ICPn TCCRnA Note: 15.2.1 TCCRnB 1. Refer to Figure 1-1 on page 2, Table 13-5 on page 74, and Table 13-11 on page 78 for Timer/Counter1 pin placement and description. Registers The Timer/Counter (TCNT1), Output Compare Registers (OCR1A/B), and Input Capture Register (ICR1) are all 16-bit registers. Special procedures must be followed when accessing the 16bit registers. These procedures are described in the section "Accessing 16-bit Registers" on page 109. The Timer/Counter Control Registers (TCCR1A/B) are 8-bit registers and have no CPU access restrictions. Interrupt requests (abbreviated to Int.Req. in the figure) signals are all visible in the Timer Interrupt Flag Register (TIFR1). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK1). TIFR1 and TIMSK1 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or by an external clock source on the T1 pin. The Clock Select logic block controls which clock source and edge the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT1). The double buffered Output Compare Registers (OCR1A/B) are compared with the Timer/Counter value at all time. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pin (OC1A/B). See "Out- 107 8018P-AVR-08/10 ATmega169P put Compare Units" on page 115. The compare match event will also set the Compare Match Flag (OCF1A/B) which can be used to generate an Output Compare interrupt request. The Input Capture Register can capture the Timer/Counter value at a given external (edge triggered) event on either the Input Capture pin (ICP1) or on the Analog Comparator pins (See "AC - Analog Comparator" on page 212.) The Input Capture unit includes a digital filtering unit (Noise Canceler) for reducing the chance of capturing noise spikes. The TOP value, or maximum Timer/Counter value, can in some modes of operation be defined by either the OCR1A Register, the ICR1 Register, or by a set of fixed values. When using OCR1A as TOP value in a PWM mode, the OCR1A Register can not be used for generating a PWM output. However, the TOP value will in this case be double buffered allowing the TOP value to be changed in run time. If a fixed TOP value is required, the ICR1 Register can be used as an alternative, freeing the OCR1A to be used as PWM output. 15.2.2 Definitions The following definitions are used extensively throughout the section: 15.2.3 BOTTOM The counter reaches the BOTTOM when it becomes 0x0000. MAX The counter reaches its MAXimum when it becomes 0xFFFF (decimal 65535). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be one of the fixed values: 0x00FF, 0x01FF, or 0x03FF, or to the value stored in the OCR1A or ICR1 Register. The assignment is dependent of the mode of operation. Compatibility The 16-bit Timer/Counter has been updated and improved from previous versions of the 16-bit AVR Timer/Counter. This 16-bit Timer/Counter is fully compatible with the earlier version regarding: * All 16-bit Timer/Counter related I/O Register address locations, including Timer Interrupt Registers. * Bit locations inside all 16-bit Timer/Counter Registers, including Timer Interrupt Registers. * Interrupt Vectors. The following control bits have changed name, but have same functionality and register location: * PWM10 is changed to WGM10. * PWM11 is changed to WGM11. * CTC1 is changed to WGM12. The following bits are added to the 16-bit Timer/Counter Control Registers: * FOC1A and FOC1B are added to TCCR1C. * WGM13 is added to TCCR1B. The 16-bit Timer/Counter has improvements that will affect the compatibility in some special cases. 108 8018P-AVR-08/10 ATmega169P 15.3 Accessing 16-bit Registers The TCNT1, OCR1A/B, and ICR1 are 16-bit registers that can be accessed by the AVR CPU via the 8-bit data bus. The 16-bit register must be byte accessed using two read or write operations. Each 16-bit timer has a single 8-bit register for temporary storing of the high byte of the 16-bit access. The same temporary register is shared between all 16-bit registers within each 16-bit timer. Accessing the low byte triggers the 16-bit read or write operation. When the low byte of a 16-bit register is written by the CPU, the high byte stored in the temporary register, and the low byte written are both copied into the 16-bit register in the same clock cycle. When the low byte of a 16-bit register is read by the CPU, the high byte of the 16-bit register is copied into the temporary register in the same clock cycle as the low byte is read. Not all 16-bit accesses uses the temporary register for the high byte. Reading the OCR1A/B 16bit registers does not involve using the temporary register. To do a 16-bit write, the high byte must be written before the low byte. For a 16-bit read, the low byte must be read before the high byte. The following code examples show how to access the 16-bit Timer Registers assuming that no interrupts updates the temporary register. The same principle can be used directly for accessing the OCR1A/B and ICR1 Registers. Note that when using "C", the compiler handles the 16-bit access. Assembly Code Examples(1) ... ; Set TCNT1 to 0x01FF ldi r17,0x01 ldi r16,0xFF out TCNT1H,r17 out TCNT1L,r16 ; Read TCNT1 into r17:r16 in r16,TCNT1L in r17,TCNT1H ... C Code Examples(1) unsigned int i; ... /* Set TCNT1 to 0x01FF */ TCNT1 = 0x1FF; /* Read TCNT1 into i */ i = TCNT1; ... Note: 1. See "About Code Examples" on page 10. The assembly code example returns the TCNT1 value in the r17:r16 register pair. It is important to notice that accessing 16-bit registers are atomic operations. If an interrupt occurs between the two instructions accessing the 16-bit register, and the interrupt code updates the temporary register by accessing the same or any other of the 16-bit Timer Registers, then the result of the access outside the interrupt will be corrupted. Therefore, when both 109 8018P-AVR-08/10 ATmega169P the main code and the interrupt code update the temporary register, the main code must disable the interrupts during the 16-bit access. The following code examples show how to do an atomic read of the TCNT1 Register contents. Reading any of the OCR1A/B or ICR1 Registers can be done by using the same principle. Assembly Code Example(1) TIM16_ReadTCNT1: ; Save global interrupt flag in r18,SREG ; Disable interrupts cli ; Read TCNT1 into r17:r16 in r16,TCNT1L in r17,TCNT1H ; Restore global interrupt flag out SREG,r18 ret C Code Example(1) unsigned int TIM16_ReadTCNT1( void ) { unsigned char sreg; unsigned int i; /* Save global interrupt flag */ sreg = SREG; /* Disable interrupts */ __disable_interrupt(); /* Read TCNT1 into i */ i = TCNT1; /* Restore global interrupt flag */ SREG = sreg; return i; } Note: 1. See "About Code Examples" on page 10. The assembly code example returns the TCNT1 value in the r17:r16 register pair. 110 8018P-AVR-08/10 ATmega169P The following code examples show how to do an atomic write of the TCNT1 Register contents. Writing any of the OCR1A/B or ICR1 Registers can be done by using the same principle. Assembly Code Example(1) TIM16_WriteTCNT1: ; Save global interrupt flag in r18,SREG ; Disable interrupts cli ; Set TCNT1 to r17:r16 out TCNT1H,r17 out TCNT1L,r16 ; Restore global interrupt flag out SREG,r18 ret C Code Example(1) void TIM16_WriteTCNT1( unsigned int i ) { unsigned char sreg; unsigned int i; /* Save global interrupt flag */ sreg = SREG; /* Disable interrupts */ __disable_interrupt(); /* Set TCNT1 to i */ TCNT1 = i; /* Restore global interrupt flag */ SREG = sreg; } Note: 1. See "About Code Examples" on page 10. The assembly code example requires that the r17:r16 register pair contains the value to be written to TCNT1. 15.3.1 Reusing the Temporary High Byte Register If writing to more than one 16-bit register where the high byte is the same for all registers written, then the high byte only needs to be written once. However, note that the same rule of atomic operation described previously also applies in this case. 15.4 Timer/Counter Clock Sources The Timer/Counter can be clocked by an internal or an external clock source. The clock source is selected by the Clock Select logic which is controlled by the Clock Select (CS12:0) bits located in the Timer/Counter control Register B (TCCR1B). For details on clock sources and prescaler, see "Timer/Counter0 and Timer/Counter1 Prescalers" on page 135. 111 8018P-AVR-08/10 ATmega169P 15.5 Counter Unit The main part of the 16-bit Timer/Counter is the programmable 16-bit bi-directional counter unit. Figure 15-2 shows a block diagram of the counter and its surroundings. Figure 15-2. Counter Unit Block Diagram DATA BUS (8-bit) TOVn (Int.Req.) TEMP (8-bit) Clock Select Count TCNTnH (8-bit) TCNTnL (8-bit) Clear Direction TCNTn (16-bit Counter) Control Logic clkTn Edge Detector Tn ( From Prescaler ) TOP BOTTOM Signal description (internal signals): Count Increment or decrement TCNT1 by 1. Direction Select between increment and decrement. Clear Clear TCNT1 (set all bits to zero). clkT1 Timer/Counter clock. TOP Signalize that TCNT1 has reached maximum value. BOTTOM Signalize that TCNT1 has reached minimum value (zero). The 16-bit counter is mapped into two 8-bit I/O memory locations: Counter High (TCNT1H) containing the upper eight bits of the counter, and Counter Low (TCNT1L) containing the lower eight bits. The TCNT1H Register can only be indirectly accessed by the CPU. When the CPU does an access to the TCNT1H I/O location, the CPU accesses the high byte temporary register (TEMP). The temporary register is updated with the TCNT1H value when the TCNT1L is read, and TCNT1H is updated with the temporary register value when TCNT1L is written. This allows the CPU to read or write the entire 16-bit counter value within one clock cycle via the 8-bit data bus. It is important to notice that there are special cases of writing to the TCNT1 Register when the counter is counting that will give unpredictable results. The special cases are described in the sections where they are of importance. Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT1). The clkT1 can be generated from an external or internal clock source, selected by the Clock Select bits (CS12:0). When no clock source is selected (CS12:0 = 0) the timer is stopped. However, the TCNT1 value can be accessed by the CPU, independent of whether clkT1 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the Waveform Generation mode bits (WGM13:0) located in the Timer/Counter Control Registers A and B (TCCR1A and TCCR1B). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare outputs OC1x. For more details about advanced counting sequences and waveform generation, see "Modes of Operation" on page 118. 112 8018P-AVR-08/10 ATmega169P The Timer/Counter Overflow Flag (TOV1) is set according to the mode of operation selected by the WGM13:0 bits. TOV1 can be used for generating a CPU interrupt. 15.6 Input Capture Unit The Timer/Counter incorporates an Input Capture unit that can capture external events and give them a time-stamp indicating time of occurrence. The external signal indicating an event, or multiple events, can be applied via the ICP1 pin or alternatively, via the analog-comparator unit. The time-stamps can then be used to calculate frequency, duty-cycle, and other features of the signal applied. Alternatively the time-stamps can be used for creating a log of the events. The Input Capture unit is illustrated by the block diagram shown in Figure 15-3. The elements of the block diagram that are not directly a part of the Input Capture unit are gray shaded. The small "n" in register and bit names indicates the Timer/Counter number. Figure 15-3. Input Capture Unit Block Diagram DATA BUS (8-bit) TEMP (8-bit) ICRnH (8-bit) WRITE ICRnL (8-bit) TCNTnH (8-bit) ICRn (16-bit Register) ACO* Analog Comparator ACIC* TCNTnL (8-bit) TCNTn (16-bit Counter) ICNC ICES Noise Canceler Edge Detector ICFn (Int.Req.) ICPn When a change of the logic level (an event) occurs on the Input Capture pin (ICP1), alternatively on the Analog Comparator output (ACO), and this change confirms to the setting of the edge detector, a capture will be triggered. When a capture is triggered, the 16-bit value of the counter (TCNT1) is written to the Input Capture Register (ICR1). The Input Capture Flag (ICF1) is set at the same system clock as the TCNT1 value is copied into ICR1 Register. If enabled (ICIE1 = 1), the Input Capture Flag generates an Input Capture interrupt. The ICF1 Flag is automatically cleared when the interrupt is executed. Alternatively the ICF1 Flag can be cleared by software by writing a logical one to its I/O bit location. Reading the 16-bit value in the Input Capture Register (ICR1) is done by first reading the low byte (ICR1L) and then the high byte (ICR1H). When the low byte is read the high byte is copied into the high byte temporary register (TEMP). When the CPU reads the ICR1H I/O location it will access the TEMP Register. The ICR1 Register can only be written when using a Waveform Generation mode that utilizes the ICR1 Register for defining the counter's TOP value. In these cases the Waveform Genera- 113 8018P-AVR-08/10 ATmega169P tion mode (WGM13:0) bits must be set before the TOP value can be written to the ICR1 Register. When writing the ICR1 Register the high byte must be written to the ICR1H I/O location before the low byte is written to ICR1L. For more information on how to access the 16-bit registers refer to "Accessing 16-bit Registers" on page 109. 15.6.1 Input Capture Trigger Source The main trigger source for the Input Capture unit is the Input Capture pin (ICP1). Timer/Counter1 can alternatively use the Analog Comparator output as trigger source for the Input Capture unit. The Analog Comparator is selected as trigger source by setting the Analog Comparator Input Capture (ACIC) bit in the Analog Comparator Control and Status Register (ACSR). Be aware that changing trigger source can trigger a capture. The Input Capture Flag must therefore be cleared after the change. Both the Input Capture pin (ICP1) and the Analog Comparator output (ACO) inputs are sampled using the same technique as for the T1 pin (Figure 16-1 on page 135). The edge detector is also identical. However, when the noise canceler is enabled, additional logic is inserted before the edge detector, which increases the delay by four system clock cycles. Note that the input of the noise canceler and edge detector is always enabled unless the Timer/Counter is set in a Waveform Generation mode that uses ICR1 to define TOP. An Input Capture can be triggered by software by controlling the port of the ICP1 pin. 15.6.2 Noise Canceler The noise canceler improves noise immunity by using a simple digital filtering scheme. The noise canceler input is monitored over four samples, and all four must be equal for changing the output that in turn is used by the edge detector. The noise canceler is enabled by setting the Input Capture Noise Canceler (ICNC1) bit in Timer/Counter Control Register B (TCCR1B). When enabled the noise canceler introduces additional four system clock cycles of delay from a change applied to the input, to the update of the ICR1 Register. The noise canceler uses the system clock and is therefore not affected by the prescaler. 15.6.3 Using the Input Capture Unit The main challenge when using the Input Capture unit is to assign enough processor capacity for handling the incoming events. The time between two events is critical. If the processor has not read the captured value in the ICR1 Register before the next event occurs, the ICR1 will be overwritten with a new value. In this case the result of the capture will be incorrect. When using the Input Capture interrupt, the ICR1 Register should be read as early in the interrupt handler routine as possible. Even though the Input Capture interrupt has relatively high priority, the maximum interrupt response time is dependent on the maximum number of clock cycles it takes to handle any of the other interrupt requests. Using the Input Capture unit in any mode of operation when the TOP value (resolution) is actively changed during operation, is not recommended. Measurement of an external signal's duty cycle requires that the trigger edge is changed after each capture. Changing the edge sensing must be done as early as possible after the ICR1 Register has been read. After a change of the edge, the Input Capture Flag (ICF1) must be 114 8018P-AVR-08/10 ATmega169P cleared by software (writing a logical one to the I/O bit location). For measuring frequency only, the clearing of the ICF1 Flag is not required (if an interrupt handler is used). 15.7 Output Compare Units The 16-bit comparator continuously compares TCNT1 with the Output Compare Register (OCR1x). If TCNT equals OCR1x the comparator signals a match. A match will set the Output Compare Flag (OCF1x) at the next timer clock cycle. If enabled (OCIE1x = 1), the Output Compare Flag generates an Output Compare interrupt. The OCF1x Flag is automatically cleared when the interrupt is executed. Alternatively the OCF1x Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the Waveform Generation mode (WGM13:0) bits and Compare Output mode (COM1x1:0) bits. The TOP and BOTTOM signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation (See "Modes of Operation" on page 118.) A special feature of Output Compare unit A allows it to define the Timer/Counter TOP value (that is, counter resolution). In addition to the counter resolution, the TOP value defines the period time for waveforms generated by the Waveform Generator. Figure 15-4 shows a block diagram of the Output Compare unit. The small "n" in the register and bit names indicates the device number (n = 1 for Timer/Counter 1), and the "x" indicates Output Compare unit (A/B). The elements of the block diagram that are not directly a part of the Output Compare unit are gray shaded. Figure 15-4. Output Compare Unit, Block Diagram DATA BUS (8-bit) TEMP (8-bit) OCRnxH Buf. (8-bit) OCRnxL Buf. (8-bit) TCNTnH (8-bit) OCRnx Buffer (16-bit Register) OCRnxH (8-bit) TCNTnL (8-bit) TCNTn (16-bit Counter) OCRnxL (8-bit) OCRnx (16-bit Register) = (16-bit Comparator ) OCFnx (Int.Req.) TOP BOTTOM Waveform Generator WGMn3:0 OCnx COMnx1:0 The OCR1x Register is double buffered when using any of the twelve Pulse Width Modulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR1x Compare Register to either TOP or BOTTOM of the counting sequence. The synchronization 115 8018P-AVR-08/10 ATmega169P prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR1x Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR1x Buffer Register, and if double buffering is disabled the CPU will access the OCR1x directly. The content of the OCR1x (Buffer or Compare) Register is only changed by a write operation (the Timer/Counter does not update this register automatically as the TCNT1 and ICR1 Register). Therefore OCR1x is not read via the high byte temporary register (TEMP). However, it is a good practice to read the low byte first as when accessing other 16-bit registers. Writing the OCR1x Registers must be done via the TEMP Register since the compare of all 16 bits is done continuously. The high byte (OCR1xH) has to be written first. When the high byte I/O location is written by the CPU, the TEMP Register will be updated by the value written. Then when the low byte (OCR1xL) is written to the lower eight bits, the high byte will be copied into the upper 8-bits of either the OCR1x buffer or OCR1x Compare Register in the same system clock cycle. For more information of how to access the 16-bit registers refer to "Accessing 16-bit Registers" on page 109. 15.7.1 Force Output Compare In non-PWM Waveform Generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC1x) bit. Forcing compare match will not set the OCF1x Flag or reload/clear the timer, but the OC1x pin will be updated as if a real compare match had occurred (the COMx1:0 bits settings define whether the OC1x pin is set, cleared or toggled). 15.7.2 Compare Match Blocking by TCNT1 Write All CPU writes to the TCNT1 Register will block any compare match that occurs in the next timer clock cycle, even when the timer is stopped. This feature allows OCR1x to be initialized to the same value as TCNT1 without triggering an interrupt when the Timer/Counter clock is enabled. 15.7.3 Using the Output Compare Unit Since writing TCNT1 in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNT1 when using any of the Output Compare units, independent of whether the Timer/Counter is running or not. If the value written to TCNT1 equals the OCR1x value, the compare match will be missed, resulting in incorrect waveform generation. Do not write the TCNT1 equal to TOP in PWM modes with variable TOP values. The compare match for the TOP will be ignored and the counter will continue to 0xFFFF. Similarly, do not write the TCNT1 value equal to BOTTOM when the counter is down counting. The setup of the OC1x should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC1x value is to use the Force Output Compare (FOC1x) strobe bits in Normal mode. The OC1x Register keeps its value even when changing between Waveform Generation modes. Be aware that the COM1x1:0 bits are not double buffered together with the compare value. Changing the COM1x1:0 bits will take effect immediately. 116 8018P-AVR-08/10 ATmega169P 15.8 Compare Match Output Unit The Compare Output mode (COM1x1:0) bits have two functions. The Waveform Generator uses the COM1x1:0 bits for defining the Output Compare (OC1x) state at the next compare match. Secondly the COM1x1:0 bits control the OC1x pin output source. Figure 15-5 shows a simplified schematic of the logic affected by the COM1x1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COM1x1:0 bits are shown. When referring to the OC1x state, the reference is for the internal OC1x Register, not the OC1x pin. If a system reset occur, the OC1x Register is reset to "0". Figure 15-5. Compare Match Output Unit, Schematic COMnx1 COMnx0 FOCnx Waveform Generator D Q 1 OCnx DATA BUS D 0 OCnx Pin Q PORT D Q DDR clk I/O The general I/O port function is overridden by the Output Compare (OC1x) from the Waveform Generator if either of the COM1x1:0 bits are set. However, the OC1x pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC1x pin (DDR_OC1x) must be set as output before the OC1x value is visible on the pin. The port override function is generally independent of the Waveform Generation mode, but there are some exceptions. Refer to Table 15-1 on page 128, Table 15-2 on page 128 and Table 15-3 on page 129 for details. The design of the Output Compare pin logic allows initialization of the OC1x state before the output is enabled. Note that some COM1x1:0 bit settings are reserved for certain modes of operation. See "16-bit Timer/Counter Register Description" on page 128. The COM1x1:0 bits have no effect on the Input Capture unit. 117 8018P-AVR-08/10 ATmega169P 15.8.1 Compare Output Mode and Waveform Generation The Waveform Generator uses the COM1x1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COM1x1:0 = 0 tells the Waveform Generator that no action on the OC1x Register is to be performed on the next compare match. For compare output actions in the non-PWM modes refer to Table 15-1 on page 128. For fast PWM mode refer to Table 15-2 on page 128, and for phase correct and phase and frequency correct PWM refer to Table 15-3 on page 129. A change of the COM1x1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOC1x strobe bits. 15.9 Modes of Operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM13:0) and Compare Output mode (COM1x1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM1x1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For non-PWM modes the COM1x1:0 bits control whether the output should be set, cleared or toggle at a compare match. (See "Compare Match Output Unit" on page 117.) For detailed timing information refer to "Timer/Counter Timing Diagrams" on page 126. 15.9.1 Normal Mode The simplest mode of operation is the Normal mode (WGM13:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 16-bit value (MAX = 0xFFFF) and then restarts from the BOTTOM (0x0000). In normal operation the Timer/Counter Overflow Flag (TOV1) will be set in the same timer clock cycle as the TCNT1 becomes zero. The TOV1 Flag in this case behaves like a 17th bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV1 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Input Capture unit is easy to use in Normal mode. However, observe that the maximum interval between the external events must not exceed the resolution of the counter. If the interval between events are too long, the timer overflow interrupt or the prescaler must be used to extend the resolution for the capture unit. The Output Compare units can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 15.9.2 Clear Timer on Compare Match (CTC) Mode In Clear Timer on Compare or CTC mode (WGM13:0 = 4 or 12), the OCR1A or ICR1 Register are used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT1) matches either the OCR1A (WGM13:0 = 4) or the ICR1 (WGM13:0 = 12). The OCR1A or ICR1 define the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. 118 8018P-AVR-08/10 ATmega169P The timing diagram for the CTC mode is shown in Figure 15-6. The counter value (TCNT1) increases until a compare match occurs with either OCR1A or ICR1, and then counter (TCNT1) is cleared. Figure 15-6. CTC Mode, Timing Diagram OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) TCNTn OCnA (Toggle) Period (COMnA1:0 = 1) 1 2 3 4 An interrupt can be generated at each time the counter value reaches the TOP value by either using the OCF1A or ICF1 Flag according to the register used to define the TOP value. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR1A or ICR1 is lower than the current value of TCNT1, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. In many cases this feature is not desirable. An alternative will then be to use the fast PWM mode using OCR1A for defining TOP (WGM13:0 = 15) since the OCR1A then will be double buffered. For generating a waveform output in CTC mode, the OC1A output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COM1A1:0 = 1). The OC1A value will not be visible on the port pin unless the data direction for the pin is set to output (DDR_OC1A = 1). The waveform generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). The waveform frequency is defined by the following equation: f clk_I/O f OCnA = -------------------------------------------------2 N ( 1 + OCRnA ) The N variable represents the prescaler factor (1, 8, 64, 256, or 1024). As for the Normal mode of operation, the TOV1 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x0000. 119 8018P-AVR-08/10 ATmega169P 15.9.3 Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM13:0 = 5, 6, 7, 14, or 15) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM options by its single-slope operation. The counter counts from BOTTOM to TOP then restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x, and set at BOTTOM. In inverting Compare Output mode output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct and phase and frequency correct PWM modes that use dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), hence reduces total system cost. The PWM resolution for fast PWM can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following equation: log ( TOP + 1 -) R FPWM = ---------------------------------log ( 2 ) In fast PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 5, 6, or 7), the value in ICR1 (WGM13:0 = 14), or the value in OCR1A (WGM13:0 = 15). The counter is then cleared at the following timer clock cycle. The timing diagram for the fast PWM mode is shown in Figure 15-7. The figure shows fast PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match occurs. Figure 15-7. Fast PWM Mode, Timing Diagram OCRnx / TOP Update and TOVn Interrupt Flag Set and OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 4 5 6 7 8 The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches TOP. In addition the OC1A or ICF1 Flag is set at the same timer clock cycle as TOV1 is set when either OCR1A 120 8018P-AVR-08/10 ATmega169P or ICR1 is used for defining the TOP value. If one of the interrupts are enabled, the interrupt handler routine can be used for updating the TOP and compare values. When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values the unused bits are masked to zero when any of the OCR1x Registers are written. The procedure for updating ICR1 differs from updating OCR1A when used for defining the TOP value. The ICR1 Register is not double buffered. This means that if ICR1 is changed to a low value when the counter is running with none or a low prescaler value, there is a risk that the new ICR1 value written is lower than the current value of TCNT1. The result will then be that the counter will miss the compare match at the TOP value. The counter will then have to count to the MAX value (0xFFFF) and wrap around starting at 0x0000 before the compare match can occur. The OCR1A Register however, is double buffered. This feature allows the OCR1A I/O location to be written anytime. When the OCR1A I/O location is written the value written will be put into the OCR1A Buffer Register. The OCR1A Compare Register will then be updated with the value in the Buffer Register at the next timer clock cycle the TCNT1 matches TOP. The update is done at the same timer clock cycle as the TCNT1 is cleared and the TOV1 Flag is set. Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively changed (by changing the TOP value), using the OCR1A as TOP is clearly a better choice due to its double buffer feature. In fast PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM1x1:0 to three (see Table 15-2 on page 128). The actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1, and clearing (or setting) the OC1x Register at the timer clock cycle the counter is cleared (changes from TOP to BOTTOM). The PWM frequency for the output can be calculated by the following equation: f clk_I/O f OCnxPWM = ---------------------------------N ( 1 + TOP ) The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM (0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the OCR1x equal to TOP will result in a constant high or low output (depending on the polarity of the output set by the COM1x1:0 bits). A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1). This applies only if OCR1A is used to define the TOP value (WGM13:0 = 15). The waveform generated will have a maximum frequency of fOC1A = fclk_I/O/2 when OCR1A is set to zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 121 8018P-AVR-08/10 ATmega169P 15.9.4 Phase Correct PWM Mode The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 = 1, 2, 3, 10, or 11) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is, like the phase and frequency correct PWM mode, based on a dualslope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the compare match while down counting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. The PWM resolution for the phase correct PWM mode can be fixed to 8-bit, 9-bit, or 10-bit, or defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated by using the following equation: log ( TOP + 1 ) R PCPWM = ----------------------------------log ( 2 ) In phase correct PWM mode the counter is incremented until the counter value matches either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the value in ICR1 (WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter has then reached the TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 15-8. The figure shows phase correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match occurs. Figure 15-8. Phase Correct PWM Mode, Timing Diagram OCRnx/TOP Update and OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) TOVn Interrupt Flag Set (Interrupt on Bottom) TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 4 122 8018P-AVR-08/10 ATmega169P The Timer/Counter Overflow Flag (TOV1) is set each time the counter reaches BOTTOM. When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag is set accordingly at the same timer clock cycle as the OCR1x Registers are updated with the double buffer value (at TOP). The Interrupt Flags can be used to generate an interrupt each time the counter reaches the TOP or BOTTOM value. When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x. Note that when using fixed TOP values, the unused bits are masked to zero when any of the OCR1x Registers are written. As the third period shown in Figure 15-8 on page 122 illustrates, changing the TOP actively while the Timer/Counter is running in the phase correct mode can result in an unsymmetrical output. The reason for this can be found in the time of update of the OCR1x Register. Since the OCR1x update occurs at TOP, the PWM period starts and ends at TOP. This implies that the length of the falling slope is determined by the previous TOP value, while the length of the rising slope is determined by the new TOP value. When these two values differ the two slopes of the period will differ in length. The difference in length gives the unsymmetrical result on the output. It is recommended to use the phase and frequency correct mode instead of the phase correct mode when changing the TOP value while the Timer/Counter is running. When using a static TOP value there are practically no differences between the two modes of operation. In phase correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM1x1:0 to three (See Table 15-3 on page 129). The actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: f clk_I/O f OCnxPCPWM = --------------------------2 N TOP The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). The extreme values for the OCR1x Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 11) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle. 123 8018P-AVR-08/10 ATmega169P 15.9.5 Phase and Frequency Correct PWM Mode The phase and frequency correct Pulse Width Modulation, or phase and frequency correct PWM mode (WGM13:0 = 8 or 9) provides a high resolution phase and frequency correct PWM waveform generation option. The phase and frequency correct PWM mode is, like the phase correct PWM mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM (0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1 and OCR1x while upcounting, and set on the compare match while down counting. In inverting Compare Output mode, the operation is inverted. The dual-slope operation gives a lower maximum operation frequency compared to the single-slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. The main difference between the phase correct, and the phase and frequency correct PWM mode is the time the OCR1x Register is updated by the OCR1x Buffer Register, (see Figure 158 on page 122 and Figure 15-9 on page 125). The PWM resolution for the phase and frequency correct PWM mode can be defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to MAX). The PWM resolution in bits can be calculated using the following equation: log ( TOP + 1 ) R PFCPWM = ----------------------------------log ( 2 ) In phase and frequency correct PWM mode the counter is incremented until the counter value matches either the value in ICR1 (WGM13:0 = 8), or the value in OCR1A (WGM13:0 = 9). The counter has then reached the TOP and changes the count direction. The TCNT1 value will be equal to TOP for one timer clock cycle. The timing diagram for the phase correct and frequency correct PWM mode is shown on Figure 15-9 on page 125. The figure shows phase and frequency correct PWM mode when OCR1A or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes represent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be set when a compare match occurs. 124 8018P-AVR-08/10 ATmega169P Figure 15-9. Phase and Frequency Correct PWM Mode, Timing Diagram OCnA Interrupt Flag Set or ICFn Interrupt Flag Set (Interrupt on TOP) OCRnx/TOP Updateand TOVn Interrupt Flag Set (Interrupt on Bottom) TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 4 The Timer/Counter Overflow Flag (TOV1) is set at the same timer clock cycle as the OCR1x Registers are updated with the double buffer value (at BOTTOM). When either OCR1A or ICR1 is used for defining the TOP value, the OC1A or ICF1 Flag set when TCNT1 has reached TOP. The Interrupt Flags can then be used to generate an interrupt each time the counter reaches the TOP or BOTTOM value. When changing the TOP value the program must ensure that the new TOP value is higher or equal to the value of all of the Compare Registers. If the TOP value is lower than any of the Compare Registers, a compare match will never occur between the TCNT1 and the OCR1x. As Figure 15-9 shows the output generated is, in contrast to the phase correct mode, symmetrical in all periods. Since the OCR1x Registers are updated at BOTTOM, the length of the rising and the falling slopes will always be equal. This gives symmetrical output pulses and is therefore frequency correct. Using the ICR1 Register for defining TOP works well when using fixed TOP values. By using ICR1, the OCR1A Register is free to be used for generating a PWM output on OC1A. However, if the base PWM frequency is actively changed by changing the TOP value, using the OCR1A as TOP is clearly a better choice due to its double buffer feature. In phase and frequency correct PWM mode, the compare units allow generation of PWM waveforms on the OC1x pins. Setting the COM1x1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM1x1:0 to three (See Table 15-3 on page 129). The actual OC1x value will only be visible on the port pin if the data direction for the port pin is set as output (DDR_OC1x). The PWM waveform is generated by setting (or clearing) the OC1x Register at the compare match between OCR1x and TCNT1 when the counter increments, and clearing (or setting) the OC1x Register at compare match between OCR1x and TCNT1 when the counter decrements. The PWM frequency for the output when using phase and frequency correct PWM can be calculated by the following equation: f clk_I/O f OCnxPFCPWM = --------------------------2 N TOP The N variable represents the prescaler divider (1, 8, 64, 256, or 1024). 125 8018P-AVR-08/10 ATmega169P The extreme values for the OCR1x Register represents special cases when generating a PWM waveform output in the phase and frequency correct PWM mode. If the OCR1x is set equal to BOTTOM the output will be continuously low and if set equal to TOP the output will be set to high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. If OCR1A is used to define the TOP value (WGM13:0 = 9) and COM1A1:0 = 1, the OC1A output will toggle with a 50% duty cycle. 15.10 Timer/Counter Timing Diagrams The Timer/Counter is a synchronous design and the timer clock (clkT1) is therefore shown as a clock enable signal in the following figures. The figures include information on when Interrupt Flags are set, and when the OCR1x Register is updated with the OCR1x buffer value (only for modes utilizing double buffering). Figure 15-10 shows a timing diagram for the setting of OCF1x. Figure 15-10. Timer/Counter Timing Diagram, Setting of OCF1x, no Prescaling clkI/O clkTn (clkI/O /1) TCNTn OCRnx - 1 OCRnx OCRnx OCRnx + 1 OCRnx + 2 OCRnx Value OCFnx Figure 15-11 shows the same timing data, but with the prescaler enabled. Figure 15-11. Timer/Counter Timing Diagram, Setting of OCF1x, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn OCRnx OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 OCRnx Value OCFnx Figure 15-12 on page 127 shows the count sequence close to TOP in various modes. When using phase and frequency correct PWM mode the OCR1x Register is updated at BOTTOM. The timing diagrams will be the same, but TOP should be replaced by BOTTOM, TOP-1 by 126 8018P-AVR-08/10 ATmega169P BOTTOM+1 and so on. The same renaming applies for modes that set the TOV1 Flag at BOTTOM. Figure 15-12. Timer/Counter Timing Diagram, no Prescaling clkI/O clkTn (clkI/O /1) TCNTn (CTC and FPWM) TCNTn (PC and PFC PWM) TOP - 1 TOP BOTTOM BOTTOM + 1 TOP - 1 TOP TOP - 1 TOP - 2 TOVn (FPWM) and ICFn (if used as TOP) OCRnx (Update at TOP) Old OCRnx Value New OCRnx Value Figure 15-13 shows the same timing data, but with the prescaler enabled. Figure 15-13. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O/8) TCNTn (CTC and FPWM) TCNTn (PC and PFC PWM) TOP - 1 TOP BOTTOM BOTTOM + 1 TOP - 1 TOP TOP - 1 TOP - 2 TOVn (FPWM) and ICF n (if used as TOP) OCRnx (Update at TOP) Old OCRnx Value New OCRnx Value 127 8018P-AVR-08/10 ATmega169P 15.11 16-bit Timer/Counter Register Description 15.11.1 TCCR1A - Timer/Counter1 Control Register A Bit 7 6 5 4 3 2 1 0 COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 Read/Write R/W R/W R/W R/W R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 (0x80) TCCR1A * Bit 7:6 - COM1A1:0: Compare Output Mode for Unit A * Bit 5:4 - COM1B1:0: Compare Output Mode for Unit B The COM1A1:0 and COM1B1:0 control the Output Compare pins (OC1A and OC1B respectively) behavior. If one or both of the COM1A1:0 bits are written to one, the OC1A output overrides the normal port functionality of the I/O pin it is connected to. If one or both of the COM1B1:0 bit are written to one, the OC1B output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to the OC1A or OC1B pin must be set in order to enable the output driver. When the OC1A or OC1B is connected to the pin, the function of the COM1x1:0 bits is dependent of the WGM13:0 bits setting. Table 15-1 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to a Normal or a CTC mode (non-PWM). Table 15-1. Compare Output Mode, non-PWM COM1A1/COM1B1 COM1A0/COM1B0 Description 0 0 Normal port operation, OC1A/OC1B disconnected. 0 1 Toggle OC1A/OC1B on Compare Match. 1 0 Clear OC1A/OC1B on Compare Match (Set output to low level). 1 1 Set OC1A/OC1B on Compare Match (Set output to high level). Table 15-2 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the fast PWM mode. Table 15-2. Compare Output Mode, Fast PWM(1) COM1A1/COM1B1 COM1A0/COM1B0 0 0 Normal port operation, OC1A/OC1B disconnected. 0 1 WGM13:0 = 14 or 15: Toggle OC1A on Compare Match, OC1B disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B disconnected. 1 0 Clear OC1A/OC1B on Compare Match, set OC1A/OC1B at BOTTOM (non-inverting mode) 1 1 Set OC1A/OC1B on Compare Match, clear OC1A/OC1B at BOTTOM (inverting mode) Note: Description 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. In this case the compare match is ignored, but the set or clear is done at TOP. See "Fast PWM Mode" on page 120. for more details. 128 8018P-AVR-08/10 ATmega169P Table 15-3 shows the COM1x1:0 bit functionality when the WGM13:0 bits are set to the phase correct or the phase and frequency correct, PWM mode. Table 15-3. Compare Output Mode, Phase Correct and Phase and Frequency Correct PWM(1) COM1A1/COM1B1 COM1A0/COM1B0 0 0 Normal port operation, OC1A/OC1B disconnected. 0 1 WGM13:0 = 9 or 11: Toggle OC1A on Compare Match, OC1B disconnected (normal port operation). For all other WGM1 settings, normal port operation, OC1A/OC1B disconnected. 1 0 Clear OC1A/OC1B on Compare Match when upcounting. Set OC1A/OC1B on Compare Match when down counting. 1 1 Set OC1A/OC1B on Compare Match when upcounting. Clear OC1A/OC1B on Compare Match when down counting. Note: Description 1. A special case occurs when OCR1A/OCR1B equals TOP and COM1A1/COM1B1 is set. See "Phase Correct PWM Mode" on page 122. for more details. * Bit 1:0 - WGM11:0: Waveform Generation Mode Combined with the WGM13:2 bits found in the TCCR1B Register, these bits control the counting sequence of the counter, the source for maximum (TOP) counter value, and what type of waveform generation to be used, see Table 15-4 on page 130. Modes of operation supported by the Timer/Counter unit are: Normal mode (counter), Clear Timer on Compare match (CTC) mode, and three types of Pulse Width Modulation (PWM) modes. (See "Modes of Operation" on page 118.) 129 8018P-AVR-08/10 ATmega169P Waveform Generation Mode Bit Description(1) Table 15-4. Mode WGM13 WGM12 (CTC1) WGM11 (PWM11) WGM10 (PWM10) Timer/Counter Mode of Operation TOP Update of OCR1x at TOV1 Flag Set on 0 0 0 0 0 Normal 0xFFFF Immediate MAX 1 0 0 0 1 PWM, Phase Correct, 8-bit 0x00FF TOP BOTTOM 2 0 0 1 0 PWM, Phase Correct, 9-bit 0x01FF TOP BOTTOM 3 0 0 1 1 PWM, Phase Correct, 10-bit 0x03FF TOP BOTTOM 4 0 1 0 0 CTC OCR1A Immediate MAX 5 0 1 0 1 Fast PWM, 8-bit 0x00FF BOTTOM TOP 6 0 1 1 0 Fast PWM, 9-bit 0x01FF BOTTOM TOP 7 0 1 1 1 Fast PWM, 10-bit 0x03FF BOTTOM TOP 8 1 0 0 0 PWM, Phase and Frequency Correct ICR1 BOTTOM BOTTOM 9 1 0 0 1 PWM, Phase and Frequency Correct OCR1A BOTTOM BOTTOM 10 1 0 1 0 PWM, Phase Correct ICR1 TOP BOTTOM 11 1 0 1 1 PWM, Phase Correct OCR1A TOP BOTTOM 12 1 1 0 0 CTC ICR1 Immediate MAX 13 1 1 0 1 (Reserved) - - - 14 1 1 1 0 Fast PWM ICR1 BOTTOM TOP 15 1 1 1 1 Fast PWM OCR1A BOTTOM TOP Note: 15.11.2 1. The CTC1 and PWM11:0 bit definition names are obsolete. Use the WGM12:0 definitions. However, the functionality and location of these bits are compatible with previous versions of the timer. TCCR1B - Timer/Counter1 Control Register B Bit 7 6 5 4 3 2 1 0 ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 Read/Write R/W R/W R R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 (0x81) TCCR1B * Bit 7 - ICNC1: Input Capture Noise Canceler Setting this bit (to one) activates the Input Capture Noise Canceler. When the noise canceler is activated, the input from the Input Capture pin (ICP1) is filtered. The filter function requires four successive equal valued samples of the ICP1 pin for changing its output. The Input Capture is therefore delayed by four Oscillator cycles when the noise canceler is enabled. * Bit 6 - ICES1: Input Capture Edge Select This bit selects which edge on the Input Capture pin (ICP1) that is used to trigger a capture event. When the ICES1 bit is written to zero, a falling (negative) edge is used as trigger, and when the ICES1 bit is written to one, a rising (positive) edge will trigger the capture. 130 8018P-AVR-08/10 ATmega169P When a capture is triggered according to the ICES1 setting, the counter value is copied into the Input Capture Register (ICR1). The event will also set the Input Capture Flag (ICF1), and this can be used to cause an Input Capture Interrupt, if this interrupt is enabled. When the ICR1 is used as TOP value (see description of the WGM13:0 bits located in the TCCR1A and the TCCR1B Register), the ICP1 is disconnected and consequently the Input Capture function is disabled. * Bit 5 - Reserved Bit This bit is reserved for future use. For ensuring compatibility with future devices, this bit must be written to zero when TCCR1B is written. * Bit 4:3 - WGM13:2: Waveform Generation Mode See TCCR1A Register description. * Bit 2:0 - CS12:0: Clock Select The three Clock Select bits select the clock source to be used by the Timer/Counter, see Figure 15-10 on page 126 and Figure 15-11 on page 126. Table 15-5. Clock Select Bit Description CS12 CS11 CS10 Description 0 0 0 No clock source (Timer/Counter stopped). 0 0 1 clkI/O/1 (No prescaling) 0 1 0 clkI/O/8 (From prescaler) 0 1 1 clkI/O/64 (From prescaler) 1 0 0 clkI/O/256 (From prescaler) 1 0 1 clkI/O/1024 (From prescaler) 1 1 0 External clock source on T1 pin. Clock on falling edge. 1 1 1 External clock source on T1 pin. Clock on rising edge. If external pin modes are used for the Timer/Counter1, transitions on the T1 pin will clock the counter even if the pin is configured as an output. This feature allows software control of the counting. 15.11.3 TCCR1C - Timer/Counter1 Control Register C Bit 7 6 5 4 3 2 1 0 FOC1A FOC1B - - - - - - Read/Write R/W R/W R R R R R R Initial Value 0 0 0 0 0 0 0 0 (0x82) TCCR1C * Bit 7 - FOC1A: Force Output Compare for Unit A * Bit 6 - FOC1B: Force Output Compare for Unit B The FOC1A/FOC1B bits are only active when the WGM13:0 bits specifies a non-PWM mode. However, for ensuring compatibility with future devices, these bits must be set to zero when TCCR1A is written when operating in a PWM mode. When writing a logical one to the FOC1A/FOC1B bit, an immediate compare match is forced on the Waveform Generation unit. The OC1A/OC1B output is changed according to its COM1x1:0 bits setting. Note that the 131 8018P-AVR-08/10 ATmega169P FOC1A/FOC1B bits are implemented as strobes. Therefore it is the value present in the COM1x1:0 bits that determine the effect of the forced compare. A FOC1A/FOC1B strobe will not generate any interrupt nor will it clear the timer in Clear Timer on Compare match (CTC) mode using OCR1A as TOP. The FOC1A/FOC1B bits are always read as zero. 15.11.4 TCNT1H and TCNT1L - Timer/Counter1 Bit 7 6 5 4 3 (0x85) TCNT1[15:8] (0x84) TCNT1[7:0] 2 1 0 TCNT1H TCNT1L Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The two Timer/Counter I/O locations (TCNT1H and TCNT1L, combined TCNT1) give direct access, both for read and for write operations, to the Timer/Counter unit 16-bit counter. To ensure that both the high and low bytes are read and written simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See "Accessing 16-bit Registers" on page 109. Modifying the counter (TCNT1) while the counter is running introduces a risk of missing a compare match between TCNT1 and one of the OCR1x Registers. Writing to the TCNT1 Register blocks (removes) the compare match on the following timer clock for all compare units. 15.11.5 OCR1AH and OCR1AL - Output Compare Register 1 A Bit 15.11.6 7 6 5 4 3 (0x89) OCR1A[15:8] (0x88) OCR1A[7:0] 2 1 0 OCR1AH OCR1AL Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 4 3 2 1 0 OCR1BH and OCR1BL - Output Compare Register 1 B Bit 7 6 5 (0x8B) OCR1B[15:8] (0x8A) OCR1B[7:0] OCR1BH OCR1BL Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Output Compare Registers contain a 16-bit value that is continuously compared with the counter value (TCNT1). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC1x pin. The Output Compare Registers are 16-bit in size. To ensure that both the high and low bytes are written simultaneously when the CPU writes to these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See "Accessing 16-bit Registers" on page 109. 132 8018P-AVR-08/10 ATmega169P 15.11.7 ICR1H and ICR1L - Input Capture Register 1 Bit 7 6 5 4 3 (0x87) ICR1[15:8] (0x86) ICR1[7:0] 2 1 0 ICR1H ICR1L Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Input Capture is updated with the counter (TCNT1) value each time an event occurs on the ICP1 pin (or optionally on the Analog Comparator output for Timer/Counter1). The Input Capture can be used for defining the counter TOP value. The Input Capture Register is 16-bit in size. To ensure that both the high and low bytes are read simultaneously when the CPU accesses these registers, the access is performed using an 8-bit temporary High Byte Register (TEMP). This temporary register is shared by all the other 16-bit registers. See "Accessing 16-bit Registers" on page 109. 15.11.8 TIMSK1 - Timer/Counter1 Interrupt Mask Register Bit 7 6 5 4 3 2 1 0 (0x6F) - - ICIE1 - - OCIE1B OCIE1A TOIE1 Read/Write R R R/W R R R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIMSK1 * Bit 5 - ICIE1: Timer/Counter1, Input Capture Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Counter1 Input Capture interrupt is enabled. The corresponding Interrupt Vector (See "Interrupts" on page 56.) is executed when the ICF1 Flag, located in TIFR1, is set. * Bit 2 - OCIE1B: Timer/Counter1, Output Compare B Match Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Counter1 Output Compare B Match interrupt is enabled. The corresponding Interrupt Vector (See "Interrupts" on page 56.) is executed when the OCF1B Flag, located in TIFR1, is set. * Bit 1 - OCIE1A: Timer/Counter1, Output Compare A Match Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Counter1 Output Compare A Match interrupt is enabled. The corresponding Interrupt Vector (See "Interrupts" on page 56.) is executed when the OCF1A Flag, located in TIFR1, is set. * Bit 0 - TOIE1: Timer/Counter1, Overflow Interrupt Enable When this bit is written to one, and the I-flag in the Status Register is set (interrupts globally enabled), the Timer/Counter1 Overflow interrupt is enabled. The corresponding Interrupt Vector (See "Interrupts" on page 56.) is executed when the TOV1 Flag, located in TIFR1, is set. 133 8018P-AVR-08/10 ATmega169P 15.11.9 TIFR1 - Timer/Counter1 Interrupt Flag Register Bit 7 6 5 4 3 2 1 0 0x16 (0x36) - - ICF1 - - OCF1B OCF1A TOV1 Read/Write R R R/W R R R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIFR1 * Bit 5 - ICF1: Timer/Counter1, Input Capture Flag This flag is set when a capture event occurs on the ICP1 pin. When the Input Capture Register (ICR1) is set by the WGM13:0 to be used as the TOP value, the ICF1 Flag is set when the counter reaches the TOP value. ICF1 is automatically cleared when the Input Capture Interrupt Vector is executed. Alternatively, ICF1 can be cleared by writing a logic one to its bit location. * Bit 2 - OCF1B: Timer/Counter1, Output Compare B Match Flag This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register B (OCR1B). Note that a Forced Output Compare (FOC1B) strobe will not set the OCF1B Flag. OCF1B is automatically cleared when the Output Compare Match B Interrupt Vector is executed. Alternatively, OCF1B can be cleared by writing a logic one to its bit location. * Bit 1 - OCF1A: Timer/Counter1, Output Compare A Match Flag This flag is set in the timer clock cycle after the counter (TCNT1) value matches the Output Compare Register A (OCR1A). Note that a Forced Output Compare (FOC1A) strobe will not set the OCF1A Flag. OCF1A is automatically cleared when the Output Compare Match A Interrupt Vector is executed. Alternatively, OCF1A can be cleared by writing a logic one to its bit location. * Bit 0 - TOV1: Timer/Counter1, Overflow Flag The setting of this flag is dependent of the WGM13:0 bits setting. In Normal and CTC modes, the TOV1 Flag is set when the timer overflows. Refer to Table 15-4 on page 130 for the TOV1 Flag behavior when using another WGM13:0 bit setting. TOV1 is automatically cleared when the Timer/Counter1 Overflow Interrupt Vector is executed. Alternatively, TOV1 can be cleared by writing a logic one to its bit location. 134 8018P-AVR-08/10 ATmega169P 16. Timer/Counter0 and Timer/Counter1 Prescalers Timer/Counter1 and Timer/Counter0 share the same prescaler module, but the Timer/Counters can have different prescaler settings. The description below applies to both Timer/Counter1 and Timer/Counter0. 16.1 Prescaler Reset The prescaler is free running, that is, operates independently of the Clock Select logic of the Timer/Counter, and it is shared by Timer/Counter1 and Timer/Counter0. Since the prescaler is not affected by the Timer/Counter's clock select, the state of the prescaler will have implications for situations where a prescaled clock is used. One example of prescaling artifacts occurs when the timer is enabled and clocked by the prescaler (6 > CSn2:0 > 1). The number of system clock cycles from when the timer is enabled to the first count occurs can be from 1 to N+1 system clock cycles, where N equals the prescaler divisor (8, 64, 256, or 1024). It is possible to use the prescaler reset for synchronizing the Timer/Counter to program execution. However, care must be taken if the other Timer/Counter that shares the same prescaler also uses prescaling. A prescaler reset will affect the prescaler period for all Timer/Counters it is connected to. 16.2 Internal Clock Source The Timer/Counter can be clocked directly by the system clock (by setting the CSn2:0 = 1). This provides the fastest operation, with a maximum Timer/Counter clock frequency equal to system clock frequency (fCLK_I/O). Alternatively, one of four taps from the prescaler can be used as a clock source. The prescaled clock has a frequency of either fCLK_I/O/8, fCLK_I/O/64, fCLK_I/O/256, or fCLK_I/O/1024. 16.3 External Clock Source An external clock source applied to the T1/T0 pin can be used as Timer/Counter clock (clkT1/clkT0). The T1/T0 pin is sampled once every system clock cycle by the pin synchronization logic. The synchronized (sampled) signal is then passed through the edge detector. Figure 16-1 on page 135 shows a functional equivalent block diagram of the T1/T0 synchronization and edge detector logic. The registers are clocked at the positive edge of the internal system clock (clkI/O). The latch is transparent in the high period of the internal system clock. The edge detector generates one clkT1/clkT0 pulse for each positive (CSn2:0 = 7) or negative (CSn2:0 = 6) edge it detects. Figure 16-1. T1/T0 Pin Sampling Tn D Q D Q D Tn_sync (To Clock Select Logic) Q LE clk I/O Synchronization Edge Detector The synchronization and edge detector logic introduces a delay of 2.5 to 3.5 system clock cycles from an edge has been applied to the T1/T0 pin to the counter is updated. 135 8018P-AVR-08/10 ATmega169P Enabling and disabling of the clock input must be done when T1/T0 has been stable for at least one system clock cycle, otherwise it is a risk that a false Timer/Counter clock pulse is generated. Each half period of the external clock applied must be longer than one system clock cycle to ensure correct sampling. The external clock must be guaranteed to have less than half the system clock frequency (fExtClk < fclk_I/O/2) given a 50/50% duty cycle. Since the edge detector uses sampling, the maximum frequency of an external clock it can detect is half the sampling frequency (Nyquist sampling theorem). However, due to variation of the system clock frequency and duty cycle caused by Oscillator source (crystal, resonator, and capacitors) tolerances, it is recommended that maximum frequency of an external clock source is less than fclk_I/O/2.5. An external clock source can not be prescaled. Figure 16-2. Prescaler for Timer/Counter0 and Timer/Counter1(1) clk I/O Clear PSR10 T0 Synchronization T1 Synchronization clkT1 Note: clkT0 1. The synchronization logic on the input pins (T1/T0) is shown in Figure 16-1 on page 135. 136 8018P-AVR-08/10 ATmega169P 16.4 16.4.1 Register Description GTCCR - General Timer/Counter Control Register Bit 7 6 5 4 3 2 1 0 0x23 (0x43) TSM - - - - - PSR2 PSR10 Read/Write R/W R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 GTCCR * Bit 7 - TSM: Timer/Counter Synchronization Mode Writing the TSM bit to one activates the Timer/Counter Synchronization mode. In this mode, the value that is written to the PSR2 and PSR10 bits is kept, hence keeping the corresponding prescaler reset signals asserted. This ensures that the corresponding Timer/Counters are halted and can be configured to the same value without the risk of one of them advancing during configuration. When the TSM bit is written to zero, the PSR2 and PSR10 bits are cleared by hardware, and the Timer/Counters start counting simultaneously. * Bit 0 - PSR10: Prescaler Reset Timer/Counter1 and Timer/Counter0 When this bit is one, Timer/Counter1 and Timer/Counter0 prescaler will be Reset. This bit is normally cleared immediately by hardware, except if the TSM bit is set. Note that Timer/Counter1 and Timer/Counter0 share the same prescaler and a reset of this prescaler will affect both timers. 137 8018P-AVR-08/10 ATmega169P 17. 8-bit Timer/Counter2 with PWM and Asynchronous Operation Timer/Counter2 is a general purpose, single compare unit, 8-bit Timer/Counter module. The main features are: * * * * * * * 17.1 Single Compare Unit Counter Clear Timer on Compare Match (Auto Reload) Glitch-free, Phase Correct Pulse Width Modulator (PWM) Frequency Generator 10-bit Clock Prescaler Overflow and Compare Match Interrupt Sources (TOV2 and OCF2A) Allows Clocking from External 32 kHz Watch Crystal Independent of the I/O Clock Overview A simplified block diagram of the 8-bit Timer/Counter is shown in Figure 17-1. For the actual placement of I/O pins, refer to Figure 1-1 on page 2. CPU accessible I/O Registers, including I/O bits and I/O pins, are shown in bold. The device-specific I/O Register and bit locations are listed in the Section 17.10 "8-bit Timer/Counter Register Description" on page 153. Figure 17-1. 8-bit Timer/Counter Block Diagram TCCRnx count TOVn (Int.Req.) clear Control Logic direction clkTn TOSC1 BOTTOM TOP Prescaler T/C Oscillator TOSC2 Timer/Counter TCNTn =0 = 0xFF OCnx (Int.Req.) Waveform Generation = clkI/O OCnx DATA BUS OCRnx Synchronized Status flags clkI/O Synchronization Unit clkASY Status flags ASSRn asynchronous mode select (ASn) 17.1.1 Registers The Timer/Counter (TCNT2) and Output Compare Register (OCR2A) are 8-bit registers. Interrupt request (shorten as Int.Req.) signals are all visible in the Timer Interrupt Flag Register 138 8018P-AVR-08/10 ATmega169P (TIFR2). All interrupts are individually masked with the Timer Interrupt Mask Register (TIMSK2). TIFR2 and TIMSK2 are not shown in the figure. The Timer/Counter can be clocked internally, via the prescaler, or asynchronously clocked from the TOSC1/2 pins, as detailed later in this section. The asynchronous operation is controlled by the Asynchronous Status Register (ASSR). The Clock Select logic block controls which clock source the Timer/Counter uses to increment (or decrement) its value. The Timer/Counter is inactive when no clock source is selected. The output from the Clock Select logic is referred to as the timer clock (clkT2). The double buffered Output Compare Register (OCR2A) is compared with the Timer/Counter value at all times. The result of the compare can be used by the Waveform Generator to generate a PWM or variable frequency output on the Output Compare pin (OC2A). See "Output Compare Unit" on page 140. for details. The compare match event will also set the Compare Flag (OCF2A) which can be used to generate an Output Compare interrupt request. 17.1.2 Definitions Many register and bit references in this document are written in general form. A lower case "n" replaces the Timer/Counter number, in this case 2. However, when using the register or bit defines in a program, the precise form must be used, that is, TCNT2 for accessing Timer/Counter2 counter value and so on. The definitions in Table 17-1 are also used extensively throughout the section. Table 17-1. 17.2 Timer/Counter Definitions BOTTOM The counter reaches the BOTTOM when it becomes zero (0x00). MAX The counter reaches its MAXimum when it becomes 0xFF (decimal 255). TOP The counter reaches the TOP when it becomes equal to the highest value in the count sequence. The TOP value can be assigned to be the fixed value 0xFF (MAX) or the value stored in the OCR2A Register. The assignment is dependent on the mode of operation. Timer/Counter Clock Sources The Timer/Counter can be clocked by an internal synchronous or an external asynchronous clock source. The clock source clkT2 is by default equal to the MCU clock, clkI/O. When the AS2 bit in the ASSR Register is written to logic one, the clock source is taken from the Timer/Counter Oscillator connected to TOSC1 and TOSC2. For details on asynchronous operation, see "ASSR - Asynchronous Status Register" on page 156. For details on clock sources and prescaler, see "Timer/Counter Prescaler" on page 152. 17.3 Counter Unit The main part of the 8-bit Timer/Counter is the programmable bi-directional counter unit. Figure 17-2 on page 140 shows a block diagram of the counter and its surrounding environment. 139 8018P-AVR-08/10 ATmega169P Figure 17-2. Counter Unit Block Diagram TOVn (Int.Req.) DATA BUS TOSC1 count TCNTn clear clk Tn Control Logic Prescaler T/C Oscillator direction bottom TOSC2 top clkI/O Signal description (internal signals): count Increment or decrement TCNT2 by 1. direction Selects between increment and decrement. clear Clear TCNT2 (set all bits to zero). clkT2 Timer/Counter clock. top Signalizes that TCNT2 has reached maximum value. bottom Signalizes that TCNT2 has reached minimum value (zero). Depending on the mode of operation used, the counter is cleared, incremented, or decremented at each timer clock (clkT2). clkT2 can be generated from an external or internal clock source, selected by the Clock Select bits (CS22:0). When no clock source is selected (CS22:0 = 0) the timer is stopped. However, the TCNT2 value can be accessed by the CPU, regardless of whether clkT2 is present or not. A CPU write overrides (has priority over) all counter clear or count operations. The counting sequence is determined by the setting of the WGM21 and WGM20 bits located in the Timer/Counter Control Register (TCCR2A). There are close connections between how the counter behaves (counts) and how waveforms are generated on the Output Compare output OC2A. For more details about advanced counting sequences and waveform generation, see "Modes of Operation" on page 143. The Timer/Counter Overflow Flag (TOV2) is set according to the mode of operation selected by the WGM21:0 bits. TOV2 can be used for generating a CPU interrupt. 17.4 Output Compare Unit The 8-bit comparator continuously compares TCNT2 with the Output Compare Register (OCR2A). Whenever TCNT2 equals OCR2A, the comparator signals a match. A match will set the Output Compare Flag (OCF2A) at the next timer clock cycle. If enabled (OCIE2A = 1), the Output Compare Flag generates an Output Compare interrupt. The OCF2A Flag is automatically cleared when the interrupt is executed. Alternatively, the OCF2A Flag can be cleared by software by writing a logical one to its I/O bit location. The Waveform Generator uses the match signal to generate an output according to operating mode set by the WGM21:0 bits and Compare Output mode (COM2A1:0) bits. The max and bottom signals are used by the Waveform Generator for handling the special cases of the extreme values in some modes of operation ("Modes of Operation" on page 143). Figure 17-3 on page 141 shows a block diagram of the Output Compare unit. 140 8018P-AVR-08/10 ATmega169P Figure 17-3. Output Compare Unit, Block Diagram DATA BUS OCRnx TCNTn = (8-bit Comparator ) OCFnx (Int.Req.) top bottom Waveform Generator OCnx FOCn WGMn1:0 COMnx1:0 The OCR2A Register is double buffered when using any of the Pulse Width Modulation (PWM) modes. For the Normal and Clear Timer on Compare (CTC) modes of operation, the double buffering is disabled. The double buffering synchronizes the update of the OCR2A Compare Register to either top or bottom of the counting sequence. The synchronization prevents the occurrence of odd-length, non-symmetrical PWM pulses, thereby making the output glitch-free. The OCR2A Register access may seem complex, but this is not case. When the double buffering is enabled, the CPU has access to the OCR2A Buffer Register, and if double buffering is disabled the CPU will access the OCR2A directly. 17.4.1 Force Output Compare In non-PWM waveform generation modes, the match output of the comparator can be forced by writing a one to the Force Output Compare (FOC2A) bit. Forcing compare match will not set the OCF2A Flag or reload/clear the timer, but the OC2A pin will be updated as if a real compare match had occurred (the COM2A1:0 bits settings define whether the OC2A pin is set, cleared or toggled). 17.4.2 Compare Match Blocking by TCNT2 Write All CPU write operations to the TCNT2 Register will block any compare match that occurs in the next timer clock cycle, even when the timer is stopped. This feature allows OCR2A to be initialized to the same value as TCNT2 without triggering an interrupt when the Timer/Counter clock is enabled. 17.4.3 Using the Output Compare Unit Since writing TCNT2 in any mode of operation will block all compare matches for one timer clock cycle, there are risks involved when changing TCNT2 when using the Output Compare unit, independently of whether the Timer/Counter is running or not. If the value written to TCNT2 equals the OCR2A value, the compare match will be missed, resulting in incorrect waveform generation. Similarly, do not write the TCNT2 value equal to BOTTOM when the counter is down counting. 141 8018P-AVR-08/10 ATmega169P The setup of the OC2A should be performed before setting the Data Direction Register for the port pin to output. The easiest way of setting the OC2A value is to use the Force Output Compare (FOC2A) strobe bit in Normal mode. The OC2A Register keeps its value even when changing between Waveform Generation modes. Be aware that the COM2A1:0 bits are not double buffered together with the compare value. Changing the COM2A1:0 bits will take effect immediately. 17.5 Compare Match Output Unit The Compare Output mode (COM2A1:0) bits have two functions. The Waveform Generator uses the COM2A1:0 bits for defining the Output Compare (OC2A) state at the next compare match. Also, the COM2A1:0 bits control the OC2A pin output source. Figure 17-4 shows a simplified schematic of the logic affected by the COM2A1:0 bit setting. The I/O Registers, I/O bits, and I/O pins in the figure are shown in bold. Only the parts of the general I/O Port Control Registers (DDR and PORT) that are affected by the COM2A1:0 bits are shown. When referring to the OC2A state, the reference is for the internal OC2A Register, not the OC2A pin. Figure 17-4. Compare Match Output Unit, Schematic COMnx1 COMnx0 FOCnx Waveform Generator D Q 1 OCnx DATA BUS D 0 OCnx Pin Q PORT D Q DDR clk I/O The general I/O port function is overridden by the Output Compare (OC2A) from the Waveform Generator if either of the COM2A1:0 bits are set. However, the OC2A pin direction (input or output) is still controlled by the Data Direction Register (DDR) for the port pin. The Data Direction Register bit for the OC2A pin (DDR_OC2A) must be set as output before the OC2A value is visible on the pin. The port override function is independent of the Waveform Generation mode. The design of the Output Compare pin logic allows initialization of the OC2A state before the output is enabled. Note that some COM2A1:0 bit settings are reserved for certain modes of operation. See "8-bit Timer/Counter Register Description" on page 153. 142 8018P-AVR-08/10 ATmega169P 17.5.1 Compare Output Mode and Waveform Generation The Waveform Generator uses the COM2A1:0 bits differently in normal, CTC, and PWM modes. For all modes, setting the COM2A1:0 = 0 tells the Waveform Generator that no action on the OC2A Register is to be performed on the next compare match. For compare output actions in the non-PWM modes refer to Table 17-3 on page 154. For fast PWM mode, refer to Table 17-4 on page 154, and for phase correct PWM refer to Table 17-5 on page 154. A change of the COM2A1:0 bits state will have effect at the first compare match after the bits are written. For non-PWM modes, the action can be forced to have immediate effect by using the FOC2A strobe bits. 17.6 Modes of Operation The mode of operation, that is, the behavior of the Timer/Counter and the Output Compare pins, is defined by the combination of the Waveform Generation mode (WGM21:0) and Compare Output mode (COM2A1:0) bits. The Compare Output mode bits do not affect the counting sequence, while the Waveform Generation mode bits do. The COM2A1:0 bits control whether the PWM output generated should be inverted or not (inverted or non-inverted PWM). For nonPWM modes the COM2A1:0 bits control whether the output should be set, cleared, or toggled at a compare match. (See "Compare Match Output Unit" on page 142.) For detailed timing information refer to "Timer/Counter Timing Diagrams" on page 148. 17.6.1 Normal Mode The simplest mode of operation is the Normal mode (WGM21:0 = 0). In this mode the counting direction is always up (incrementing), and no counter clear is performed. The counter simply overruns when it passes its maximum 8-bit value (TOP = 0xFF) and then restarts from the bottom (0x00). In normal operation the Timer/Counter Overflow Flag (TOV2) will be set in the same timer clock cycle as the TCNT2 becomes zero. The TOV2 Flag in this case behaves like a ninth bit, except that it is only set, not cleared. However, combined with the timer overflow interrupt that automatically clears the TOV2 Flag, the timer resolution can be increased by software. There are no special cases to consider in the Normal mode, a new counter value can be written anytime. The Output Compare unit can be used to generate interrupts at some given time. Using the Output Compare to generate waveforms in Normal mode is not recommended, since this will occupy too much of the CPU time. 17.6.2 Clear Timer on Compare Match (CTC) Mode In Clear Timer on Compare or CTC mode (WGM21:0 = 2), the OCR2A Register is used to manipulate the counter resolution. In CTC mode the counter is cleared to zero when the counter value (TCNT2) matches the OCR2A. The OCR2A defines the top value for the counter, hence also its resolution. This mode allows greater control of the compare match output frequency. It also simplifies the operation of counting external events. The timing diagram for the CTC mode is shown in Figure 17-5 on page 144. The counter value (TCNT2) increases until a compare match occurs between TCNT2 and OCR2A, and then counter (TCNT2) is cleared. 143 8018P-AVR-08/10 ATmega169P Figure 17-5. CTC Mode, Timing Diagram OCnx Interrupt Flag Set TCNTn OCnx (Toggle) Period (COMnx1:0 = 1) 1 2 3 4 An interrupt can be generated each time the counter value reaches the TOP value by using the OCF2A Flag. If the interrupt is enabled, the interrupt handler routine can be used for updating the TOP value. However, changing the TOP to a value close to BOTTOM when the counter is running with none or a low prescaler value must be done with care since the CTC mode does not have the double buffering feature. If the new value written to OCR2A is lower than the current value of TCNT2, the counter will miss the compare match. The counter will then have to count to its maximum value (0xFF) and wrap around starting at 0x00 before the compare match can occur. For generating a waveform output in CTC mode, the OC2A output can be set to toggle its logical level on each compare match by setting the Compare Output mode bits to toggle mode (COM2A1:0 = 1). The OC2A value will not be visible on the port pin unless the data direction for the pin is set to output. The waveform generated will have a maximum frequency of fOC2A = fclk_I/O/2 when OCR2A is set to zero (0x00). The waveform frequency is defined by the following equation: f clk_I/O f OCnx = ------------------------------------------------2 N ( 1 + OCRnx ) The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). As for the Normal mode of operation, the TOV2 Flag is set in the same timer clock cycle that the counter counts from MAX to 0x00. 17.6.3 Fast PWM Mode The fast Pulse Width Modulation or fast PWM mode (WGM21:0 = 3) provides a high frequency PWM waveform generation option. The fast PWM differs from the other PWM option by its single-slope operation. The counter counts from BOTTOM to MAX then restarts from BOTTOM. In non-inverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match between TCNT2 and OCR2A, and set at BOTTOM. In inverting Compare Output mode, the output is set on compare match and cleared at BOTTOM. Due to the single-slope operation, the operating frequency of the fast PWM mode can be twice as high as the phase correct PWM mode that uses dual-slope operation. This high frequency makes the fast PWM mode well suited for power regulation, rectification, and DAC applications. High frequency allows physically small sized external components (coils, capacitors), and therefore reduces total system cost. In fast PWM mode, the counter is incremented until the counter value matches the MAX value. The counter is then cleared at the following timer clock cycle. The timing diagram for the fast 144 8018P-AVR-08/10 ATmega169P PWM mode is shown in Figure 17-6. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the single-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2. Figure 17-6. Fast PWM Mode, Timing Diagram OCRnx Interrupt Flag Set OCRnx Update and TOVn Interrupt Flag Set TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 4 5 6 7 The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches MAX. If the interrupt is enabled, the interrupt handler routine can be used for updating the compare value. In fast PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM and an inverted PWM output can be generated by setting the COM2A1:0 to three (See Table 17-4 on page 154). The actual OC2A value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by setting (or clearing) the OC2A Register at the compare match between OCR2A and TCNT2, and clearing (or setting) the OC2A Register at the timer clock cycle the counter is cleared (changes from MAX to BOTTOM). The PWM frequency for the output can be calculated by the following equation: f clk_I/O f OCnxPWM = ----------------N 256 The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the fast PWM mode. If the OCR2A is set equal to BOTTOM, the output will be a narrow spike for each MAX+1 timer clock cycle. Setting the OCR2A equal to MAX will result in a constantly high or low output (depending on the polarity of the output set by the COM2A1:0 bits). A frequency (with 50% duty cycle) waveform output in fast PWM mode can be achieved by setting OC2A to toggle its logical level on each compare match (COM2A1:0 = 1). The waveform generated will have a maximum frequency of foc2 = fclk_I/O/2 when OCR2A is set to zero. This feature is similar to the OC2A toggle in CTC mode, except the double buffer feature of the Output Compare unit is enabled in the fast PWM mode. 145 8018P-AVR-08/10 ATmega169P 17.6.4 Phase Correct PWM Mode The phase correct PWM mode (WGM21:0 = 1) provides a high resolution phase correct PWM waveform generation option. The phase correct PWM mode is based on a dual-slope operation. The counter counts repeatedly from BOTTOM to MAX and then from MAX to BOTTOM. In noninverting Compare Output mode, the Output Compare (OC2A) is cleared on the compare match between TCNT2 and OCR2A while upcounting, and set on the compare match while downcounting. In inverting Output Compare mode, the operation is inverted. The dual-slope operation has lower maximum operation frequency than single slope operation. However, due to the symmetric feature of the dual-slope PWM modes, these modes are preferred for motor control applications. The PWM resolution for the phase correct PWM mode is fixed to eight bits. In phase correct PWM mode the counter is incremented until the counter value matches MAX. When the counter reaches MAX, it changes the count direction. The TCNT2 value will be equal to MAX for one timer clock cycle. The timing diagram for the phase correct PWM mode is shown on Figure 17-7. The TCNT2 value is in the timing diagram shown as a histogram for illustrating the dual-slope operation. The diagram includes non-inverted and inverted PWM outputs. The small horizontal line marks on the TCNT2 slopes represent compare matches between OCR2A and TCNT2. Figure 17-7. Phase Correct PWM Mode, Timing Diagram OCnx Interrupt Flag Set OCRnx Update TOVn Interrupt Flag Set TCNTn OCnx (COMnx1:0 = 2) OCnx (COMnx1:0 = 3) Period 1 2 3 The Timer/Counter Overflow Flag (TOV2) is set each time the counter reaches BOTTOM. The Interrupt Flag can be used to generate an interrupt each time the counter reaches the BOTTOM value. In phase correct PWM mode, the compare unit allows generation of PWM waveforms on the OC2A pin. Setting the COM2A1:0 bits to two will produce a non-inverted PWM. An inverted PWM output can be generated by setting the COM2A1:0 to three (See Table 17-5 on page 154). The actual OC2A value will only be visible on the port pin if the data direction for the port pin is set as output. The PWM waveform is generated by clearing (or setting) the OC2A Register at the compare match between OCR2A and TCNT2 when the counter increments, and setting (or 146 8018P-AVR-08/10 ATmega169P clearing) the OC2A Register at compare match between OCR2A and TCNT2 when the counter decrements. The PWM frequency for the output when using phase correct PWM can be calculated by the following equation: f clk_I/O f OCnxPCPWM = ----------------N 510 The N variable represents the prescale factor (1, 8, 32, 64, 128, 256, or 1024). The extreme values for the OCR2A Register represent special cases when generating a PWM waveform output in the phase correct PWM mode. If the OCR2A is set equal to BOTTOM, the output will be continuously low and if set equal to MAX the output will be continuously high for non-inverted PWM mode. For inverted PWM the output will have the opposite logic values. At the very start of period 2 in Figure 17-7 on page 146 OCn has a transition from high to low even though there is no Compare Match. The point of this transition is to guarantee symmetry around BOTTOM. There are two cases that give a transition without Compare Match. * OCR2A changes its value from MAX, like in Figure 17-7 on page 146. When the OCR2A value is MAX the OCn pin value is the same as the result of a down-counting compare match. To ensure symmetry around BOTTOM the OCn value at MAX must correspond to the result of an up-counting Compare Match. * The timer starts counting from a value higher than the one in OCR2A, and for that reason misses the Compare Match and hence the OCn change that would have happened on the way up. 147 8018P-AVR-08/10 ATmega169P 17.7 Timer/Counter Timing Diagrams The following figures show the Timer/Counter in synchronous mode, and the timer clock (clkT2) is therefore shown as a clock enable signal. In asynchronous mode, clkI/O should be replaced by the Timer/Counter Oscillator clock. The figures include information on when Interrupt Flags are set. Figure 17-8 contains timing data for basic Timer/Counter operation. The figure shows the count sequence close to the MAX value in all modes other than phase correct PWM mode. Figure 17-8. Timer/Counter Timing Diagram, no Prescaling clkI/O clkTn (clkI/O /1) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 17-9 shows the same timing data, but with the prescaler enabled. Figure 17-9. Timer/Counter Timing Diagram, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn MAX - 1 MAX BOTTOM BOTTOM + 1 TOVn Figure 17-10 on page 149 shows the setting of OCF2A in all modes except CTC mode. 148 8018P-AVR-08/10 ATmega169P Figure 17-10. Timer/Counter Timing Diagram, Setting of OCF2A, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn OCRnx - 1 OCRnx OCRnx + 1 OCRnx + 2 OCRnx Value OCRnx OCFnx Figure 17-11 shows the setting of OCF2A and the clearing of TCNT2 in CTC mode. Figure 17-11. Timer/Counter Timing Diagram, Clear Timer on Compare Match mode, with Prescaler (fclk_I/O/8) clkI/O clkTn (clkI/O /8) TCNTn (CTC) OCRnx TOP - 1 TOP BOTTOM BOTTOM + 1 TOP OCFnx 149 8018P-AVR-08/10 ATmega169P 17.8 17.8.1 Asynchronous operation of the Timer/Counter Asynchronous Operation of Timer/Counter2 When Timer/Counter2 operates asynchronously, some considerations must be taken. * Warning: When switching between asynchronous and synchronous clocking of Timer/Counter2, the Timer Registers TCNT2, OCR2A, and TCCR2A might be corrupted. A safe procedure for switching clock source is: a. Disable the Timer/Counter2 interrupts by clearing OCIE2A and TOIE2. b. Select clock source by setting AS2 as appropriate. c. Write new values to TCNT2, OCR2A, and TCCR2A. d. To switch to asynchronous operation: Wait for TCN2UB, OCR2UB, and TCR2UB. e. Clear the Timer/Counter2 Interrupt Flags. f. Enable interrupts, if needed. * The CPU main clock frequency must be more than four times the Oscillator frequency. * When writing to one of the registers TCNT2, OCR2A, or TCCR2A, the value is transferred to a temporary register, and latched after two positive edges on TOSC1. The user should not write a new value before the contents of the temporary register have been transferred to its destination. Each of the three mentioned registers have their individual temporary register, which means that, for example, writing to TCNT2 does not disturb an OCR2A write in progress. To detect that a transfer to the destination register has taken place, the Asynchronous Status Register - ASSR has been implemented. * When entering Power-save or ADC Noise Reduction mode after having written to TCNT2, OCR2A, or TCCR2A, the user must wait until the written register has been updated if Timer/Counter2 is used to wake up the device. Otherwise, the MCU will enter sleep mode before the changes are effective. This is particularly important if the Output Compare2 interrupt is used to wake up the device, since the Output Compare function is disabled during writing to OCR2A or TCNT2. If the write cycle is not finished, and the MCU enters sleep mode before the OCR2UB bit returns to zero, the device will never receive a compare match interrupt, and the MCU will not wake up. * If Timer/Counter2 is used to wake the device up from Power-save or ADC Noise Reduction mode, precautions must be taken if the user wants to re-enter one of these modes: The interrupt logic needs one TOSC1 cycle to be reset. If the time between wake-up and reentering sleep mode is less than one TOSC1 cycle, the interrupt will not occur, and the device will fail to wake up. If the user is in doubt whether the time before re-entering Power-save or ADC Noise Reduction mode is sufficient, the following algorithm can be used to ensure that one TOSC1 cycle has elapsed: a. Write a value to TCCR2A, TCNT2, or OCR2A. b. Wait until the corresponding Update Busy Flag in ASSR returns to zero. c. Enter Power-save or ADC Noise Reduction mode. * When the asynchronous operation is selected, the 32.768 kHz Oscillator for Timer/Counter2 is always running, except in Power-down and Standby modes. After a Power-up Reset or wakeup from Power-down or Standby mode, the user should be aware of the fact that this Oscillator might take as long as one second to stabilize. The user is advised to wait for at least one second before using Timer/Counter2 after power-up or wake-up from Power-down or Standby mode. The contents of all Timer/Counter2 Registers must be considered lost after a wake-up 150 8018P-AVR-08/10 ATmega169P from Power-down or Standby mode due to unstable clock signal upon start-up, no matter whether the Oscillator is in use or a clock signal is applied to the TOSC1 pin. * Description of wake up from Power-save or ADC Noise Reduction mode when the timer is clocked asynchronously: When the interrupt condition is met, the wake up process is started on the following cycle of the timer clock, that is, the timer is always advanced by at least one before the processor can read the counter value. After wake-up, the MCU is halted for four cycles, it executes the interrupt routine, and resumes execution from the instruction following SLEEP. * Reading of the TCNT2 Register shortly after wake-up from Power-save may give an incorrect result. Since TCNT2 is clocked on the asynchronous TOSC clock, reading TCNT2 must be done through a register synchronized to the internal I/O clock domain. Synchronization takes place for every rising TOSC1 edge. When waking up from Power-save mode, and the I/O clock (clkI/O) again becomes active, TCNT2 will read as the previous value (before entering sleep) until the next rising TOSC1 edge. The phase of the TOSC clock after waking up from Powersave mode is essentially unpredictable, as it depends on the wake-up time. The recommended procedure for reading TCNT2 is thus as follows: a. Write any value to either of the registers OCR2A or TCCR2A. b. Wait for the corresponding Update Busy Flag to be cleared. c. Read TCNT2. * During asynchronous operation, the synchronization of the Interrupt Flags for the asynchronous timer takes 3 processor cycles plus one timer cycle. The timer is therefore advanced by at least one before the processor can read the timer value causing the setting of the Interrupt Flag. The Output Compare pin is changed on the timer clock and is not synchronized to the processor clock. 151 8018P-AVR-08/10 ATmega169P 17.9 Timer/Counter Prescaler Figure 17-12. Prescaler for Timer/Counter2 PSR2 clkT2S/1024 clkT2S/256 clkT2S/128 AS2 clkT2S/64 10-BIT T/C PRESCALER Clear clkT2S/32 TOSC1 clkT2S clkT2S/8 clkI/O 0 CS20 CS21 CS22 TIMER/COUNTER2 CLOCK SOURCE clkT2 The clock source for Timer/Counter2 is named clkT2S. clkT2S is by default connected to the main system I/O clock clk IO. By setting the AS2 bit in ASSR, Timer/Counter2 is asynchronously clocked from the TOSC1 pin. This enables use of Timer/Counter2 as a Real Time Counter (RTC). When AS2 is set, pins TOSC1 and TOSC2 are disconnected from Port C. A crystal can then be connected between the TOSC1 and TOSC2 pins to serve as an independent clock source for Timer/Counter2. The Oscillator is optimized for use with a 32.768 kHz crystal. If applying an external clock on TOSC1, the EXCLK bit in ASSR must be set. For Timer/Counter2, the possible prescaled selections are: clk T2S /8, clk T2S /32, clk T2S /64, clkT2S/128, clkT2S/256, and clkT2S/1024. Additionally, clkT2S as well as 0 (stop) may be selected. Setting the PSR2 bit in GTCCR resets the prescaler. This allows the user to operate with a predictable prescaler. 152 8018P-AVR-08/10 ATmega169P 17.10 8-bit Timer/Counter Register Description 17.10.1 TCCR2A - Timer/Counter Control Register A Bit 7 6 5 4 3 2 1 0 FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 Read/Write W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 (0xB0) TCCR2A * Bit 7 - FOC2A: Force Output Compare A The FOC2A bit is only active when the WGM bits specify a non-PWM mode. However, for ensuring compatibility with future devices, this bit must be set to zero when TCCR2A is written when operating in PWM mode. When writing a logical one to the FOC2A bit, an immediate compare match is forced on the Waveform Generation unit. The OC2A output is changed according to its COM2A1:0 bits setting. Note that the FOC2A bit is implemented as a strobe. Therefore it is the value present in the COM2A1:0 bits that determines the effect of the forced compare. A FOC2A strobe will not generate any interrupt, nor will it clear the timer in CTC mode using OCR2A as TOP. The FOC2A bit is always read as zero. * Bit 6, 3 - WGM21:0: Waveform Generation Mode These bits control the counting sequence of the counter, the source for the maximum (TOP) counter value, and what type of waveform generation to be used. Modes of operation supported by the Timer/Counter unit are: Normal mode, Clear Timer on Compare match (CTC) mode, and two types of Pulse Width Modulation (PWM) modes. See Table 17-2 and "Modes of Operation" on page 143. Table 17-2. Waveform Generation Mode Bit Description(1) Mode WGM21 (CTC2) WGM20 (PWM2) Timer/Counter Mode of Operation TOP Update of OCR2A at TOV2 Flag Set on 0 0 0 Normal 0xFF Immediate MAX 1 0 1 PWM, Phase Correct 0xFF TOP BOTTOM 2 1 0 CTC OCR2A Immediate MAX 3 1 1 Fast PWM 0xFF BOTTOM MAX Note: 1. The CTC2 and PWM2 bit definition names are now obsolete. Use the WGM21:0 definitions. However, the functionality and location of these bits are compatible with previous versions of the timer. * Bit 5:4 - COM2A1:0: Compare Match Output Mode A These bits control the Output Compare pin (OC2A) behavior. If one or both of the COM2A1:0 bits are set, the OC2A output overrides the normal port functionality of the I/O pin it is connected to. However, note that the Data Direction Register (DDR) bit corresponding to OC2A pin must be set in order to enable the output driver. When OC2A is connected to the pin, the function of the COM2A1:0 bits depends on the WGM21:0 bit setting. Table 17-3 on page 154 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to a normal or CTC mode (non-PWM). 153 8018P-AVR-08/10 ATmega169P Table 17-3. Compare Output Mode, non-PWM Mode COM2A1 COM2A0 Description 0 0 Normal port operation, OC2A disconnected. 0 1 Toggle OC2A on compare match. 1 0 Clear OC2A on compare match. 1 1 Set OC2A on compare match. Table 17-4 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to fast PWM mode. Table 17-4. Compare Output Mode, Fast PWM Mode(1) COM2A1 COM2A0 0 0 Normal port operation, OC2A disconnected. 0 1 Reserved 1 0 Clear OC2A on compare match, set OC2A at BOTTOM (non-inverting mode). 1 1 Set OC2A on compare match, clear OC2A at BOTTOM (inverting mode). Note: Description 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is ignored, but the set or clear is done at TOP. See "Fast PWM Mode" on page 144 for more details. Table 17-5 shows the COM2A1:0 bit functionality when the WGM21:0 bits are set to phase correct PWM mode. Table 17-5. Compare Output Mode, Phase Correct PWM Mode(1) COM2A1 COM2A0 0 0 Normal port operation, OC2A disconnected. 0 1 Reserved 1 0 Clear OC2A on compare match when up-counting. Set OC2A on compare match when down counting. 1 1 Set OC2A on compare match when up-counting. Clear OC2A on compare match when down counting. Note: Description 1. A special case occurs when OCR2A equals TOP and COM2A1 is set. In this case, the compare match is ignored, but the set or clear is done at TOP. See "Phase Correct PWM Mode" on page 146 for more details. 154 8018P-AVR-08/10 ATmega169P * Bit 2:0 - CS22:0: Clock Select The three Clock Select bits select the clock source to be used by the Timer/Counter, see Table 17-6. Table 17-6. 17.10.2 Clock Select Bit Description CS22 CS21 CS20 Description 0 0 0 No clock source (Timer/Counter stopped). 0 0 1 clkT2S/(No prescaling) 0 1 0 clkT2S/8 (From prescaler) 0 1 1 clkT2S/32 (From prescaler) 1 0 0 clkT2S/64 (From prescaler) 1 0 1 clkT2S/128 (From prescaler) 1 1 0 clkT2S/256 (From prescaler) 1 1 1 clkT2S/1024 (From prescaler) TCNT2 - Timer/Counter Register Bit 7 6 5 (0xB2) 4 3 2 1 0 TCNT2[7:0] TCNT2 Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Timer/Counter Register gives direct access, both for read and write operations, to the Timer/Counter unit 8-bit counter. Writing to the TCNT2 Register blocks (removes) the compare match on the following timer clock. Modifying the counter (TCNT2) while the counter is running, introduces a risk of missing a compare match between TCNT2 and the OCR2A Register. 17.10.3 OCR2A - Output Compare Register A Bit 7 6 5 (0xB3) 4 3 2 1 0 OCR2A[7:0] OCR2A Read/Write R/W R/W R/W R/W R/W R/W R/W R/W Initial Value 0 0 0 0 0 0 0 0 The Output Compare Register A contains an 8-bit value that is continuously compared with the counter value (TCNT2). A match can be used to generate an Output Compare interrupt, or to generate a waveform output on the OC2A pin. 155 8018P-AVR-08/10 ATmega169P 17.10.4 TIMSK2 - Timer/Counter2 Interrupt Mask Register Bit 7 6 5 4 3 2 1 0 (0x70) - - - - - - OCIE2A TOIE2 Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIMSK2 * Bit 1 - OCIE2A: Timer/Counter2 Output Compare Match A Interrupt Enable When the OCIE2A bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Compare Match A interrupt is enabled. The corresponding interrupt is executed if a compare match in Timer/Counter2 occurs, that is, when the OCF2A bit is set in the Timer/Counter 2 Interrupt Flag Register - TIFR2. * Bit 0 - TOIE2: Timer/Counter2 Overflow Interrupt Enable When the TOIE2 bit is written to one and the I-bit in the Status Register is set (one), the Timer/Counter2 Overflow interrupt is enabled. The corresponding interrupt is executed if an overflow in Timer/Counter2 occurs, that is, when the TOV2 bit is set in the Timer/Counter2 Interrupt Flag Register - TIFR2. 17.10.5 TIFR2 - Timer/Counter2 Interrupt Flag Register Bit 7 6 5 4 3 2 1 0 0x17 (0x37) - - - - - - OCF2A TOV2 Read/Write R R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 TIFR2 * Bit 1 - OCF2A: Output Compare Flag 2 A The OCF2A bit is set (one) when a compare match occurs between the Timer/Counter2 and the data in OCR2A - Output Compare Register2. OCF2A is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, OCF2A is cleared by writing a logic one to the flag. When the I-bit in SREG, OCIE2A (Timer/Counter2 Compare match Interrupt Enable), and OCF2A are set (one), the Timer/Counter2 Compare match Interrupt is executed. * Bit 0 - TOV2: Timer/Counter2 Overflow Flag The TOV2 bit is set (one) when an overflow occurs in Timer/Counter2. TOV2 is cleared by hardware when executing the corresponding interrupt handling vector. Alternatively, TOV2 is cleared by writing a logic one to the flag. When the SREG I-bit, TOIE2A (Timer/Counter2 Overflow Interrupt Enable), and TOV2 are set (one), the Timer/Counter2 Overflow interrupt is executed. In PWM mode, this bit is set when Timer/Counter2 changes counting direction at 0x00. 17.10.6 ASSR - Asynchronous Status Register Bit 7 6 5 4 3 2 1 0 (0xB6) - - - EXCLK AS2 TCN2UB OCR2UB TCR2UB Read/Write R R R R/W R/W R R R Initial Value 0 0 0 0 0 0 0 0 ASSR * Bit 4 - EXCLK: Enable External Clock Input When EXCLK is written to one, and asynchronous clock is selected, the external clock input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a 156 8018P-AVR-08/10 ATmega169P 32 kHz crystal. Writing to EXCLK should be done before asynchronous operation is selected. Note that the crystal Oscillator will only run when this bit is zero. * Bit 3 - AS2: Asynchronous Timer/Counter2 When AS2 is written to zero, Timer/Counter2 is clocked from the I/O clock, clkI/O. When AS2 is written to one, Timer/Counter2 is clocked from a crystal Oscillator connected to the Timer Oscillator 1 (TOSC1) pin. When the value of AS2 is changed, the contents of TCNT2, OCR2A, and TCCR2A might be corrupted. * Bit 2 - TCN2UB: Timer/Counter2 Update Busy When Timer/Counter2 operates asynchronously and TCNT2 is written, this bit becomes set. When TCNT2 has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCNT2 is ready to be updated with a new value. * Bit 1 - OCR2UB: Output Compare Register2 Update Busy When Timer/Counter2 operates asynchronously and OCR2A is written, this bit becomes set. When OCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that OCR2A is ready to be updated with a new value. * Bit 0 - TCR2UB: Timer/Counter Control Register2 Update Busy When Timer/Counter2 operates asynchronously and TCCR2A is written, this bit becomes set. When TCCR2A has been updated from the temporary storage register, this bit is cleared by hardware. A logical zero in this bit indicates that TCCR2A is ready to be updated with a new value. If a write is performed to any of the three Timer/Counter2 Registers while its update busy flag is set, the updated value might get corrupted and cause an unintentional interrupt to occur. The mechanisms for reading TCNT2, OCR2A, and TCCR2A are different. When reading TCNT2, the actual timer value is read. When reading OCR2A or TCCR2A, the value in the temporary storage register is read. 17.10.7 GTCCR - General Timer/Counter Control Register Bit 7 6 5 4 3 2 1 0 0x23 (0x43) TSM - - - - - PSR2 PSR10 Read/Write R/W R R R R R R/W R/W Initial Value 0 0 0 0 0 0 0 0 GTCCR * Bit 1 - PSR2: Prescaler Reset Timer/Counter2 When this bit is one, the Timer/Counter2 prescaler will be reset. This bit is normally cleared immediately by hardware. If the bit is written when Timer/Counter2 is operating in asynchronous mode, the bit will remain one until the prescaler has been reset. The bit will not be cleared by hardware if the TSM bit is set. Refer to the description of the "Bit 7 - TSM: Timer/Counter Synchronization Mode" on page 137 for a description of the Timer/Counter Synchronization mode. 157 8018P-AVR-08/10 ATmega169P 18. SPI - Serial Peripheral Interface 18.1 Features * * * * * * * * 18.2 Full-duplex, Three-wire Synchronous Data Transfer Master or Slave Operation LSB First or MSB First Data Transfer Seven Programmable Bit Rates End of Transmission Interrupt Flag Write Collision Flag Protection Wake-up from Idle Mode Double Speed (CK/2) Master SPI Mode Overview The Serial Peripheral Interface (SPI) allows high-speed synchronous data transfer between the ATmega169P and peripheral devices or between several AVR devices. The PRSPI bit in "PRR - Power Reduction Register" on page 45 must be written to zero to enable SPI module. Figure 18-1. SPI Block Diagram(1) SPI2X SPI2X DIVIDER /2/4/8/16/32/64/128 Note: 1. Refer to Figure 1-1 on page 2, and Table 13-6 on page 74 for SPI pin placement. 158 8018P-AVR-08/10 ATmega169P The interconnection between Master and Slave CPUs with SPI is shown in Figure 18-2. The system consists of two shift Registers, and a Master clock generator. The SPI Master initiates the communication cycle when pulling low the Slave Select SS pin of the desired Slave. Master and Slave prepare the data to be sent in their respective shift Registers, and the Master generates the required clock pulses on the SCK line to interchange data. Data is always shifted from Master to Slave on the Master Out - Slave In, MOSI, line, and from Slave to Master on the Master In - Slave Out, MISO, line. After each data packet, the Master will synchronize the Slave by pulling high the Slave Select, SS, line. When configured as a Master, the SPI interface has no automatic control of the SS line. This must be handled by user software before communication can start. When this is done, writing a byte to the SPI Data Register starts the SPI clock generator, and the hardware shifts the eight bits into the Slave. After shifting one byte, the SPI clock generator stops, setting the end of Transmission Flag (SPIF). If the SPI Interrupt Enable bit (SPIE) in the SPCR Register is set, an interrupt is requested. The Master may continue to shift the next byte by writing it into SPDR, or signal the end of packet by pulling high the Slave Select, SS line. The last incoming byte will be kept in the Buffer Register for later use. When configured as a Slave, the SPI interface will remain sleeping with MISO tri-stated as long as the SS pin is driven high. In this state, software may update the contents of the SPI Data Register, SPDR, but the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven low. As one byte has been completely shifted, the end of Transmission Flag, SPIF is set. If the SPI Interrupt Enable bit, SPIE, in the SPCR Register is set, an interrupt is requested. The Slave may continue to place new data to be sent into SPDR before reading the incoming data. The last incoming byte will be kept in the Buffer Register for later use. Figure 18-2. SPI Master-slave Interconnection SHIFT ENABLE The system is single buffered in the transmit direction and double buffered in the receive direction. This means that bytes to be transmitted cannot be written to the SPI Data Register before the entire shift cycle is completed. When receiving data, however, a received character must be read from the SPI Data Register before the next character has been completely shifted in. Otherwise, the first byte is lost. In SPI Slave mode, the control logic will sample the incoming signal of the SCK pin. To ensure correct sampling of the clock signal, the minimum low and high periods should be: Low period: longer than 2 CPU clock cycles. High period: longer than 2 CPU clock cycles. 159 8018P-AVR-08/10 ATmega169P When the SPI is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is overridden according to Table 18-1. For more details on automatic port overrides, refer to "Alternate Port Functions" on page 71. Table 18-1. Pin SPI Pin Overrides(1) Direction, Master SPI Direction, Slave SPI MOSI User Defined Input MISO Input User Defined SCK User Defined Input SS User Defined Input Note: 1. See "Alternate Functions of Port B" on page 74 for a detailed description of how to define the direction of the user defined SPI pins. The following code examples show how to initialize the SPI as a Master and how to perform a simple transmission. DDR_SPI in the examples must be replaced by the actual Data Direction Register controlling the SPI pins. DD_MOSI, DD_MISO and DD_SCK must be replaced by the actual data direction bits for these pins. For example if MOSI is placed on pin PB5, replace DD_MOSI with DDB5 and DDR_SPI with DDRB. 160 8018P-AVR-08/10 ATmega169P Assembly Code Example(1) SPI_MasterInit: ; Set MOSI and SCK output, all others input ldi r17,(1<>8); UBRRL0 = (unsigned char)ubrr; /* Enable receiver and transmitter */ UCSR0B = (1<> 1) & 0x01; return ((resh << 8) | resl); } Note: 1. "About Code Examples" on page 10. The receive function example reads all the I/O Registers into the Register File before any computation is done. This gives an optimal receive buffer utilization since the buffer location read will be free to accept new data as early as possible. 182 8018P-AVR-08/10 ATmega169P 19.7.3 Receive Compete Flag and Interrupt The USART Receiver has one flag that indicates the Receiver state. The Receive Complete (RXCn) Flag indicates if there are unread data present in the receive buffer. This flag is one when unread data exist in the receive buffer, and zero when the receive buffer is empty (that is, does not contain any unread data). If the Receiver is disabled (RXENn = 0), the receive buffer will be flushed and consequently the RXCn bit will become zero. When the Receive Complete Interrupt Enable (RXCIEn) in UCSRnB is set, the USART Receive Complete interrupt will be executed as long as the RXCn Flag is set (provided that global interrupts are enabled). When interrupt-driven data reception is used, the receive complete routine must read the received data from UDRn in order to clear the RXCn Flag, otherwise a new interrupt will occur once the interrupt routine terminates. 19.7.4 Receiver Error Flags The USART Receiver has three Error Flags: Frame Error (FEn), Data OverRun (DORn) and Parity Error (UPEn). All can be accessed by reading UCSRnA. Common for the Error Flags is that they are located in the receive buffer together with the frame for which they indicate the error status. Due to the buffering of the Error Flags, the UCSRnA must be read before the receive buffer (UDRn), since reading the UDRn I/O location changes the buffer read location. Another equality for the Error Flags is that they can not be altered by software doing a write to the flag location. However, all flags must be set to zero when the UCSRnA is written for upward compatibility of future USART implementations. None of the Error Flags can generate interrupts. The Frame Error (FEn) Flag indicates the state of the first stop bit of the next readable frame stored in the receive buffer. The FEn Flag is zero when the stop bit was correctly read (as one), and the FEn Flag will be one when the stop bit was incorrect (zero). This flag can be used for detecting out-of-sync conditions, detecting break conditions and protocol handling. The FEn Flag is not affected by the setting of the USBSn bit in UCSRnC since the Receiver ignores all, except for the first, stop bits. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. The Data OverRun (DORn) Flag indicates data loss due to a receiver buffer full condition. A Data OverRun occurs when the receive buffer is full (two characters), it is a new character waiting in the Receive Shift Register, and a new start bit is detected. If the DORn Flag is set there was one or more serial frame lost between the frame last read from UDRn, and the next frame read from UDRn. For compatibility with future devices, always write this bit to zero when writing to UCSRnA. The DORn Flag is cleared when the frame received was successfully moved from the Shift Register to the receive buffer. The Parity Error (UPEn) Flag indicates that the next frame in the receive buffer had a Parity Error when received. If Parity Check is not enabled the UPEn bit will always be read zero. For compatibility with future devices, always set this bit to zero when writing to UCSRnA. For more details see "Parity Bit Calculation" on page 174 and "Parity Checker" on page 184. 183 8018P-AVR-08/10 ATmega169P 19.7.5 Parity Checker The Parity Checker is active when the high USART Parity mode (UPM1n) bit is set. Type of Parity Check to be performed (odd or even) is selected by the UPM0n bit. When enabled, the Parity Checker calculates the parity of the data bits in incoming frames and compares the result with the parity bit from the serial frame. The result of the check is stored in the receive buffer together with the received data and stop bits. The Parity Error (UPEn) Flag can then be read by software to check if the frame had a Parity Error. The UPEn bit is set if the next character that can be read from the receive buffer had a Parity Error when received and the Parity Checking was enabled at that point (UPM1n = 1). This bit is valid until the receive buffer (UDRn) is read. 19.7.6 Disabling the Receiver In contrast to the Transmitter, disabling of the Receiver will be immediate. Data from ongoing receptions will therefore be lost. When disabled (that is, the RXENn is set to zero) the Receiver will no longer override the normal function of the RxD port pin. The Receiver buffer FIFO will be flushed when the Receiver is disabled. Remaining data in the buffer will be lost. 19.7.7 Flushing the Receive Buffer The receiver buffer FIFO will be flushed when the Receiver is disabled, that is, the buffer will be emptied of its contents. Unread data will be lost. If the buffer has to be flushed during normal operation, due to for instance an error condition, read the UDRn I/O location until the RXCn Flag is cleared. The following code example shows how to flush the receive buffer. Assembly Code Example(1) USART_Flush: sbis UCSR0A, RXC0 ret in r16, UDR0 rjmp USART_Flush C Code Example(1) void USART_Flush( void ) { unsigned char dummy; while ( UCSR0A & (1< 470 nF) must be connected to the LCDCAP pin as shown in Figure 23-2. This capacitor acts as a reservoir for LCD power (VLCD). A large capacitance reduces ripple on VLCD but increases the time until VLCD reaches its target value. It is possible to use an external power supply. This power can be applied to LCDCAP before VCC. Externally applied VLCD can be both above and below VCC. Maximum VLCD is 5.5V. Figure 23-2. LCDCAP Connection 62 63 64 LCDCAP 1 2 3 VLCD (Optional) 23.2.7 LCD Buffer Driver Intermediate voltage levels are generated from buffers/drivers. The buffers are active the amount of time specified by LCDDC[2:0] in "LCDCCR - LCD Contrast Control Register" on page 250. Then LCD output pins are tri-stated and buffers are switched off. Shortening the drive time will reduce power consumption, but displays with high internal resistance or capacitance may need longer drive time to achieve sufficient contrast. 236 8018P-AVR-08/10 ATmega169P 23.2.8 Minimizing Power Consumption By keeping the percentage of the time the LCD drivers are turned on at a minimum, the power consumption of the LCD driver can be minimized. This can be achieved by using the lowest acceptable frame rate, and using low power waveform if possible. The drive time should be kept at the lowest setting that achieves satisfactory contrast for a particular display, while allowing some headroom for production variations between individual LCD drivers and displays. Note that some of the highest LCD voltage settings may result in high power consumption when VCC is below 2.0V. The recommended maximum LCD voltage is 2*(VCC - 0.2V). 23.3 23.3.1 Mode of Operation Static Duty and Bias If all segments on a LCD have one electrode common, then each segment must have a unique terminal. This kind of display is driven with the waveform shown in Figure 23-3. SEG0 - COM0 is the voltage across a segment that is on, and SEG1 - COM0 is the voltage across a segment that is off. Figure 23-3. Driving a LCD with One Common Terminal VLCD VLCD SEG0 GND SEG1 GND VLCD VLCD COM0 GND COM0 GND VLCD SEG0 - COM0 GND GND SEG1 - COM0 -VLCD Frame 23.3.2 Frame Frame Frame 1/2 Duty and 1/2 Bias For LCD with two common terminals (1/2 duty) a more complex waveform must be used to individually control segments. Although 1/3 bias can be selected 1/2 bias is most common for these displays. Waveform is shown in Figure 23-4 on page 238. SEG0 - COM0 is the voltage across a segment that is on, and SEG0 - COM1 is the voltage across a segment that is off. 237 8018P-AVR-08/10 ATmega169P Figure 23-4. Driving a LCD with Two Common Terminals VLCD VLCD SEG0 SEG0 GND GND VLCD 1/ V 2 LCD COM0 1/ VLCD 2VLCD GND 1/ 2VLCD -1/ GND V 2 LCD -VLCD GND VLCD 1/ V 2 LCD GND SEG0 - COM0 -1/ V 2 LCD -VLCD Frame Frame COM1 VLCD SEG0 - COM1 Frame Frame 238 8018P-AVR-08/10 ATmega169P 23.3.3 1/3 Duty and 1/3 Bias 1/3 bias is usually recommended for LCD with three common terminals (1/3 duty). Waveform is shown in Figure 23-5. SEG0 - COM0 is the voltage across a segment that is on and SEG0COM1 is the voltage across a segment that is off. Figure 23-5. Driving a LCD with Three Common Terminals VLCD 2/ 3VLCD 1/ 3VLCD SEG0 GND GND VLCD VLCD 2/ V 3 LCD 1/ V 3 LCD 2/ 3VLCD 1/ 3VLCD COM0 GND GND VLCD V 3 LCD 1/ V 3 LCD GND -1/3VLCD -2/3VLCD -VLCD VLCD 2/ V 3 LCD 1/ V 3 LCD 2/ 23.3.4 VLCD 2/ V 3 LCD 1/ V 3 LCD SEG0 - COM0 SEG0 COM1 SEG0 - COM1 GND -1/3VLCD -2/3VLCD Frame -VLCD Frame Frame Frame 1/4 Duty and 1/3 Bias 1/3 bias is optimal for LCD displays with four common terminals (1/4 duty). Waveform is shown in Figure 23-6. SEG0 - COM0 is the voltage across a segment that is on and SEG0 - COM1 is the voltage across a segment that is off. Figure 23-6. Driving a LCD with Four Common Terminals VLCD 2/ V 3 LCD 1/ V 3 LCD SEG0 VLCD 2/ V 3 LCD 1/ V 3 LCD GND GND VLCD 2/ V 3 LCD 1/ V 3 LCD VLCD 2/ V 3 LCD 1/ V 3 LCD COM0 GND GND VLCD 2/ V 3 LCD 1/ V 3 LCD VLCD 2/ V 3 LCD 1/ V 3 LCD GND -1/3VLCD -2/3VLCD -VLCD SEG0 - COM0 Frame Frame GND -1/3VLCD -2/3VLCD -VLCD SEG0 COM1 SEG0 - COM1 Frame Frame 239 8018P-AVR-08/10 ATmega169P 23.3.5 Low Power Waveform To reduce toggle activity and hence power consumption a low power waveform can be selected by writing LCDAB to one. Low power waveform requires two subsequent frames with the same display data to obtain zero DC voltage. Consequently data latching and Interrupt Flag is only set every second frame. Default and low power waveform is shown in Figure 23-7 for 1/3 duty and 1/3 bias. For other selections of duty and bias, the effect is similar. Figure 23-7. Default and Low Power Waveform VLCD 2/ V 3 LCD 1/ V 3 LCD GND GND VLCD 2/ V 3 LCD 1/ V 3 LCD VLCD 2/ V 3 LCD 1/ V 3 LCD COM0 GND GND VLCD 2/ V 3 LCD 1/ V 3 LCD VLCD 2/ V 3 LCD 1/ V 3 LCD GND -1/3VLCD -2/3VLCD -VLCD 23.3.6 SEG0 VLCD 2/ V 3 LCD 1/ V 3 LCD SEG0 - COM0 Frame Frame GND -1/3VLCD -2/3VLCD -VLCD SEG0 COM0 SEG0 - COM0 Frame Frame Operation in Sleep Mode When synchronous LCD clock is selected (LCDCS = 0) the LCD display will operate in Idle mode and Power-save mode with any clock source. An asynchronous clock from TOSC1 can be selected as LCD clock by writing the LCDCS bit to one when Calibrated Internal RC Oscillator is selected as system clock source. The LCD will then operate in Idle mode, ADC Noise Reduction mode and Power-save mode. When EXCLK in ASSR Register is written to one, and asynchronous clock is selected, the external clock input buffer is enabled and an external clock can be input on Timer Oscillator 1 (TOSC1) pin instead of a 32 kHz crystal. See "Asynchronous operation of the Timer/Counter" on page 150 for further details. Before entering Power-down mode, Standby mode or ADC Noise Reduction mode with synchronous LCD clock selected, the user have to disable the LCD. Refer to "Disabling the LCD" on page 244. 23.3.7 Display Blanking When LCDBL is written to one, the LCD is blanked after completing the current frame. All segments and common pins are connected to GND, discharging the LCD. Display memory is preserved. Display blanking should be used before disabling the LCD to avoid DC voltage across segments, and a slowly fading image. 240 8018P-AVR-08/10 ATmega169P 23.3.8 Port Mask For LCD with less than 25 segment terminals, it is possible to mask some of the unused pins and use them as ordinary port pins instead. Refer to Table 23-3 on page 247 for details. Unused common pins are automatically configured as port pins. 241 8018P-AVR-08/10 ATmega169P 23.4 LCD Usage The following section describes how to use the LCD. 23.4.1 LCD Initialization Prior to enabling the LCD some initialization must be preformed. The initialization process normally consists of setting the frame rate, duty, bias and port mask. LCD contrast is set initially, but can also be adjusted during operation. Consider the following LCD as an example: Figure 23-8. LCD usage example. LCD 2a 1b 2f 2b 2g 1c 2e 2c 51 50 COM2 COM1 COM0 2d 49 COM3 48 SEG0 47 ATmega169 SEG2 2f 2g .. SEG1 2c 2d 2e SEG0 SEG1 46 1b,1c 2a 2b COM0 COM1 COM2 Connection table SEG2 45 Display: TN Positive, Reflective Number of common terminals: 3 Number of segment terminals: 21 Bias system: 1/3 Bias Drive system: 1/3 Duty Operating voltage: 3.0 0.3V 242 8018P-AVR-08/10 ATmega169P Assembly Code Example(1) LCD_Init: ; Use 32 kHz crystal oscillator ; 1/3 Bias and 1/3 duty, SEG21:SEG24 is used as port pins ldi r16, (1< 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz High: > 2 CPU clock cycles for fck < 12 MHz, 3 CPU clock cycles for fck >= 12 MHz 27.8.2 Serial Programming Algorithm When writing serial data to the ATmega169P, data is clocked on the rising edge of SCK. When reading data from the ATmega169P, data is clocked on the falling edge of SCK. See Figure 27-11 on page 313 for timing details. To program and verify the ATmega169P in the serial programming mode, the following sequence is recommended (See four byte instruction formats in Table 27-16 on page 314): 1. Power-up sequence: Apply power between VCC and GND while RESET and SCK are set to "0". In some systems, the programmer can not guarantee that SCK is held low during power-up. In this 311 8018P-AVR-08/10 ATmega169P case, RESET must be given a positive pulse of at least two CPU clock cycles duration after SCK has been set to "0". 2. Wait for at least 20 ms and enable serial programming by sending the Programming Enable serial instruction to pin MOSI. 3. The serial programming instructions will not work if the communication is out of synchronization. When in sync. the second byte (0x53), will echo back when issuing the third byte of the Programming Enable instruction. Whether the echo is correct or not, all four bytes of the instruction must be transmitted. If the 0x53 did not echo back, give RESET a positive pulse and issue a new Programming Enable command. 4. The Flash is programmed one page at a time. The page size is found in Table 27-7 on page 299. The memory page is loaded one byte at a time by supplying the 6 LSB of the address and data together with the Load Program Memory Page instruction. To ensure correct loading of the page, the data low byte must be loaded before data high byte is applied for a given address. The Program Memory Page is stored by loading the Write Program Memory Page instruction with the 7 MSB of the address. If polling (RDY/BSY) is not used, the user must wait at least tWD_FLASH before issuing the next page. (See Table 27-15.) Accessing the serial programming interface before the Flash write operation completes can result in incorrect programming. 5. A: The EEPROM array is programmed one byte at a time by supplying the address and data together with the appropriate Write instruction. An EEPROM memory location is first automatically erased before new data is written. If polling (RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the next byte (See Table 27-15). In a chip erased device, no 0xFFs in the data file(s) need to be programmed. B: The EEPROM array is programmed one page at a time. The Memory page is loaded one byte at a time by supplying the 2 LSB of the address and data together with the Load EEPROM Memory Page instruction. The EEPROM Memory Page is stored by loading the Write EEPROM Memory Page Instruction with the 4 MSB of the address. When using EEPROM page access only byte locations loaded with the Load EEPROM Memory Page instruction is altered. The remaining locations remain unchanged. If polling (RDY/BSY) is not used, the user must wait at least tWD_EEPROM before issuing the next page (See Table 27-15). In a chip erased device, no 0xFF in the data file(s) need to be programmed. 6. Any memory location can be verified by using the Read instruction which returns the content at the selected address at serial output MISO. 7. At the end of the programming session, RESET can be set high to commence normal operation. 8. Power-off sequence (if needed): Set RESET to "1". Turn VCC power off Table 27-15. Minimum Wait Delay Before Writing the Next Flash or EEPROM Location Symbol Minimum Wait Delay tWD_FUSE 4.5 ms tWD_FLASH 4.5 ms tWD_EEPROM 3.6 ms tWD_ERASE 9.0 ms 312 8018P-AVR-08/10 ATmega169P Figure 27-11. Serial Programming Waveforms SERIAL DATA INPUT (MOSI) MSB LSB SERIAL DATA OUTPUT (MISO) MSB LSB SERIAL CLOCK INPUT (SCK) SAMPLE 313 8018P-AVR-08/10 ATmega169P 27.8.3 Serial Programming Instruction set Table 27-16 and Figure 27-12 on page 315 describes the Instruction set. Table 27-16. Serial Programming Instruction Set Instruction Format Instruction/Operation Byte 1 Byte 2 Byte 3 Byte 4 Programming Enable $AC $53 $00 $00 Chip Erase (Program Memory/EEPROM) $AC $80 $00 $00 Poll RDY/BSY $F0 $00 $00 data byte out Load Extended Address byte(1) $4D $00 Extended adr $00 Load Program Memory Page, High byte $48 $00 adr LSB high data byte in Load Program Memory Page, Low byte $40 $00 adr LSB low data byte in Load EEPROM Memory Page (page access) $C1 $00 0000 00aa data byte in Read Program Memory, High byte $28 adr MSB adr LSB high data byte out Read Program Memory, Low byte $20 adr MSB adr LSB low data byte out Read EEPROM Memory $A0 0000 00aa aaaa aaaa data byte out Read Lock bits $58 $00 $00 data byte out Read Signature Byte $30 $00 0000 00aa data byte out Read Fuse bits $50 $00 $00 data byte out Read Fuse High bits $58 $08 $00 data byte out Read Extended Fuse Bits $50 $08 $00 data byte out Read Calibration Byte $38 $00 $00 data byte out Write Program Memory Page $4C adr MSB adr LSB $00 Write EEPROM Memory $C0 0000 00aa aaaa aaaa data byte in Write EEPROM Memory Page (page access) $C2 0000 00aa aaaa aa00 $00 Write Lock bits $AC $E0 $00 data byte in Write Fuse bits $AC $A0 $00 data byte in Write Fuse High bits $AC $A8 $00 data byte in Write Extended Fuse Bits $AC $A4 $00 data byte in Load Instructions Read Instructions Write Instructions(6) Notes: 1. 2. 3. 4. 5. 6. 7. Not all instructions are applicable for all parts a = address Bits are programmed `0', unprogrammed `1'. To ensure future compatibility, unused Fuses and Lock bits should be unprogrammed (`1'). Refer to the corresponding section for Fuse and Lock bits, Calibration and Signature bytes and Page size. Instructions accessing program memory use a word address. This address may be random within the page range. See htt://www.atmel.com/avr for Application Notes regarding programming and programmers. If the LSB in RDY/BSY data byte out is `1', a programming operation is still pending. Wait until this bit returns `0' before the next instruction is carried out. 314 8018P-AVR-08/10 ATmega169P Within the same page, the low data byte must be loaded prior to the high data byte. After data is loaded to the page buffer, program the EEPROM page, see Figure 27-12. Figure 27-12. Serial Programming Instruction example Serial Programming Instruction Load Program Memory Page (High/Low Byte)/ Load EEPROM Memory Page (page access) Byte 1 Byte 2 Byte 3 Adr A drr M MS MSB SB Bit 15 B Write Program Memory Page/ Write EEPROM Memory Page Byte 1 Byte 4 Byte 2 Adr LSB Adr MSB Bit 15 B 0 Byte 3 Byte 4 Adr A dr LS LSB SB 0 Page Buffer Page Offset Page 0 Page 1 Page 2 Page Number Page N-1 Program Memory/ EEPROM Memory 27.8.4 SPI Serial Programming Characteristics For characteristics of the SPI module, see "SPI Timing Characteristics" on page 334. 315 8018P-AVR-08/10 ATmega169P 27.9 Programming via the JTAG Interface Programming through the JTAG interface requires control of the four JTAG specific pins: TCK, TMS, TDI, and TDO. Control of the reset and clock pins is not required. To be able to use the JTAG interface, the JTAGEN Fuse must be programmed. The device is default shipped with the fuse programmed. In addition, the JTD bit in MCUCSR must be cleared. Alternatively, if the JTD bit is set, the external reset can be forced low. Then, the JTD bit will be cleared after two chip clocks, and the JTAG pins are available for programming. This provides a means of using the JTAG pins as normal port pins in Running mode while still allowing In-System Programming via the JTAG interface. Note that this technique can not be used when using the JTAG pins for Boundary-scan or On-chip Debug. In these cases the JTAG pins must be dedicated for this purpose. During programming the clock frequency of the TCK Input must be less than the maximum frequency of the chip. The System Clock Prescaler can not be used to divide the TCK Clock Input into a sufficiently low frequency. As a definition in this datasheet, the LSB is shifted in and out first of all Shift Registers. 27.9.1 Programming Specific JTAG Instructions The Instruction Register is 4-bit wide, supporting up to 16 instructions. The JTAG instructions useful for programming are listed below. The OPCODE for each instruction is shown behind the instruction name in hex format. The text describes which Data Register is selected as path between TDI and TDO for each instruction. The Run-Test/Idle state of the TAP controller is used to generate internal clocks. It can also be used as an idle state between JTAG sequences. The state machine sequence for changing the instruction word is shown in Figure 27-13 on page 317. 316 8018P-AVR-08/10 ATmega169P Figure 27-13. State Machine Sequence for Changing the Instruction Word 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 1 Select-IR Scan 0 1 0 1 Capture-DR Capture-IR 0 0 0 Shift-DR 1 1 Exit1-DR 0 0 Pause-DR 0 Pause-IR 1 1 0 Exit2-DR Exit2-IR 1 1 Update-DR 27.9.2 1 Exit1-IR 0 1 0 Shift-IR 1 0 1 Update-IR 0 1 0 AVR_RESET (0xC) The AVR specific public JTAG instruction for setting the AVR device in the Reset mode or taking the device out from the Reset mode. The TAP controller is not reset by this instruction. The one bit Reset Register is selected as Data Register. Note that the reset will be active as long as there is a logic "one" in the Reset Chain. The output from this chain is not latched. The active states are: * Shift-DR: The Reset Register is shifted by the TCK input. 27.9.3 PROG_ENABLE (0x4) The AVR specific public JTAG instruction for enabling programming via the JTAG port. The 16bit Programming Enable Register is selected as Data Register. The active states are the following: * Shift-DR: The programming enable signature is shifted into the Data Register. * Update-DR: The programming enable signature is compared to the correct value, and Programming mode is entered if the signature is valid. 317 8018P-AVR-08/10 ATmega169P 27.9.4 PROG_COMMANDS (0x5) The AVR specific public JTAG instruction for entering programming commands via the JTAG port. The 15-bit Programming Command Register is selected as Data Register. The active states are the following: * Capture-DR: The result of the previous command is loaded into the Data Register. * Shift-DR: The Data Register is shifted by the TCK input, shifting out the result of the previous command and shifting in the new command. * Update-DR: The programming command is applied to the Flash inputs. * Run-Test/Idle: One clock cycle is generated, executing the applied command (not always required, see Table 27-17 on page 321). 27.9.5 PROG_PAGELOAD (0x6) The AVR specific public JTAG instruction to directly load the Flash data page via the JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs of the Programming Command Register. The active states are the following: * Shift-DR: The Flash Data Byte Register is shifted by the TCK input. * Update-DR: The content of the Flash Data Byte Register is copied into a temporary register. A write sequence is initiated that within 11 TCK cycles loads the content of the temporary register into the Flash page buffer. The AVR automatically alternates between writing the low and the high byte for each new Update-DR state, starting with the low byte for the first UpdateDR encountered after entering the PROG_PAGELOAD command. The Program Counter is pre-incremented before writing the low byte, except for the first written byte. This ensures that the first data is written to the address set up by PROG_COMMANDS, and loading the last location in the page buffer does not make the program counter increment into the next page. 27.9.6 PROG_PAGEREAD (0x7) The AVR specific public JTAG instruction to directly capture the Flash content via the JTAG port. An 8-bit Flash Data Byte Register is selected as the Data Register. This is physically the 8 LSBs of the Programming Command Register. The active states are the following: * Capture-DR: The content of the selected Flash byte is captured into the Flash Data Byte Register. The AVR automatically alternates between reading the low and the high byte for each new Capture-DR state, starting with the low byte for the first Capture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is post-incremented after reading each high byte, including the first read byte. This ensures that the first data is captured from the first address set up by PROG_COMMANDS, and reading the last location in the page makes the program counter increment into the next page. * Shift-DR: The Flash Data Byte Register is shifted by the TCK input. 318 8018P-AVR-08/10 ATmega169P 27.9.7 Data Registers The Data Registers are selected by the JTAG instruction registers described in section "Programming Specific JTAG Instructions" on page 316. The Data Registers relevant for programming operations are: * Reset Register * Programming Enable Register * Programming Command Register * Flash Data Byte Register 27.9.8 Reset Register The Reset Register is a Test Data Register used to reset the part during programming. It is required to reset the part before entering Programming mode. A high value in the Reset Register corresponds to pulling the external reset low. The part is reset as long as there is a high value present in the Reset Register. Depending on the Fuse settings for the clock options, the part will remain reset for a Reset Time-out period (refer to "Clock Sources" on page 31) after releasing the Reset Register. The output from this Data Register is not latched, so the reset will take place immediately, as shown in Figure 25-2 on page 261. 27.9.9 Programming Enable Register The Programming Enable Register is a 16-bit register. The contents of this register is compared to the programming enable signature, binary code 0b1010_0011_0111_0000. When the contents of the register is equal to the programming enable signature, programming via the JTAG port is enabled. The register is reset to 0 on Power-on Reset, and should always be reset when leaving Programming mode. Figure 27-14. Programming Enable Register TDI D A T A 0xA370 = D Q Programming Enable ClockDR & PROG_ENABLE TDO 27.9.10 Programming Command Register The Programming Command Register is a 15-bit register. This register is used to serially shift in programming commands, and to serially shift out the result of the previous command, if any. The JTAG Programming Instruction Set is shown in Table 27-17 on page 321. The state sequence when shifting in the programming commands is illustrated in Figure 27-16 on page 324. 319 8018P-AVR-08/10 ATmega169P Figure 27-15. Programming Command Register TDI S T R O B E S A D D R E S S / D A T A Flash EEPROM Fuses Lock Bits TDO 320 8018P-AVR-08/10 ATmega169P Table 27-17. JTAG Programming Instruction Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care Instruction TDI Sequence TDO Sequence Notes 1a. Chip Erase 0100011_10000000 0110001_10000000 0110011_10000000 0110011_10000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx 1b. Poll for Chip Erase Complete 0110011_10000000 xxxxxox_xxxxxxxx 2a. Enter Flash Write 0100011_00010000 xxxxxxx_xxxxxxxx 2b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 2c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 2d. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx 2e. Load Data High Byte 0010111_iiiiiiii xxxxxxx_xxxxxxxx 2f. Latch Data 0110111_00000000 1110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 2g. Write Flash Page 0110111_00000000 0110101_00000000 0110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 2h. Poll for Page Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 3a. Enter Flash Read 0100011_00000010 xxxxxxx_xxxxxxxx 3b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 3c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 3d. Read Data Low and High Byte 0110010_00000000 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_oooooooo 4a. Enter EEPROM Write 0100011_00010001 xxxxxxx_xxxxxxxx 4b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx 4c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 4d. Load Data Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx 4e. Latch Data 0110111_00000000 1110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 4f. Write EEPROM Page 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 4g. Poll for Page Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 5a. Enter EEPROM Read 0100011_00000011 xxxxxxx_xxxxxxxx 5b. Load Address High Byte 0000111_aaaaaaaa xxxxxxx_xxxxxxxx (2) (9) (9) Low byte High byte (9) (9) 321 8018P-AVR-08/10 ATmega169P Table 27-17. JTAG Programming Instruction Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care Instruction TDI Sequence TDO Sequence 5c. Load Address Low Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 5d. Read Data Byte 0110011_bbbbbbbb 0110010_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 0100011_01000000 xxxxxxx_xxxxxxxx 6b. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3) 6c. Write Fuse Extended Byte 0111011_00000000 0111001_00000000 0111011_00000000 0111011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 6d. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 6e. Load Data Low Byte(7) 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3) 6f. Write Fuse High Byte 0110111_00000000 0110101_00000000 0110111_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 6g. Poll for Fuse Write Complete 0110111_00000000 xxxxxox_xxxxxxxx (2) 6h. Load Data Low Byte 0010011_iiiiiiii xxxxxxx_xxxxxxxx (3) 6i. Write Fuse Low Byte 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 6j. Poll for Fuse Write Complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 7a. Enter Lock Bit Write 0100011_00100000 xxxxxxx_xxxxxxxx 7b. Load Data Byte 0010011_11iiiiii xxxxxxx_xxxxxxxx (4) 7c. Write Lock Bits 0110011_00000000 0110001_00000000 0110011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx (1) 7d. Poll for Lock Bit Write complete 0110011_00000000 xxxxxox_xxxxxxxx (2) 8a. Enter Fuse/Lock Bit Read 0100011_00000100 xxxxxxx_xxxxxxxx 8b. Read Extended Fuse Byte(6) 0111010_00000000 0111011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 8c. Read Fuse High Byte(7) 0111110_00000000 0111111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 8d. Read Fuse Low Byte(8) 0110010_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 8e. Read Lock Bits(9) 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxoooooo 6a. Enter Fuse Write (6) (7) (9) Notes (5) 322 8018P-AVR-08/10 ATmega169P Table 27-17. JTAG Programming Instruction Set a = address high bits, b = address low bits, H = 0 - Low byte, 1 - High Byte, o = data out, i = data in, x = don't care Instruction TDI Sequence TDO Sequence Notes 8f. Read Fuses and Lock Bits 0111010_00000000 0111110_00000000 0110010_00000000 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_oooooooo xxxxxxx_oooooooo (5) Fuse Ext. byte Fuse High byte Fuse Low byte Lock bits 9a. Enter Signature Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx 9b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 9c. Read Signature Byte 0110010_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 10a. Enter Calibration Byte Read 0100011_00001000 xxxxxxx_xxxxxxxx 10b. Load Address Byte 0000011_bbbbbbbb xxxxxxx_xxxxxxxx 10c. Read Calibration Byte 0110110_00000000 0110111_00000000 xxxxxxx_xxxxxxxx xxxxxxx_oooooooo 11a. Load No Operation Command 0100011_00000000 0110011_00000000 xxxxxxx_xxxxxxxx xxxxxxx_xxxxxxxx Notes: 1. This command sequence is not required if the seven MSB are correctly set by the previous command sequence (which is normally the case). 2. Repeat until o = "1". 3. Set bits to "0" to program the corresponding Fuse, "1" to unprogramme the Fuse. 4. Set bits to "0" to program the corresponding Lock bit, "1" to leave the Lock bit unchanged. 5. "0" = programmed, "1" = unprogrammed. 6. The bit mapping for Fuses Extended byte is listed in Table 27-3 on page 297. 7. The bit mapping for Fuses High byte is listed in Table 27-4 on page 298. 8. The bit mapping for Fuses Low byte is listed in Table 27-5 on page 298. 9. The bit mapping for Lock bits byte is listed in Table 27-1 on page 296. 10. Address bits exceeding PCMSB and EEAMSB (Table 27-7 on page 299 and Table 27-8 on page 299). 11. All TDI and TDO sequences are represented by binary digits (0b...). 323 8018P-AVR-08/10 ATmega169P Figure 27-16. State Machine Sequence for Changing/Reading the Data Word 1 Test-Logic-Reset 0 0 Run-Test/Idle 1 Select-DR Scan 1 Select-IR Scan 0 1 0 1 Capture-DR Capture-IR 0 0 Shift-DR Shift-IR 0 1 Exit1-DR 0 Pause-DR 0 0 Pause-IR 1 1 0 Exit2-DR Exit2-IR 1 1 Update-DR 27.9.11 1 Exit1-IR 0 1 0 1 1 0 1 Update-IR 0 1 0 Flash Data Byte Register The Flash Data Byte Register provides an efficient way to load the entire Flash page buffer before executing Page Write, or to read out/verify the content of the Flash. A state machine sets up the control signals to the Flash and senses the strobe signals from the Flash, thus only the data words need to be shifted in/out. The Flash Data Byte Register actually consists of the 8-bit scan chain and a 8-bit temporary register. During page load, the Update-DR state copies the content of the scan chain over to the temporary register and initiates a write sequence that within 11 TCK cycles loads the content of the temporary register into the Flash page buffer. The AVR automatically alternates between writing the low and the high byte for each new Update-DR state, starting with the low byte for the first Update-DR encountered after entering the PROG_PAGELOAD command. The Program Counter is pre-incremented before writing the low byte, except for the first written byte. This ensures that the first data is written to the address set up by PROG_COMMANDS, and loading the last location in the page buffer does not make the Program Counter increment into the next page. During Page Read, the content of the selected Flash byte is captured into the Flash Data Byte Register during the Capture-DR state. The AVR automatically alternates between reading the low and the high byte for each new Capture-DR state, starting with the low byte for the first Cap- 324 8018P-AVR-08/10 ATmega169P ture-DR encountered after entering the PROG_PAGEREAD command. The Program Counter is post-incremented after reading each high byte, including the first read byte. This ensures that the first data is captured from the first address set up by PROG_COMMANDS, and reading the last location in the page makes the program counter increment into the next page. Figure 27-17. Flash Data Byte Register STROBES TDI State Machine ADDRESS Flash EEPROM Fuses Lock Bits D A T A TDO The state machine controlling the Flash Data Byte Register is clocked by TCK. During normal operation in which eight bits are shifted for each Flash byte, the clock cycles needed to navigate through the TAP controller automatically feeds the state machine for the Flash Data Byte Register with sufficient number of clock pulses to complete its operation transparently for the user. However, if too few bits are shifted between each Update-DR state during page load, the TAP controller should stay in the Run-Test/Idle state for some TCK cycles to ensure that there are at least 11 TCK cycles between each Update-DR state. 27.9.12 Programming Algorithm All references below of type "1a", "1b", and so on, refer to Table 27-17 on page 321. 27.9.13 Entering Programming Mode 1. Enter JTAG instruction AVR_RESET and shift 1 in the Reset Register. 2. Enter instruction PROG_ENABLE and shift 0b1010_0011_0111_0000 in the Programming Enable Register. 27.9.14 Leaving Programming Mode 1. Enter JTAG instruction PROG_COMMANDS. 2. Disable all programming instructions by using no operation instruction 11a. 3. Enter instruction PROG_ENABLE and shift 0b0000_0000_0000_0000 in the programming Enable Register. 4. Enter JTAG instruction AVR_RESET and shift 0 in the Reset Register. 325 8018P-AVR-08/10 ATmega169P 27.9.15 Performing Chip Erase 1. Enter JTAG instruction PROG_COMMANDS. 2. Start Chip Erase using programming instruction 1a. 3. Poll for Chip Erase complete using programming instruction 1b, or wait for tWLRH_CE (refer to Table 27-13 on page 309). 27.9.16 Programming the Flash Before programming the Flash a Chip Erase must be performed, see "Performing Chip Erase" on page 326. 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash write using programming instruction 2a. 3. Load address High byte using programming instruction 2b. 4. Load address Low byte using programming instruction 2c. 5. Load data using programming instructions 2d, 2e and 2f. 6. Repeat steps 4 and 5 for all instruction words in the page. 7. Write the page using programming instruction 2g. 8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to Table 27-13 on page 309). 9. Repeat steps 3 to 7 until all data have been programmed. A more efficient data transfer can be achieved using the PROG_PAGELOAD instruction: 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash write using programming instruction 2a. 3. Load the page address using programming instructions 2b and 2c. PCWORD (refer to Table 27-7 on page 299) is used to address within one page and must be written as 0. 4. Enter JTAG instruction PROG_PAGELOAD. 5. Load the entire page by shifting in all instruction words in the page byte-by-byte, starting with the LSB of the first instruction in the page and ending with the MSB of the last instruction in the page. Use Update-DR to copy the contents of the Flash Data Byte Register into the Flash page location and to auto-increment the Program Counter before each new word. 6. Enter JTAG instruction PROG_COMMANDS. 7. Write the page using programming instruction 2g. 8. Poll for Flash write complete using programming instruction 2h, or wait for tWLRH (refer to Table 27-13 on page 309). 9. Repeat steps 3 to 8 until all data have been programmed. 326 8018P-AVR-08/10 ATmega169P 27.9.17 Reading the Flash 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash read using programming instruction 3a. 3. Load address using programming instructions 3b and 3c. 4. Read data using programming instruction 3d. 5. Repeat steps 3 and 4 until all data have been read. A more efficient data transfer can be achieved using the PROG_PAGEREAD instruction: 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Flash read using programming instruction 3a. 3. Load the page address using programming instructions 3b and 3c. PCWORD (refer to Table 27-7 on page 299) is used to address within one page and must be written as 0. 4. Enter JTAG instruction PROG_PAGEREAD. 5. Read the entire page (or Flash) by shifting out all instruction words in the page (or Flash), starting with the LSB of the first instruction in the page (Flash) and ending with the MSB of the last instruction in the page (Flash). The Capture-DR state both captures the data from the Flash, and also auto-increments the program counter after each word is read. Note that Capture-DR comes before the shift-DR state. Hence, the first byte which is shifted out contains valid data. 6. Enter JTAG instruction PROG_COMMANDS. 7. Repeat steps 3 to 6 until all data have been read. 27.9.18 Programming the EEPROM Before programming the EEPROM a Chip Erase must be performed, see "Performing Chip Erase" on page 326. 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable EEPROM write using programming instruction 4a. 3. Load address High byte using programming instruction 4b. 4. Load address Low byte using programming instruction 4c. 5. Load data using programming instructions 4d and 4e. 6. Repeat steps 4 and 5 for all data bytes in the page. 7. Write the data using programming instruction 4f. 8. Poll for EEPROM write complete using programming instruction 4g, or wait for tWLRH (refer to Table 27-13 on page 309). 9. Repeat steps 3 to 8 until all data have been programmed. Note that the PROG_PAGELOAD instruction can not be used when programming the EEPROM. 27.9.19 Reading the EEPROM 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable EEPROM read using programming instruction 5a. 3. Load address using programming instructions 5b and 5c. 4. Read data using programming instruction 5d. 5. Repeat steps 3 and 4 until all data have been read. Note that the PROG_PAGEREAD instruction can not be used when reading the EEPROM. 327 8018P-AVR-08/10 ATmega169P 27.9.20 Programming the Fuses 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Fuse write using programming instruction 6a. 3. Load data high byte using programming instructions 6b. A bit value of "0" will program the corresponding fuse, a "1" will unprogram the fuse. 4. Write Fuse High byte using programming instruction 6c. 5. Poll for Fuse write complete using programming instruction 6d, or wait for tWLRH (refer to Table 27-13 on page 309). 6. Load data low byte using programming instructions 6e. A "0" will program the fuse, a "1" will unprogram the fuse. 7. Write Fuse low byte using programming instruction 6f. 8. Poll for Fuse write complete using programming instruction 6g, or wait for tWLRH (refer to Table 27-13 on page 309). 27.9.21 Programming the Lock Bits 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Lock bit write using programming instruction 7a. 3. Load data using programming instructions 7b. A bit value of "0" will program the corresponding lock bit, a "1" will leave the lock bit unchanged. 4. Write Lock bits using programming instruction 7c. 5. Poll for Lock bit write complete using programming instruction 7d, or wait for tWLRH (refer to Table 27-13 on page 309). 27.9.22 Reading the Fuses and Lock Bits 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Fuse/Lock bit read using programming instruction 8a. 3. To read all Fuses and Lock bits, use programming instruction 8e. To only read Fuse High byte, use programming instruction 8b. To only read Fuse Low byte, use programming instruction 8c. To only read Lock bits, use programming instruction 8d. 27.9.23 Reading the Signature Bytes 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Signature byte read using programming instruction 9a. 3. Load address 0x00 using programming instruction 9b. 4. Read first signature byte using programming instruction 9c. 5. Repeat steps 3 and 4 with address 0x01 and address 0x02 to read the second and third signature bytes, respectively. 27.9.24 Reading the Calibration Byte 1. Enter JTAG instruction PROG_COMMANDS. 2. Enable Calibration byte read using programming instruction 10a. 3. Load address 0x00 using programming instruction 10b. 4. Read the calibration byte using programming instruction 10c. 328 8018P-AVR-08/10 ATmega169P 28. Electrical Characteristics 28.1 Absolute Maximum Ratings* Operating Temperature.................................. -55C to +125C *NOTICE: Storage Temperature ..................................... -65C to +150C Voltage on any Pin except RESET with respect to Ground ................................-0.5V to VCC+0.5V Voltage on RESET with respect to Ground......-0.5V to +13.0V Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum Operating Voltage ............................................ 6.0V DC Current per I/O Pin ............................................... 40.0 mA DC Current VCC and GND Pins................................ 400.0 mA 28.2 DC Characteristics TA = -40C to 85C, VCC = 1.8V to 5.5V (unless otherwise noted) Symbol Parameter Condition Min. Typ. Max. Units (1) VIL Input Low Voltage except XTAL1 and RESET pins VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V -0.5 -0.5 0.2VCC 0.3VCC(1) VIH Input High Voltage except XTAL1 and RESET pins VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.7VCC(2) 0.6VCC(2) VCC + 0.5 VCC + 0.5 VIL1 Input Low Voltage XTAL1 pins VCC = 1.8V - 5.5V -0.5 0.1VCC(1) VIH1 Input High Voltage, XTAL1 pin VCC = 1.8V - 2.4V VCC = 2.4V - 5.5V 0.8VCC(2) 0.7VCC(2) VCC + 0.5 VCC + 0.5 VIL2 Input Low Voltage, RESET pins VCC = 1.8V - 5.5V -0.5 0.1VCC(1) VIH2 Input High Voltage, RESET pins VCC = 1.8V - 5.5V 0.9VCC(2) VOL Output Low Voltage(3), Port A, C, D, E, F, G IOL = 10 mA, VCC = 5V IOL = 5 mA, VCC = 3V 0.7 0.5 VOL1 Output Low Voltage(3), Port B IOL = 20 mA, VCC = 5V IOL = 10 mA, VCC = 3V 0.7 0.5 VOH Output High Voltage(4), Port A, C, D, E, F, G IOH = -10 mA, VCC = 5V IOH = -5 mA, VCC = 3V 4.2 2.3 VOH1 Output High Voltage(4), Port B IOH = -20 mA, VCC = 5V IOH = -10 mA, VCC = 3V 4.2 2.3 IIL Input Leakage Current I/O Pin VCC = 5.5V, pin low (absolute value) IIH Input Leakage Current I/O Pin VCC = 5.5V, pin high (absolute value) RRST Reset Pull-up Resistor 30 60 RPU I/O Pin Pull-up Resistor 20 50 V VCC + 0.5 1 A 1 k 329 8018P-AVR-08/10 ATmega169P TA = -40C to 85C, VCC = 1.8V to 5.5V (unless otherwise noted) (Continued) Symbol Parameter Condition Power Supply Current(5) ICC (6) Power-save mode Power-down mode(6) Typ. Max. Active 1 MHz, VCC = 2V 0.35 0.44 Active 4 MHz, VCC = 3V 2.3 2.5 Active 8 MHz, VCC = 5V 8.4 9.5 Idle 1 MHz, VCC = 2V 0.1 0.2 Idle 4 MHz, VCC = 3V 0,7 0.8 Idle 8 MHz, VCC = 5V 3.0 3.3 32 kHz TOSC enabled, VCC = 1.8V 0.55 1.6 32 kHz TOSC enabled, VCC = 3V 0.8 2.6 WDT enabled, VCC = 3V 6 10 WDT disabled, VCC = 3V 0.2 2 <10 40 mV 50 nA VACIO Analog Comparator Input Offset Voltage VCC = 5V Vin = VCC/2 IACLK Analog Comparator Input Leakage Current VCC = 5V Vin = VCC/2 tACPD Analog Comparator Propagation Delay VCC = 2.7V VCC = 4.0V Note: Min. Units mA -50 750 500 A ns 1. "Max" means the highest value where the pin is guaranteed to be read as low. 2. "Min" means the lowest value where the pin is guaranteed to be read as high. 3. Although each I/O port can sink more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10 mA at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be observed: TQFP and QFN/MLF Package: 1] The sum of all IOL, for all ports, should not exceed 400 mA. 2] The sum of all IOL, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA. 3] The sum of all IOL, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA. 4] The sum of all IOL, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA. 5] The sum of all IOL, for ports F0 - F7, should not exceed 100 mA. If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test condition. 4. Although each I/O port can source more than the test conditions (20 mA at VCC = 5V, 10 mA at VCC = 3V for Port B and 10 mA at VCC = 5V, 5 mA at VCC = 3V for all other ports) under steady state conditions (non-transient), the following must be observed: TQFP and QFN/MLF Package: 1] The sum of all IOH, for all ports, should not exceed 400 mA. 2] The sum of all IOH, for ports A0 - A7, C4 - C7, G2 should not exceed 100 mA. 3] The sum of all IOH, for ports B0 - B7, E0 - E7, G3 - G5 should not exceed 100 mA. 4] The sum of all IOH, for ports D0 - D7, C0 - C3, G0 - G1 should not exceed 100 mA. 5] The sum of all IOH, for ports F0 - F7, should not exceed 100 mA. If IOH exceeds the test condition, VOH may exceed the related specification. Pins are not guaranteed to source current greater than the listed test condition. 5. All bits set in the "Power Reduction Register" on page 42. 6. Typical values at 25C. Maximum values are characterized values and not test limits in production. 330 8018P-AVR-08/10 ATmega169P 28.3 Speed Grades Maximum frequency is depending on VCC. As shown in Figure 28-1 and Figure 28-2 on page 332, the Maximum Frequency vs. VCC curve is linear between 1.8V < VCC < 4.5V. To calculate the maximum frequency at a given voltage in this interval, use this equation: Frequency = a * ( V - Vx ) + Fy To calculate required voltage for a given frequency, use this equation:: Voltage = b * ( F - Fy ) + Vx Table 28-1. Constants used to calculate maximum speed vs. VCC Voltage and Frequency range 2.7 < VCC < 4.5 or 8 < Frq < 16 a b 8/1.8 1.8/8 1.8 < VCC < 2.7 or 4 < Frq < 8 Vx Fy 2.7 8 1.8 4 8 At 3 Volt, this gives: Frequency = -------- * ( 3 - 2.7 ) + 8 = 9.33 1.8 Thus, when VCC = 3V, maximum frequency will be 9.33 MHz. 1.8 At 6 MHz this gives: Voltage = -------- * ( 6 - 4 ) + 1.8 = 2.25 8 Thus, a maximum frequency of 6 MHz requires VCC = 2.25V. Figure 28-1. Maximum Frequency vs. VCC, ATmega169PV 8 MHz Safe Operating Area 4 MHz 1.8V 2.7V 5.5V 331 8018P-AVR-08/10 ATmega169P Figure 28-2. Maximum Frequency vs. VCC, ATmega169P 16 MHz 8 MHz Safe Operating Area 2.7V 28.4 28.4.1 4.5V 5.5V Clock Characteristics Calibrated Internal RC Oscillator Accuracy Table 28-2. Calibration Accuracy of Internal RC Oscillator Factory Calibration Frequency VCC 8.0 MHz 3V Temperature Calibration Accuracy 25C 10% -40C - 85C 1% (1) User Calibration Notes: 28.4.2 1.8V - 5.5V 2.7V - 5.5V(2) 7.3 MHz - 8.1 MHz 1. Voltage range for ATmega169PV. 2. Voltage range for ATmega169P. External Clock Drive Waveforms Figure 28-3. External Clock Drive Waveforms V IH1 V IL1 332 8018P-AVR-08/10 ATmega169P 28.4.3 External Clock Drive Table 28-3. External Clock Drive VCC = 1.8V - 5.5V 28.5 VCC = 2.7V - 5.5V VCC = 4.5V - 5.5V Symbol Parameter Min. Max. Min. Max. Min. Max. Units 1/tCLCL Oscillator Frequency 0 1 0 8 0 16 MHz tCLCL Clock Period 1000 125 62.5 tCHCX High Time 400 50 25 tCLCX Low Time 400 50 25 tCLCH Rise Time 2.0 1.6 0.5 tCHCL Fall Time 2.0 1.6 0.5 tCLCL Change in period from one clock cycle to the next 2 2 2 ns s % System and Reset Characteristics Table 28-4. Symbol VPOT Reset, Brown-out,and Internal Voltage Characteristics Parameter Condition Min Typ Max Power-on Reset Threshold Voltage (rising) TA = -40C to 85C 0.7 1.0 1.4 Power-on Reset Threshold Voltage (falling)(1) TA = -40C to 85C 0.05 0.9 1.3 Units V VPSR Power-on Reset Slope Rate VRST RESET Pin Threshold Voltage VCC = 3V tRST Minimum pulse width on RESET Pin VCC = 3V 0.1 4.5 V/ms 0.2VCC 0.9VCC V 2.5 s VHYST Brown-out Detector Hysteresis 50 mV tBOD Min Pulse Width on Brown-out Reset 2 s VBG Bandgap reference voltage VCC = 2.7V, TA = 25C tBG Bandgap reference start-up time IBG Bandgap reference current consumption Note: 1.0 1.1 1.2 V VCC = 2.7V, TA = 25C 40 70 s VCC = 2.7V, TA = 25C 15 A 1. The Power-on Reset will not work unless the supply voltage has been below VPOT (falling) 333 8018P-AVR-08/10 ATmega169P Table 28-5. BODLEVEL Fuse Coding(1) BODLEVEL 2..0 Fuses Min VBOT Typ VBOT 111 Max VBOT Units BOD Disabled 110 1.7 1.8 2.0 101 2.5 2.7 2.9 100 4.1 4.3 4.5 V 011 010 Reserved 001 000 Note: 28.6 1. VBOT may be below nominal minimum operating voltage for some devices. For devices where this is the case, the device is tested down to VCC = VBOT during the production test. This guarantees that a Brown-Out Reset will occur before VCC drops to a voltage where correct operation of the microcontroller is no longer guaranteed. The test is performed using BODLEVEL = 110 for ATmega169V. SPI Timing Characteristics See Figure 28-4 on page 335 and Figure 28-5 on page 335 for details. Table 28-6. SPI Timing Parameters Description Mode 1 SCK period Master See Table 18-5 on page 166 2 SCK high/low Master 50% duty cycle 3 Rise/Fall time Master 3.6 4 Setup Master 10 5 Hold Master 10 6 Out to SCK Master 0.5 * tsck 7 SCK to out Master 10 8 SCK to out high Master 10 9 SS low to out Slave 15 10 SCK period (1) Min Slave 4 * tck 2 * tck 11 SCK high/low Slave 12 Rise/Fall time Slave 13 Setup Slave 10 14 Hold Slave tck 15 SCK to out Slave 16 SCK to SS high Slave 17 SS high to tri-state Slave 18 SS low to SCK Slave Typ 1.6 15 Max ns s ns 20 10 20 * tck 334 8018P-AVR-08/10 ATmega169P Note: 1. In SPI Programming mode the minimum SCK high/low period is: - 2 tCLCL for fCK < 12 MHz - 3 tCLCL for fCK > 12 MHz Figure 28-4. SPI Interface Timing Requirements (Master Mode) SS 6 1 SCK (CPOL = 0) 2 2 SCK (CPOL = 1) 4 MISO (Data Input) 5 3 MSB ... LSB 8 7 MOSI (Data Output) MSB ... LSB Figure 28-5. SPI Interface Timing Requirements (Slave Mode) SS 10 9 16 SCK (CPOL = 0) 11 11 SCK (CPOL = 1) 13 MOSI (Data Input) 14 12 MSB ... LSB 15 MISO (Data Output) MSB 17 ... LSB X 335 8018P-AVR-08/10 ATmega169P 28.7 ADC Characteristics - Preliminary Data Table 28-7. Symbol ADC Characteristics Parameter Condition Min Typ Max Units Single Ended Conversion 10 Differential Conversion 8 Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2 Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 1 MHz 4.5 Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 200 kHz Noise Reduction Mode 2 Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 1 MHz Noise Reduction Mode 4.5 Integral Non-Linearity (INL) Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.5 Differential Non-Linearity (DNL) Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 200 kHz 0.25 Gain Error Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2 Offset Error Single Ended Conversion VREF = 4V, VCC = 4V, ADC clock = 200 kHz 2 Conversion Time Free Running Conversion 13 260 s Clock Frequency Single Ended Conversion 50 1000 kHz VCC - 0.3 VCC + 0.3 Single Ended Conversion 1.0 AVCC Differential Conversion 1.0 AVCC - 0.5 Single Ended Channels GND VREF Differential Channels GND AVCC GND VREF -0.85VREF VREF Resolution Absolute accuracy (Including INL, DNL, quantization error, gain and offset error) AVCC Analog Supply Voltage VREF Reference Voltage Bits LSB Pin Input Voltage VIN Single Ended Channels Input Range Differential Channels (1) Single Ended Channels 2.5 V 38.5 Input Bandwidth kHz Differential Channels 4 336 8018P-AVR-08/10 ATmega169P Table 28-7. Symbol ADC Characteristics Parameter Condition Min Typ Max Units 1.0 1.1 1.2 V VINT Internal Voltage Reference RREF Reference Input Resistance 32 k RAIN Analog Input Resistance 100 M Note: 1. Voltage difference between channels. 28.8 LCD Controller Characteristics Table 28-8. Symbol ILCD LCD Controller Characteristics Parameter Condition LCD Driver Current Total for All COM and SEG pins Min Typ 6 RSEG SEG Driver Output Impedance 10 RCOM COM Driver Output Impedance 2 Max Units A k 337 8018P-AVR-08/10 ATmega169P 29. Typical Characteristics The following charts show typical behavior. These figures are not tested during manufacturing. All current consumption measurements are performed with all I/O pins configured as inputs and with internal pull-ups enabled. A sine wave generator with rail-to-rail output is used as clock source. All Active- and Idle current consumption measurements are done with all bits in the PRR register set and thus, the corresponding I/O modules are turned off. Also the Analog Comparator is disabled during these measurements. Table 29-1 on page 343 and Table 29-2 on page 343 show the additional current consumption compared to ICC Active and ICC Idle for every I/O module controlled by the Power Reduction Register. See "Power Reduction Register" on page 42 for details. The power consumption in Power-down mode is independent of clock selection. The current consumption is a function of several factors such as: operating voltage, operating frequency, loading of I/O pins, switching rate of I/O pins, code executed and ambient temperature. The dominating factors are operating voltage and frequency. The current drawn from capacitive loaded pins may be estimated (for one pin) as CL*VCC*f where CL = load capacitance, VCC = operating voltage and f = average switching frequency of I/O pin. The parts are characterized at frequencies higher than test limits. Parts are not guaranteed to function properly at frequencies higher than the ordering code indicates. The difference between current consumption in Power-down mode with Watchdog Timer enabled and Power-down mode with Watchdog Timer disabled represents the differential current drawn by the Watchdog Timer. 29.1 Active Supply Current Figure 29-1. Active Supply Current vs. Frequency (0.1 MHz - 1.0 MHz) 1.6 5.5V 1.4 5.0V 1.2 4.5V ICC (mA) 1 4.0V 0.8 3.3V 0.6 2.7V 0.4 1.8V 0.2 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) 338 8018P-AVR-08/10 ATmega169P Figure 29-2. Active Supply Current vs. Frequency (1 MHz MHz - 20 MHz) 1 MHz - 20 25 5.5V 20 5.0V ICC (mA) 4.5V 15 4.0V 10 3.3V 5 2.7V 1.8V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) Figure 29-3. Active Supply Current vs. VCC (Internal RC Oscillator, 8 MHz 10 85C 25C -40C 9 8 ICC (mA) 7 6 5 4 3 2 1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 339 8018P-AVR-08/10 ATmega169P Figure 29-4. Active Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) 2 85C 25C -40C 1.8 1.6 ICC (mA) 1.4 1.2 1 0.8 0.6 0.4 0.2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-5. Active Supply Current vs. VCC (32 kHz Watch Crystal) 50.0 25C 45.0 40.0 ICC ( A) 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 340 8018P-AVR-08/10 ATmega169P 29.2 Idle Supply Current Figure 29-6. Idle Supply Current vs. Frequency 0.1 MHz(0.1 - 1.0 MHz MHz - 1.0 MHz) 0.5 0.45 5.5V 0.4 5.0V ICC (mA) 0.35 4.5V 0.3 4.0V 0.25 0.2 3.3V 0.15 2.7V 0.1 1.8V 0.05 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) Figure 29-7. Idle Supply Current vs. Frequency (1- MHz 1 MHz 20 MHz- 20 MHz) 10 9 5.5V ICC (mA) 8 7 5.0V 6 4.5V 5 4.0V 4 3 3.3V 2 2.7V 1 1.8V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 341 8018P-AVR-08/10 ATmega169P Figure 29-8. Idle Supply Current vs. VCC (Internal RC Oscillator, 8 MHz) 4 85C 25C -40C 3.5 3 ICC (mA) 2.5 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-9. Idle Supply Current vs. VCC (Internal RC Oscillator, 1 MHz) 0.7 85C 25C -40C 0.6 ICC (mA) 0.5 0.4 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 342 8018P-AVR-08/10 ATmega169P Figure 29-10. Idle Supply Current vs. VCC (32 kHz Watch Crystal) 14 25C 12 I CC ( A) 10 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 29.3 Supply Current of I/O modules The tables and formulas below can be used to calculate the additional current consumption for the different I/O modules in Active and Idle mode. The enabling or disabling of the I/O modules are controlled by the Power Reduction Register. See "Power Reduction Register" on page 42 for details. Table 29-1. PRR bit Additional Current Consumption for the different I/O modules (absolute values) Typical numbers VCC = 2V, F = 1 MHz VCC = 3V, F = 4 MHz VCC = 5V, F = 8 MHz PRADC 18 A 116 A 495 A PRUSART0 11 A 79 A 313 A PRSPI 10 A 72 A 283 A PRTIM1 19 A 117 A 481 A PRLCD 4 A 32 A 105 A Table 29-2. Additional Current Consumption (percentage) in Active and Idle mode PRR bit Additional Current consumption compared to Active with external clock (see Figure 29-1 on page 338 and Figure 29-2 on page 339) Additional Current consumption compared to Idle with external clock (see Figure 29-6 on page 341 and Figure 29-7 on page 341) PRADC 5.6% 18.7% PRUSART0 3.7% 12.4% 343 8018P-AVR-08/10 ATmega169P Table 29-2. Additional Current Consumption (percentage) in Active and Idle mode Additional Current consumption compared to Active with external clock (see Figure 29-1 on page 338 and Figure 29-2 on page 339) PRR bit Additional Current consumption compared to Idle with external clock (see Figure 29-6 on page 341 and Figure 29-7 on page 341) PRSPI 3.2% 10.8% PRTIM1 5.6% 18.6% PRLCD 12.5% 41.7% It is possible to calculate the typical current consumption based on the numbers from Table 29-2 on page 343 for other VCC and frequency settings than listed in Table 29-1 on page 343. 29.3.0.1 Example 1 Calculate the expected current consumption in idle mode with USART0, TIMER1, and SPI enabled at VCC = 3.0V and F = 1 MHz. From Table 29-2 on page 343, second column, we see that we need to add 12.4% for the USART0, 10.8% for the SPI, and 18.6% for the TIMER1 module. Reading from Figure 29-6 on page 341, we find that the idle current consumption is ~0.18 mA at VCC = 3.0V and F = 1 MHz. The total current consumption in idle mode with USART0, TIMER1, and SPI enabled, gives: I CC total 0.18mA * ( 1 + 0.124 + 0.108 + 0.186 ) 0.26mA 29.4 Power-down Supply Current Figure 29-11. Power-down Supply Current vs. VCC (Watchdog Timer Disabled) 1.60 1.40 85C 1.20 I CC ( A) 1.00 -40C 0.80 25C 0.60 0.40 0.20 0.00 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VCC (V) 344 8018P-AVR-08/10 ATmega169P Figure 29-12. Power-down Supply Current vs. TIMER VCC (Watchdog Timer Enabled) WATCHDOG ENABLED 20 85C -40C 25C 18 16 14 ICC (A) 12 10 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 29.5 Power-save Supply Current Figure 29-13. Power-save Supply Current vs. VCC (Watchdog Timer Disabled) 3.50 3.00 85C ICC (A) 2.50 -40C 25C 2.00 1.50 1.00 0.50 0.00 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VCC (V) The differential current consumption between Power-save with WD disabled and 32 kHz TOSC represents the current drawn by Timer/Counter2. 345 8018P-AVR-08/10 ATmega169P 29.6 Standby Supply Current Figure 29-14. Standby Supply Current vs. VCC (32 kHz Watch Crystal, Watchdog Timer Disabled) 2.50 85C 2.00 25C I CC ( A) -40C 1.50 1.00 0.50 0.00 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VCC (V) Figure 29-15. Standby Supply Current vs. VCC (455 kHz Resonator, Watchdog Timer Disabled) 70 60 ICC (A) 50 40 30 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 346 8018P-AVR-08/10 ATmega169P Figure 29-16. Standby Supply Current vs. VCC (1 MHz Resonator, Watchdog Timer Disabled) 60 50 ICC (A) 40 30 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-17. Standby Supply Current vs. VCC (2 MHz Resonator, Watchdog Timer Disabled) 90 80 70 I CC ( A) 60 50 40 30 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 347 8018P-AVR-08/10 ATmega169P Figure 29-18. Standby Supply Current vs. VCC (2 MHz Xtal, Watchdog Timer Disabled) 80 70 60 I CC ( A ) 50 40 30 20 10 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-19. Standby Supply Current vs. VCC (4 MHz Resonator, Watchdog Timer Disabled) 140 120 I CC ( A ) 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 348 8018P-AVR-08/10 ATmega169P Figure 29-20. Standby Supply Current vs. VCC (4 MHz Xtal, Watchdog Timer Disabled) 140 120 ICC (A) 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-21. Standby Supply Current vs. VCC (6 MHz Resonator, Watchdog Timer Disabled) 160 140 120 ICC (A) 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 349 8018P-AVR-08/10 ATmega169P Figure 29-22. Standby Supply Current vs. VCC (6 MHz Xtal, Watchdog Timer Disabled) 180 160 140 ICC (A) 120 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 29.7 Pin Pull-up Figure 29-23. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 5V) I/O PIN PULL-UP RESISTOR CURRENT vs. INPUT VOLTAGE Vcc = 5V 160 85C 140 120 25C -40C IIO (A) 100 80 60 40 20 0 0 1 2 3 4 5 VIO (V) 350 8018P-AVR-08/10 ATmega169P Figure 29-24. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 2.7V) 90 80 25C 85C 70 -40C IIO (A) 60 50 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 VIO (V) Figure 29-25. I/O Pin Pull-up Resistor Current vs. Input Voltage (VCC = 1.8V) 60 50 85C 25C IOP (A) 40 -40C 30 20 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOP (V) 351 8018P-AVR-08/10 ATmega169P Figure 29-26. Reset Pull-up Resistor CurrentVcc vs. Reset Pin Voltage (VCC = 5V) = 5V 120 -40C 25C 100 85C IRESET (A) 80 60 40 20 0 0 1 2 3 4 5 VRESET (V) Figure 29-27. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 2.7V) 70 60 -40C 25C IRESET (A) 50 85C 40 30 20 10 0 0 0.5 1 1.5 2 2.5 3 VRESET (V) 352 8018P-AVR-08/10 ATmega169P Figure 29-28. Reset Pull-up Resistor Current vs. Reset Pin Voltage (VCC = 1.8V) 40 -40C 35 25C 30 IRESET (A) 85C 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VRESET (V) 29.8 Pin Driver Strength Figure 29-29. I/O Pin Source Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 5V) 70 60 -40C IOH (mA) 50 25C 85C 40 30 20 10 0 0 1 2 3 4 5 6 VOH (V) 353 8018P-AVR-08/10 ATmega169P Figure 29-30. I/O Pin Source Current vs. Output Ports A, C, D, E, F, G (VCC = 2.7V) Vcc = Voltage, 2.7V 25 -40C 25C 20 IOH (mA) 85C 15 10 5 0 0 0.5 1 1.5 2 2.5 3 VOH (V) Figure 29-31. I/O Pin Source Current vs. Output Ports A, C, D, E, F, G (VCC = 1.8V) Vcc = Voltage, 1.8V 8 -40C 7 25C 6 85C IOH (mA) 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH (V) 354 8018P-AVR-08/10 ATmega169P Figure 29-32. I/O Pin Source Current vs. Output Voltage, Port B (VCC= 5V) 80 70 -40C 60 25C 85C IOH (mA) 50 40 30 20 10 0 0 1 2 3 4 VOH (V) Figure 29-33. I/O Pin Source Current vs. Output Port B (VCC = 2.7V) Vcc = Voltage, 2.7V 35 30 -40C 25C 25 IOH (mA) 85C 20 15 10 5 0 0 0.5 1 1.5 2 2.5 3 VOH (V) 355 8018P-AVR-08/10 ATmega169P Figure 29-34. I/O Pin Source Current vs. Output Port B (VCC = 1.8V) Vcc = Voltage, 1.8V 10 -40C 9 25C 8 85C IOH (mA) 7 6 5 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOH (V) Figure 29-35. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 5V) 50 -40C IOL (mA) 45 40 25C 35 85C 30 25 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) 356 8018P-AVR-08/10 ATmega169P Figure 29-36. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 2.7V) 20 -40C 18 16 25C IOL (mA) 14 85C 12 10 8 6 4 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) Figure 29-37. I/O Pin Sink Current vs. Output Voltage, Ports A, C, D, E, F, G (VCC = 1.8V) 7 -40C 6 25C IOL (mA) 5 85C 4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) 357 8018P-AVR-08/10 ATmega169P Figure 29-38. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 5V) 90 80 -40C 70 25C IOL (mA) 60 85C 50 40 30 20 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) Figure 29-39. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 2.7V) 35 -40C 30 25C 25 IOL (mA) 85C 20 15 10 5 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) 358 8018P-AVR-08/10 ATmega169P Figure 29-40. I/O Pin Sink Current vs. Output Voltage, Port B (VCC = 1.8V) 12 -40C 10 25C 8 I OL (m A ) 85C 6 4 2 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 VOL (V) 29.9 Pin Thresholds and Hysteresis Figure 29-41. I/O Pin Input Threshold Voltage vs. VCC (VIH, I/O Pin Read as "1") 85C 25C -40C 3 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 359 8018P-AVR-08/10 ATmega169P Figure 29-42. I/O Pin Input Threshold Voltage VCC VIL, I/O PINvs. READ AS (V '0' IL, I/O Pin Read as "0") 3 85C 25C -40C 2.5 Threshold (V) 2 1.5 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-43. I/O Pin Input Hysteresis vs. VCC 0.6 -40C 0.5 25C Input hysteresis ( V) 0.4 85C 0.3 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 360 8018P-AVR-08/10 ATmega169P Figure 29-44. Reset Input Threshold Voltage vs. VCC (VIH,Reset Pin Read as "1") 2.5 Threshold (V) 2 1.5 -40C 25C 85C 1 0.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-45. Reset Input Threshold Voltage vs.VOLTAGE VCC (VIL,Reset RESET INPUT THRESHOLD vs. VCC Pin Read as "0") VIL, RESET PIN READ AS '0' 85C 25C -40C 2.5 2.5 2 1.5 Threshold (V) Threshold (V) 2 1.5 -40C 25C 1 85C 1 0.5 0.5 0 1.5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 361 8018P-AVR-08/10 ATmega169P Figure 29-46. Reset Input Pin Hysteresis vs. VCC 0.7 -40C 0.6 Input hysteresis ( V) 0.5 25C 0.4 0.3 85C 0.2 0.1 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 29.10 BOD Thresholds and Analog Comparator Offset Figure 29-47. BOD Thresholds vs. Temperature (BOD Level is 4.3V) 4.6 4.5 Rising VCC Threshol d ( V ) 4.4 Falling VCC 4.3 4.2 4.1 4 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) 362 8018P-AVR-08/10 ATmega169P Figure 29-48. BOD Thresholds vs. Temperature BODLEVEL(BOD IS 2.7VLevel is 2.7V) 3 2.9 Rising VCC Threshol d ( V ) 2.8 Falling VCC 2.7 2.6 2.5 2.4 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) Figure 29-49. BOD Thresholds vs. Temperature (BOD Level is 1.8V) BODLEVEL IS 1.8V 2.1 2 Rising VCC Threshol d ( V ) 1.9 1.8 Falling VCC 1.7 1.6 1.5 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 90 100 Temperature (C) 363 8018P-AVR-08/10 ATmega169P Figure 29-50. Bandgap Voltage vs. VCC CC 1.14 Bandgap Voltage ( V ) 1.13 1.12 85C 25C 1.11 -40C 1.1 1.09 1.08 1.5 2 2.5 3 3.5 4 4.5 5 5.5 Vcc (V) Figure 29-51. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 5V) CC 0.008 85C 25C Comparator Offset Voltage ( V ) 0.006 -40C 0.004 0.002 0 -0.002 -0.004 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 Common Mode Voltage (V) 364 8018P-AVR-08/10 ATmega169P Figure 29-52. Analog Comparator Offset Voltage vs. Common Mode Voltage (VCC = 2.7V) CC 0.003 85C Comparator Offset Voltage ( V ) 0.002 25C 0.001 -40C 0 -0.001 -0.002 -0.003 -0.004 0 0.5 1 1.5 2 2.5 3 Common Mode Voltage (V) 29.11 Internal Oscillator Speed Figure 29-53. Oscillator Current vs. VCC (32 kHz Watch Crystal) I CC ( A) 1.00 0.90 85C 0.80 25C 0.70 -40C 0.60 0.50 0.40 0.30 0.20 0.10 0.00 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 VCC (V) 365 8018P-AVR-08/10 ATmega169P Figure 29-54. Watchdog Oscillator Frequency vs. VCC 1200 -40C 25C 85C 1150 1100 FRC (kHz) 1050 1000 950 900 850 800 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-55. Calibrated8MHz 8 MHz RC Oscillator Frequency vs. Temperature CALIBRATED RC OSCILLATOR FREQUENCY vs. TEMPERATURE 8.8 8.6 8.4 F RC (MHz) 8.2 8 7.8 7.6 7.4 1.8V 2.7V 4.0V 5.5V 7.2 -60 -40 -20 0 20 40 60 80 100 Ta (C) 366 8018P-AVR-08/10 ATmega169P Figure 29-56. Calibrated 8 MHz RC Oscillator Frequency vs. VCC 10 9.5 FRC (MHz) 9 8.5 85C 8 25C 7.5 -40C 7 6.5 6 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure CALIBRATED 29-57. Calibrated 8 MHz Oscillator Frequency vs. Osccal Value 8 MHz RCRC OSCILLATOR FREQUENCY vs. OSCCAL VALUE 16 85C 25C -40C 14 F RC (M Hz) 12 10 8 6 4 0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 OSCCAL VALUE 367 8018P-AVR-08/10 ATmega169P 29.12 Current Consumption of Peripheral Units Figure 29-58. Brownout Detector Current vs. VCC 30 -40C 85C 25C 25 ICC (A) 20 15 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-59. ADC Current vs. VCC (AREF = AVCC) CC 350 -40C 25C 85C 300 ICC (A) 250 200 150 100 50 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 368 8018P-AVR-08/10 ATmega169P Figure 29-60. AREF External Reference Current vs. VCC CC 85C 25C -40C 160 140 120 IAREF (A) 100 80 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) The differential current consumption between Power-save with WD disabled and 32 kHz TOSC represents the current drawn by Timer/Counter2. Figure 29-61. Watchdog Timer Current vs. VCC 16 85C 25C -40C 14 12 ICC (A) 10 8 6 4 2 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 369 8018P-AVR-08/10 ATmega169P Figure 29-62. Analog Comparator Current vs. VCC 120 100 -40C 80 25C I CC ( A ) 85C 60 40 20 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) Figure 29-63. Programming Current vs. VCC 25 -40C 20 25C ICC (mA) 15 85C 10 5 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 370 8018P-AVR-08/10 ATmega169P 29.13 Current Consumption in Reset and Reset Pulsewidth Figure 29-64. Reset Supply Current vs. VCC (0.1 MHz - 1.0 MHz, Excluding Current Through The Reset Pull-up) 0.18 5.5V I CC (mA ) 0.16 0.14 5.0V 0.12 4.5V 0.1 4.0V 0.08 3.3V 0.06 2.7V 0.04 1.8V 0.02 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Frequency (MHz) Figure 29-65. Reset Supply Current vs. VCC (1 MHz - 20 MHz, Excluding Current Through The Reset Pull-up) I CC (mA ) 3.5 3 5.5V 2.5 5.0V 4.5V 2 4.0V 1.5 1 3.3V 0.5 2.7V 1.8V 0 0 2 4 6 8 10 12 14 16 18 20 Frequency (MHz) 371 8018P-AVR-08/10 ATmega169P Figure 29-66. Minimum Reset Pulse Width vs. VCC 2500 Pulsewidth (ns) 2000 1500 1000 500 85C 25C -40C 0 1.5 2 2.5 3 3.5 4 4.5 5 5.5 VCC (V) 372 8018P-AVR-08/10 ATmega169P 30. Register Summary Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xFF) Reserved - - - - - - - - Page (0xFE) LCDDR18 - - - - - - - SEG324 251 (0xFD) LCDDR17 SEG323 SEG322 SEG321 SEG320 SEG319 SEG318 SEG317 SEG316 251 (0xFC) LCDDR16 SEG315 SEG314 SEG313 SEG312 SEG311 SEG310 SEG309 SEG308 251 (0xFB) LCDDR15 SEG307 SEG306 SEG305 SEG304 SEG303 SEG302 SEG301 SEG300 251 (0xFA) Reserved - - - - - - - - (0xF9) LCDDR13 - - - - - - - SEG224 251 (0xF8) LCDDR12 SEG223 SEG222 SEG221 SEG220 SEG219 SEG218 SEG217 SEG216 251 (0xF7) LCDDR11 SEG215 SEG214 SEG213 SEG212 SEG211 SEG210 SEG209 SEG208 251 (0xF6) LCDDR10 SEG207 SEG206 SEG205 SEG204 SEG203 SEG202 SEG201 SEG200 251 (0xF5) Reserved - - - - - - - - (0xF4) LCDDR8 - - - - - - - SEG124 251 (0xF3) LCDDR7 SEG123 SEG122 SEG121 SEG120 SEG119 SEG118 SEG117 SEG116 251 (0xF2) LCDDR6 SEG115 SEG114 SEG113 SEG112 SEG111 SEG110 SEG109 SEG108 251 (0xF1) LCDDR5 SEG107 SEG106 SEG105 SEG104 SEG103 SEG102 SEG101 SEG100 251 (0xF0) Reserved - - - - - - - - (0xEF) LCDDR3 - - - - - - - SEG024 (0xEE) LCDDR2 SEG023 SEG022 SEG021 SEG020 SEG019 SEG018 SEG017 SEG016 251 (0xED) LCDDR1 SEG015 SEG014 SEG013 SEG012 SEG011 SEG010 SEG09 SEG008 251 (0xEC) LCDDR0 SEG007 SEG006 SEG005 SEG004 SEG003 SEG002 SEG001 SEG000 251 (0xEB) Reserved - - - - - - - - (0xEA) Reserved - - - - - - - - (0xE9) Reserved - - - - - - - - (0xE8) Reserved - - - - - - - - (0xE7) LCDCCR LCDDC2 LCDDC1 LCDDC0 LCDMDT LCDCC3 LCDCC2 LCDCC1 LCDCC0 250 (0xE6) LCDFRR - LCDPS2 LCDPS1 LCDPS0 - LCDCD2 LCDCD1 LCDCD0 248 (0xE5) LCDCRB LCDCS LCD2B LCDMUX1 LCDMUX0 - LCDPM2 LCDPM1 LCDPM0 247 (0xE4) LCDCRA LCDEN LCDAB - LCDIF LCDIE LCDBD LCDCCD LCDBL 246 (0xE3) Reserved - - - - - - - - (0xE2) Reserved - - - - - - - - (0xE1) Reserved - - - - - - - - (0xE0) Reserved - - - - - - - - (0xDF) Reserved - - - - - - - - (0xDE) Reserved - - - - - - - - (0xDD) Reserved - - - - - - - - (0xDC) Reserved - - - - - - - - (0xDB) Reserved - - - - - - - - (0xDA) Reserved - - - - - - - - (0xD9) Reserved - - - - - - - - (0xD8) Reserved - - - - - - - - (0xD7) Reserved - - - - - - - - (0xD6) Reserved - - - - - - - - (0xD5) Reserved - - - - - - - - (0xD4) Reserved - - - - - - - - (0xD3) Reserved - - - - - - - - (0xD2) Reserved - - - - - - - - (0xD1) Reserved - - - - - - - - (0xD0) Reserved - - - - - - - - (0xCF) Reserved - - - - - - - - (0xCE) Reserved - - - - - - - - (0xCD) Reserved - - - - - - - - (0xCC) Reserved - - - - - - - - (0xCB) Reserved - - - - - - - - (0xCA) Reserved - - - - - - - - (0xC9) Reserved - - - - - - - - (0xC8) Reserved - - - - - - - - (0xC7) Reserved - - - - - - - - (0xC6) UDR0 (0xC5) UBRRH0 (0xC4) UBRRL0 (0xC3) Reserved (0xC2) (0xC1) (0xC0) USART0 I/O Data Register 194 USART0 Baud Rate Register High 198 USART0 Baud Rate Register Low - - UCSR0C - UCSR0B RXCIE0 UCSR0A RXC0 251 198 - - - - - - UMSEL0 UPM01 UPM00 USBS0 UCSZ01 UCSZ00 UCPOL0 TXCIE0 UDRIE0 RXEN0 TXEN0 UCSZ02 RXB80 TXB80 194 TXC0 UDRE0 FE0 DOR0 UPE0 U2X0 MPCM0 194 194 373 8018P-AVR-08/10 ATmega169P Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0xBF) Reserved - - - - - - - - Page (0xBE) Reserved - - - - - - - - (0xBD) Reserved - - - - - - - - (0xBC) Reserved - - - - - - - - (0xBB) Reserved - - - - - - - - (0xBA) USIDR (0xB9) USISR USISIF USIOIF USIPF USIDC USICNT3 USICNT2 USICNT1 USICNT0 207 (0xB8) USICR USISIE USIOIE USIWM1 USIWM0 USICS1 USICS0 USICLK USITC 208 (0xB7) Reserved - - - - - - - USI Data Register 207 (0xB6) ASSR - - - EXCLK AS2 TCN2UB OCR2UB TCR2UB (0xB5) Reserved - - - - - - - - 156 (0xB4) Reserved - - - - - - - - (0xB3) OCR2A Timer/Counter2 Output Compare Register A 155 (0xB2) TCNT2 Timer/Counter2 (8-bit) 155 (0xB1) Reserved - - - - - - - - (0xB0) TCCR2A FOC2A WGM20 COM2A1 COM2A0 WGM21 CS22 CS21 CS20 (0xAF) Reserved - - - - - - - - 153 (0xAE) Reserved - - - - - - - - (0xAD) Reserved - - - - - - - - (0xAC) Reserved - - - - - - - - (0xAB) Reserved - - - - - - - - (0xAA) Reserved - - - - - - - - (0xA9) Reserved - - - - - - - - (0xA8) Reserved - - - - - - - - (0xA7) Reserved - - - - - - - - (0xA6) Reserved - - - - - - - - (0xA5) Reserved - - - - - - - - (0xA4) Reserved - - - - - - - - (0xA3) Reserved - - - - - - - - (0xA2) Reserved - - - - - - - - (0xA1) Reserved - - - - - - - - (0xA0) Reserved - - - - - - - - (0x9F) Reserved - - - - - - - - (0x9E) Reserved - - - - - - - - (0x9D) Reserved - - - - - - - - (0x9C) Reserved - - - - - - - - (0x9B) Reserved - - - - - - - - (0x9A) Reserved - - - - - - - - (0x99) Reserved - - - - - - - - (0x98) Reserved - - - - - - - - (0x97) Reserved - - - - - - - - (0x96) Reserved - - - - - - - - (0x95) Reserved - - - - - - - - (0x94) Reserved - - - - - - - - (0x93) Reserved - - - - - - - - (0x92) Reserved - - - - - - - - (0x91) Reserved - - - - - - - - (0x90) Reserved - - - - - - - - (0x8F) Reserved - - - - - - - - (0x8E) Reserved - - - - - - - - (0x8D) Reserved - - - - - - - - (0x8C) Reserved - - - - - - - - (0x8B) OCR1BH Timer/Counter1 - Output Compare Register B High Byte 132 (0x8A) OCR1BL Timer/Counter1 - Output Compare Register B Low Byte 132 (0x89) OCR1AH Timer/Counter1 - Output Compare Register A High Byte 132 (0x88) OCR1AL Timer/Counter1 - Output Compare Register A Low Byte 132 (0x87) ICR1H Timer/Counter1 - Input Capture Register High Byte 133 (0x86) ICR1L Timer/Counter1 - Input Capture Register Low Byte 133 (0x85) TCNT1H Timer/Counter1 - Counter Register High Byte 132 (0x84) TCNT1L Timer/Counter1 - Counter Register Low Byte 132 (0x83) Reserved - - - - - - - (0x82) TCCR1C FOC1A FOC1B - - - - - - 131 (0x81) TCCR1B ICNC1 ICES1 - WGM13 WGM12 CS12 CS11 CS10 130 128 - (0x80) TCCR1A COM1A1 COM1A0 COM1B1 COM1B0 - - WGM11 WGM10 (0x7F) DIDR1 - - - - - - AIN1D AIN0D 215 (0x7E) DIDR0 ADC7D ADC6D ADC5D ADC4D ADC3D ADC2D ADC1D ADC0D 233 374 8018P-AVR-08/10 ATmega169P Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 (0x7D) Reserved - - - - - - - - (0x7C) ADMUX REFS1 REFS0 ADLAR MUX4 MUX3 MUX2 MUX1 MUX0 229 (0x7B) ADCSRB - ACME - - - ADTS2 ADTS1 ADTS0 214, 233 (0x7A) ADCSRA ADEN ADSC ADATE ADIF ADIE ADPS2 ADPS1 ADPS0 (0x79) ADCH ADC Data Register High byte Page 231 232 (0x78) ADCL (0x77) Reserved - - - ADC Data Register Low byte - - - - - 232 (0x76) Reserved - - - - - - - - (0x75) Reserved - - - - - - - - (0x74) Reserved - - - - - - - - (0x73) Reserved - - - - - - - - (0x72) Reserved - - - - - - - - (0x71) Reserved - - - - - - - - (0x70) TIMSK2 - - - - - - OCIE2A TOIE2 (0x6F) TIMSK1 - - ICIE1 - - OCIE1B OCIE1A TOIE1 133 (0x6E) TIMSK0 - - - - - - OCIE0A TOIE0 104 (0x6D) Reserved - - - - - - - - (0x6C) PCMSK1 PCINT15 PCINT14 PCINT13 PCINT12 PCINT11 PCINT10 PCINT9 PCINT8 63 (0x6B) PCMSK0 PCINT7 PCINT6 PCINT5 PCINT4 PCINT3 PCINT2 PCINT1 PCINT0 64 (0x6A) Reserved - - - - - - - - (0x69) EICRA - - - - - - ISC01 ISC00 (0x68) Reserved - - - - - - - - (0x67) Reserved - - - - - - - - (0x66) OSCCAL (0x65) Reserved - - - - - - - - Oscillator Calibration Register 156 62 38 (0x64) PRR - - - PRLCD PRTIM1 PRSPI PRUSART0 PRADC (0x63) Reserved - - - - - - - - 45 (0x62) Reserved - - - - - - - - (0x61) CLKPR CLKPCE - - - CLKPS3 CLKPS2 CLKPS1 CLKPS0 38 (0x60) WDTCR - - - WDCE WDE WDP2 WDP1 WDP0 54 0x3F (0x5F) SREG I T H S V N Z C 13 0x3E (0x5E) SPH - - - - - SP10 SP9 SP8 13 0x3D (0x5D) SPL SP7 SP6 SP5 SP4 SP3 SP2 SP1 SP0 13 0x3C (0x5C) Reserved 0x3B (0x5B) Reserved 0x3A (0x5A) Reserved 0x39 (0x59) Reserved 294 0x38 (0x58) Reserved 0x37 (0x57) SPMCSR SPMIE RWWSB - RWWSRE BLBSET PGWRT PGERS SPMEN 0x36 (0x56) Reserved - - - - - - - - 0x35 (0x55) MCUCR JTD - - PUD - - IVSEL IVCE 60, 88, 279 0x34 (0x54) MCUSR - - - JTRF WDRF BORF EXTRF PORF 279 0x33 (0x53) SMCR - - - - SM2 SM1 SM0 SE 45 0x32 (0x52) Reserved - - - - - - - - 0x31 (0x51) OCDR IDRD/OCDR7 OCDR6 OCDR5 OCDR4 OCDR3 OCDR2 OCDR1 OCDR0 258 0x30 (0x50) ACSR ACD ACBG ACO ACI ACIE ACIC ACIS1 ACIS0 214 - - - - - - - - 0x2F (0x4F) Reserved 0x2E (0x4E) SPDR 0x2D (0x4D) SPSR SPIF WCOL - 0x2C (0x4C) SPCR SPIE SPE DORD 0x2B (0x4B) GPIOR2 General Purpose I/O Register 2 0x2A (0x4A) GPIOR1 General Purpose I/O Register 1 0x29 (0x49) Reserved - - - 0x28 (0x48) Reserved - - - 0x27 (0x47) OCR0A Timer/Counter0 Output Compare Register A 0x26 (0x46) TCNT0 Timer/Counter0 (8 Bit) 0x25 (0x45) Reserved - - - - - - 0x24 (0x44) TCCR0A FOC0A WGM00 COM0A1 COM0A0 WGM01 CS02 CS01 CS00 102 0x23 (0x43) GTCCR TSM - - - - - PSR2 PSR10 137, 157 - - - - - - - EEAR8 28 SPI Data Register 167 - - - - SPI2X 166 MSTR CPOL CPHA SPR1 SPR0 165 28 28 - - - - - - - - - - 104 104 - - 0x22 (0x42) EEARH 0x21 (0x41) EEARL EEPROM Address Register Low Byte 28 0x20 (0x40) EEDR EEPROM Data Register 29 0x1F (0x3F) EECR 0x1E (0x3E) GPIOR0 - - - - 0x1D (0x3D) EIMSK PCIE1 PCIE0 - - 0x1C (0x3C) EIFR PCIF1 PCIF0 - - EERIE EEMWE EEWE EERE 29 - - - INT0 62 - - - INTF0 63 General Purpose I/O Register 0 28 375 8018P-AVR-08/10 ATmega169P Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0x1B (0x3B) Reserved - - - - - - - - Page 0x1A (0x3A) Reserved - - - - - - - - 0x19 (0x39) Reserved - - - - - - - - 0x18 (0x38) Reserved - - - - - - - - 0x17 (0x37) TIFR2 - - - - - - OCF2A TOV2 156 0x16 (0x36) TIFR1 - - ICF1 - - OCF1B OCF1A TOV1 134 0x15 (0x35) TIFR0 - - - - - - OCF0A TOV0 105 0x14 (0x34) PORTG - - PORTG5 PORTG4 PORTG3 PORTG2 PORTG1 PORTG0 90 0x13 (0x33) DDRG - - DDG5 DDG4 DDG3 DDG2 DDG1 DDG0 90 0x12 (0x32) PING - - PING5 PING4 PING3 PING2 PING1 PING0 90 0x11 (0x31) PORTF PORTF7 PORTF6 PORTF5 PORTF4 PORTF3 PORTF2 PORTF1 PORTF0 90 0x10 (0x30) DDRF DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDF0 90 0x0F (0x2F) PINF PINF7 PINF6 PINF5 PINF4 PINF3 PINF2 PINF1 PINF0 90 0x0E (0x2E) PORTE PORTE7 PORTE6 PORTE5 PORTE4 PORTE3 PORTE2 PORTE1 PORTE0 89 0x0D (0x2D) DDRE DDE7 DDE6 DDE5 DDE4 DDE3 DDE2 DDE1 DDE0 89 0x0C (0x2C) PINE PINE7 PINE6 PINE5 PINE4 PINE3 PINE2 PINE1 PINE0 90 0x0B (0x2B) PORTD PORTD7 PORTD6 PORTD5 PORTD4 PORTD3 PORTD2 PORTD1 PORTD0 89 0x0A (0x2A) DDRD DDD7 DDD6 DDD5 DDD4 DDD3 DDD2 DDD1 DDD0 89 0x09 (0x29) PIND PIND7 PIND6 PIND5 PIND4 PIND3 PIND2 PIND1 PIND0 89 0x08 (0x28) PORTC PORTC7 PORTC6 PORTC5 PORTC4 PORTC3 PORTC2 PORTC1 PORTC0 89 0x07 (0x27) DDRC DDC7 DDC6 DDC5 DDC4 DDC3 DDC2 DDC1 DDC0 89 0x06 (0x26) PINC PINC7 PINC6 PINC5 PINC4 PINC3 PINC2 PINC1 PINC0 89 0x05 (0x25) PORTB PORTB7 PORTB6 PORTB5 PORTB4 PORTB3 PORTB2 PORTB1 PORTB0 88 0x04 (0x24) DDRB DDB7 DDB6 DDB5 DDB4 DDB3 DDB2 DDB1 DDB0 88 0x03 (0x23) PINB PINB7 PINB6 PINB5 PINB4 PINB3 PINB2 PINB1 PINB0 88 0x02 (0x22) PORTA PORTA7 PORTA6 PORTA5 PORTA4 PORTA3 PORTA2 PORTA1 PORTA0 88 0x01 (0x21) DDRA DDA7 DDA6 DDA5 DDA4 DDA3 DDA2 DDA1 DDA0 88 0x00 (0x20) PINA PINA7 PINA6 PINA5 PINA4 PINA3 PINA2 PINA1 PINA0 88 Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written. 2. I/O Registers within the address range 0x00 - 0x1F are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions. 3. Some of the Status Flags are cleared by writing a logical one to them. Note that, unlike most other AVRs, the CBI and SBI instructions will only operate on the specified bit, and can therefore be used on registers containing such Status Flags. The CBI and SBI instructions work with registers 0x00 to 0x1F only. 4. When using the I/O specific commands IN and OUT, the I/O addresses 0x00 - 0x3F must be used. When addressing I/O Registers as data space using LD and ST instructions, 0x20 must be added to these addresses. The ATmega169P is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from 0x60 - 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used. 376 8018P-AVR-08/10 ATmega169P 31. Instruction Set Summary Mnemonics Operands Description Operation Flags #Clocks ARITHMETIC AND LOGIC INSTRUCTIONS ADD Rd, Rr Add two Registers Rd Rd + Rr Z,C,N,V,H ADC Rd, Rr Add with Carry two Registers Rd Rd + Rr + C Z,C,N,V,H 1 ADIW Rdl,K Add Immediate to Word Rdh:Rdl Rdh:Rdl + K Z,C,N,V,S 2 SUB Rd, Rr Subtract two Registers Rd Rd - Rr Z,C,N,V,H 1 SUBI Rd, K Subtract Constant from Register Rd Rd - K Z,C,N,V,H 1 SBC Rd, Rr Subtract with Carry two Registers Rd Rd - Rr - C Z,C,N,V,H 1 SBCI Rd, K Subtract with Carry Constant from Reg. Rd Rd - K - C Z,C,N,V,H 1 SBIW Rdl,K Subtract Immediate from Word Rdh:Rdl Rdh:Rdl - K Z,C,N,V,S 2 AND Rd, Rr Logical AND Registers Rd Rd * Rr Z,N,V 1 ANDI Rd, K Logical AND Register and Constant Rd Rd * K Z,N,V 1 OR Rd, Rr Logical OR Registers Rd Rd v Rr Z,N,V 1 ORI Rd, K Logical OR Register and Constant Rd Rd v K Z,N,V 1 EOR Rd, Rr Exclusive OR Registers Rd Rd Rr Z,N,V 1 1 COM Rd One's Complement Rd 0xFF - Rd Z,C,N,V 1 NEG Rd Two's Complement Rd 0x00 - Rd Z,C,N,V,H 1 SBR Rd,K Set Bit(s) in Register Rd Rd v K Z,N,V 1 CBR Rd,K Clear Bit(s) in Register Rd Rd * (0xFF - K) Z,N,V 1 INC Rd Increment Rd Rd + 1 Z,N,V 1 DEC Rd Decrement Rd Rd - 1 Z,N,V 1 TST Rd Test for Zero or Minus Rd Rd * Rd Z,N,V 1 CLR Rd Clear Register Rd Rd Rd Z,N,V 1 SER Rd Set Register Rd 0xFF None 1 MUL Rd, Rr Multiply Unsigned R1:R0 Rd x Rr Z,C 2 MULS Rd, Rr Multiply Signed R1:R0 Rd x Rr Z,C 2 MULSU Rd, Rr Multiply Signed with Unsigned R1:R0 Rd x Rr Z,C 2 FMUL Rd, Rr Fractional Multiply Unsigned R1:R0 (Rd x Rr) << 1 R1:R0 (Rd x Rr) << 1 R1:R0 (Rd x Rr) << 1 Z,C 2 Z,C 2 Z,C 2 2 FMULS Rd, Rr Fractional Multiply Signed FMULSU Rd, Rr Fractional Multiply Signed with Unsigned BRANCH INSTRUCTIONS RJMP k IJMP Relative Jump PC PC + k + 1 None Indirect Jump to (Z) PC Z None 2 JMP k Direct Jump PC k None 3 RCALL k Relative Subroutine Call PC PC + k + 1 None 3 Indirect Call to (Z) PC Z None 3 Direct Subroutine Call PC k None 4 RET Subroutine Return PC STACK None 4 RETI Interrupt Return PC STACK I 4 ICALL CALL k CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC PC + 2 or 3 None CP Rd,Rr Compare Rd - Rr Z, N,V,C,H 1 CPC Rd,Rr Compare with Carry Rd - Rr - C Z, N,V,C,H 1 CPI Rd,K Compare Register with Immediate Rd - K Z, N,V,C,H SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC PC + 2 or 3 None 1/2/3 1/2/3 1 SBRS Rr, b Skip if Bit in Register is Set if (Rr(b)=1) PC PC + 2 or 3 None 1/2/3 SBIC P, b Skip if Bit in I/O Register Cleared if (P(b)=0) PC PC + 2 or 3 None 1/2/3 SBIS P, b Skip if Bit in I/O Register is Set if (P(b)=1) PC PC + 2 or 3 None 1/2/3 BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PCPC+k + 1 None 1/2 BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PCPC+k + 1 None 1/2 BREQ k Branch if Equal if (Z = 1) then PC PC + k + 1 None 1/2 BRNE k Branch if Not Equal if (Z = 0) then PC PC + k + 1 None 1/2 BRCS k Branch if Carry Set if (C = 1) then PC PC + k + 1 None 1/2 BRCC k Branch if Carry Cleared if (C = 0) then PC PC + k + 1 None 1/2 BRSH k Branch if Same or Higher if (C = 0) then PC PC + k + 1 None 1/2 BRLO k Branch if Lower if (C = 1) then PC PC + k + 1 None 1/2 BRMI k Branch if Minus if (N = 1) then PC PC + k + 1 None 1/2 BRPL k Branch if Plus if (N = 0) then PC PC + k + 1 None 1/2 BRGE k Branch if Greater or Equal, Signed if (N V= 0) then PC PC + k + 1 None 1/2 BRLT k Branch if Less Than Zero, Signed if (N V= 1) then PC PC + k + 1 None 1/2 BRHS k Branch if Half Carry Flag Set if (H = 1) then PC PC + k + 1 None 1/2 BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC PC + k + 1 None 1/2 BRTS k Branch if T Flag Set if (T = 1) then PC PC + k + 1 None 1/2 BRTC k Branch if T Flag Cleared if (T = 0) then PC PC + k + 1 None 1/2 BRVS k Branch if Overflow Flag is Set if (V = 1) then PC PC + k + 1 None 1/2 377 8018P-AVR-08/10 ATmega169P Mnemonics Operands Description Operation Flags #Clocks BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC PC + k + 1 None 1/2 BRIE k Branch if Interrupt Enabled if ( I = 1) then PC PC + k + 1 None 1/2 BRID k Branch if Interrupt Disabled if ( I = 0) then PC PC + k + 1 None 1/2 BIT AND BIT-TEST INSTRUCTIONS SBI P,b Set Bit in I/O Register I/O(P,b) 1 None 2 CBI P,b Clear Bit in I/O Register I/O(P,b) 0 None 2 LSL Rd Logical Shift Left Rd(n+1) Rd(n), Rd(0) 0 Z,C,N,V 1 LSR Rd Logical Shift Right Rd(n) Rd(n+1), Rd(7) 0 Z,C,N,V 1 ROL Rd Rotate Left Through Carry Rd(0)C,Rd(n+1) Rd(n),CRd(7) Z,C,N,V 1 ROR Rd Rotate Right Through Carry Rd(7)C,Rd(n) Rd(n+1),CRd(0) Z,C,N,V 1 ASR Rd Arithmetic Shift Right Rd(n) Rd(n+1), n=0..6 Z,C,N,V 1 SWAP Rd Swap Nibbles Rd(3..0)Rd(7..4),Rd(7..4)Rd(3..0) None 1 BSET s Flag Set SREG(s) 1 SREG(s) 1 BCLR s Flag Clear SREG(s) 0 SREG(s) 1 BST Rr, b Bit Store from Register to T T Rr(b) T 1 BLD Rd, b Bit load from T to Register Rd(b) T None 1 SEC Set Carry C1 C 1 CLC Clear Carry C0 C 1 SEN Set Negative Flag N1 N 1 CLN Clear Negative Flag N0 N 1 SEZ Set Zero Flag Z1 Z 1 CLZ Clear Zero Flag Z0 Z 1 SEI Global Interrupt Enable I1 I 1 CLI Global Interrupt Disable I0 I 1 SES Set Signed Test Flag S1 S 1 CLS Clear Signed Test Flag S0 S 1 SEV Set Twos Complement Overflow. V1 V 1 CLV Clear Twos Complement Overflow V0 V 1 SET Set T in SREG T1 T 1 CLT Clear T in SREG T0 T 1 SEH CLH Set Half Carry Flag in SREG Clear Half Carry Flag in SREG H1 H0 H H 1 1 Rd Rr Rd+1:Rd Rr+1:Rr None 1 None 1 1 DATA TRANSFER INSTRUCTIONS MOV Rd, Rr Move Between Registers MOVW Rd, Rr Copy Register Word LDI Rd, K Load Immediate Rd K None LD Rd, X Load Indirect Rd (X) None 2 LD Rd, X+ Load Indirect and Post-Inc. Rd (X), X X + 1 None 2 2 LD Rd, - X Load Indirect and Pre-Dec. X X - 1, Rd (X) None LD Rd, Y Load Indirect Rd (Y) None 2 LD Rd, Y+ Load Indirect and Post-Inc. Rd (Y), Y Y + 1 None 2 LD Rd, - Y Load Indirect and Pre-Dec. Y Y - 1, Rd (Y) None 2 LDD Rd,Y+q Load Indirect with Displacement Rd (Y + q) None 2 LD Rd, Z Load Indirect Rd (Z) None 2 LD Rd, Z+ Load Indirect and Post-Inc. Rd (Z), Z Z+1 None 2 LD Rd, -Z Load Indirect and Pre-Dec. Z Z - 1, Rd (Z) None 2 LDD Rd, Z+q Load Indirect with Displacement Rd (Z + q) None 2 LDS Rd, k Load Direct from SRAM Rd (k) None 2 ST X, Rr Store Indirect (X) Rr None 2 ST X+, Rr Store Indirect and Post-Inc. (X) Rr, X X + 1 None 2 ST - X, Rr Store Indirect and Pre-Dec. X X - 1, (X) Rr None 2 ST Y, Rr Store Indirect (Y) Rr None 2 ST Y+, Rr Store Indirect and Post-Inc. (Y) Rr, Y Y + 1 None 2 ST - Y, Rr Store Indirect and Pre-Dec. Y Y - 1, (Y) Rr None 2 STD Y+q,Rr Store Indirect with Displacement (Y + q) Rr None 2 ST Z, Rr Store Indirect (Z) Rr None 2 ST Z+, Rr Store Indirect and Post-Inc. (Z) Rr, Z Z + 1 None 2 ST -Z, Rr Store Indirect and Pre-Dec. Z Z - 1, (Z) Rr None 2 STD Z+q,Rr Store Indirect with Displacement (Z + q) Rr None 2 STS k, Rr Store Direct to SRAM (k) Rr None 2 Load Program Memory R0 (Z) None 3 LPM LPM Rd, Z Load Program Memory Rd (Z) None 3 LPM Rd, Z+ Load Program Memory and Post-Inc Rd (Z), Z Z+1 None 3 Store Program Memory (Z) R1:R0 None - IN Rd, P In Port Rd P None 1 OUT P, Rr Out Port P Rr None 1 SPM 378 8018P-AVR-08/10 ATmega169P Mnemonics Operands Description Operation Flags #Clocks PUSH Rr Push Register on Stack STACK Rr None 2 POP Rd Pop Register from Stack Rd STACK None 2 MCU CONTROL INSTRUCTIONS NOP No Operation None 1 SLEEP Sleep (see specific descr. for Sleep function) None 1 WDR BREAK Watchdog Reset Break (see specific descr. for WDR/timer) For On-chip Debug Only None None 1 N/A 379 8018P-AVR-08/10 ATmega169P 32. Ordering Information Speed (MHz)(3) Power Supply 8 16 Notes: Ordering Code Package(1)(2) Operation Range 1.8V - 5.5V ATmega169PV-8AU ATmega169PV-8MU ATmega169PV-8MCH 64A 64M1 64MC Industrial (-40C to 85C) 2.7V - 5.5V ATmega169P-16AU ATmega169P-16MU ATmega169P-16MCH 64A 64M1 64MC Industrial (-40C to 85C) 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities. 2. Pb-free packaging, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green. 3. For Speed vs. VCC, see Figure 28-1 on page 331 and Figure 28-2 on page 332. Package Type 64A 64-Lead, Thin (1.0 mm) Plastic Gull Wing Quad Flat Package (TQFP) 64M1 64-pad, 9 x 9 x 1.0 mm body, lead pitch 0.50 mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF) 64MC 64-lead (2-row Staggered), 7 x 7 x 1.0 mm body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No-Lead Package (QFN) 380 8018P-AVR-08/10 ATmega169P 33. Packaging Information 33.1 64A PIN 1 B PIN 1 IDENTIFIER E1 e E D1 D C 0~7 A1 A2 A L COMMON DIMENSIONS (Unit of Measure = mm) MIN NOM MAX A - - 1.20 A1 0.05 - 0.15 A2 0.95 1.00 1.05 D 15.75 16.00 16.25 D1 13.90 14.00 14.10 E 15.75 16.00 16.25 E1 13.90 14.00 14.10 B 0.30 - 0.45 C 0.09 - 0.20 L 0.45 - 0.75 SYMBOL Notes: 1.This package conforms to JEDEC reference MS-026, Variation AEB. 2. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm per side. Dimensions D1 and E1 are maximum plastic body size dimensions including mold mismatch. 3. Lead coplanarity is 0.10 mm maximum. e NOTE Note 2 Note 2 0.80 TYP 10/5/2001 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 64A, 64-lead, 14 x 14 mm Body Size, 1.0 mm Body Thickness, 0.8 mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP) DRAWING NO. REV. 64A B 381 8018P-AVR-08/10 ATmega169P 33.2 64M1 D Marked Pin# 1 ID E C SEATING PLANE A1 TOP VIEW A K 0.08 C L Pin #1 Corner D2 1 2 3 Option A SIDE VIEW Pin #1 Triangle COMMON DIMENSIONS (Unit of Measure = mm) E2 Option B K Option C b e Pin #1 Chamfer (C 0.30) Pin #1 Notch (0.20 R) BOTTOM VIEW Note: 1. JEDEC Standard MO-220, (SAW Singulation) Fig. 1, VMMD. 2. Dimension and tolerance conform to ASMEY14.5M-1994. SYMBOL MIN A 0.80 0.90 1.00 A1 - 0.02 0.05 b 0.18 0.25 0.30 D 8.90 9.00 9.10 D2 5.20 5.40 5.60 E 8.90 9.00 9.10 E2 5.20 5.40 5.60 e NOM MAX NOTE 0.50 BSC L 0.35 0.40 0.45 K 1.25 1.40 1.55 5/25/06 R 2325 Orchard Parkway San Jose, CA 95131 TITLE 64M1, 64-pad, 9 x 9 x 1.0 mm Body, Lead Pitch 0.50 mm, 5.40 mm Exposed Pad, Micro Lead Frame Package (MLF) DRAWING NO. 64M1 REV. G 382 8018P-AVR-08/10 ATmega169P 33.3 64MC C Pin 1 ID D SIDE VIEW y A1 E A TOP VIEW eT eT/2 L eR A26 A34 B23 B30 COMMON DIMENSIONS (Unit of Measure = mm) A1 A25 B1 B22 R0.20 0.40 b D2 SYMBOL MIN NOM MAX A 0.80 0.90 1.00 A1 0.00 0.02 0.05 b 0.18 0.23 0.28 C eT B7 B16 A8 A18 A9 A17 L (0.18) REF B8 B15 E2 K BOTTOM VIEW 1. The terminal #1 ID is a Laser-marked Feature. Note: Package Drawing Contact: packagedrawings@atmel.com (0.1) REF NOTE 0.20 REF D 6.90 7.00 7.10 D2 3.95 4.00 4.05 E 6.90 7.00 7.10 E2 3.95 4.00 4.05 eT - 0.65 - eR - 0.65 - K 0.20 - - L 0.35 0.40 0.45 y 0.00 - 0.075 GPC TITLE 64MC, 64QFN (2-Row Staggered), ZXC 7 x 7 x 1.00 mm Body, 4.0 x 4.0 mm Exposed Pad, Quad Flat No Lead Package (REF) 10/3/07 DRAWING NO. REV. 64MC A 383 8018P-AVR-08/10 ATmega169P 34. Errata 34.1 ATmega169P Rev. G No known errata. 34.2 ATmega169P Rev. A to F Not sampled. 384 8018P-AVR-08/10 ATmega169P 35. Datasheet Revision History Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision. 35.1 Rev. 8018P 08/10 1. 2. 3. 35.2 Rev. 8018O 10/09 1. 2. 35.3 35.5 35.6 Changed datasheet status to "Mature" Added Capacitance for Low-frequency Crystal Oscillator, Table 8-5 on page 33. Rev. 8018N 08/09 1. 35.4 Status changed to active EEPROM minimum wait delay, Table 27-15 on page 312, has been changed from 9.0 ms to 3.6 ms Datasheet layout and technical terminology updated Updated "Ordering Information" on page 380, MCU replaced by MCH. Rev. 8018M 07/09 1. Updated the last page with new Atmel's addresses. 1. 2. Updated package information in "Features" on page 1. Added "Pinout - DRQFN" on page 3: * The Staggered QFN is named Dual Row QFN (DRQFN). 1. 2. 3. 4. 5. 6. 7. 8. 9. Updated package information in "Features" on page 1. Removed "Disclaimer" from section "Pin Configurations" on page 2 Added "64MC (DRQFN) Pinout ATmega169P" on page 3 Added "Data Retention" on page 9. Updated "Stack Pointer" on page 13. Updated "Low-frequency Crystal Oscillator" on page 34. Updated "USART Register Description" on page 194, register descriptions and tables. Updated "UCSRnB - USART Control and Status Register n B" on page 195. Updated VIL2 in "DC Characteristics" on page 329, by removing 0.2VCC from the table. Rev. L 08/08 Rev. K 06/08 385 8018P-AVR-08/10 ATmega169P 35.7 35.8 35.9 10. 11. 12. Replaced Figure 29-36 on page 357 by a correct one. Updated "Ordering Information" on page 380. Added "64MC" on page 383 package to "Packaging Information" on page 381. 1. 2. 3. Updated "Features" on page 1. Added "Minimizing Power Consumption" on page 237 in the LCD section. Updated "System and Reset Characteristics" on page 333. 1. 2. 3. Updated "Low-frequency Crystal Oscillator" on page 34. Updated Table 8-8 on page 35, Table 8-9 on page 35, Table 8-10 on page 35, Table 28-7 on page 336. Updated note in Table 28-7 on page 336. 1. 2. 3. 4. 5. All characterization data moved to "Electrical Characteristics" on page 329. Updated "Calibrated Internal RC Oscillator" on page 32. Updated "System Control and Reset" on page 47. Added note to Table 27-16 on page 314. Updated "LCD Controller Characteristics" on page 337. 1. Updated "LCD Controller Characteristics" on page 337. 1. 2. Updated "DC Characteristics" on page 329. Updated Table 13-19 on page 84. 1. 2. 3. 4. Updated "Low-frequency Crystal Oscillator" on page 34. Updated "Device Identification Register" on page 260. Updated "Signature Bytes" on page 299. Added Table 27-6 on page 299. Rev. J 08/07 Rev. I 11/06 Rev. H 09/06 35.10 Rev. G 08/06 35.11 Rev. F 08/06 35.12 Rev. E 08/06 386 8018P-AVR-08/10 ATmega169P 35.13 Rev. D 07/06 1. 2. 3. 4. 5 6. 7. 8. 9. Updated "Register Description for I/O-Ports" on page 88. Updated "Fast PWM Mode" on page 97. Updated "Fast PWM Mode" on page 120. Updated Table 14-2 on page 102, Table 14-4 on page 103, Table 15-3 on page 129, Table 15-4 on page 130, Table 17-2 on page 153 and Table 17-4 on page 154. Updated "UCSRnC - USART Control and Status Register n C" on page 196. Updated Features in "USI - Universal Serial Interface" on page 199. Added "Clock speed considerations." on page 206. Updated Features in "LCD Controller" on page 234. Updated "Register Summary" on page 373. 1. 2. 3. 4. Updated typos. Updated "Calibrated Internal RC Oscillator" on page 32. Updated "OSCCAL - Oscillator Calibration Register" on page 38. Added Table 28-2 on page 332. 1. Updated "Calibrated Internal RC Oscillator" on page 32. 1. Initial revision. 35.14 Rev. C 06/06 35.15 Rev. B 04/06 35.16 Rev. A 03/06 387 8018P-AVR-08/10 ATmega169P Table of Contents Features ..................................................................................................... 1 1 Pin Configurations ................................................................................... 2 1.1Pinout - TQFP/QFN/MLF ...........................................................................................2 1.2Pinout - DRQFN ........................................................................................................3 2 Overview ................................................................................................... 4 2.1Block Diagram ...........................................................................................................4 2.2Pin Descriptions ........................................................................................................6 3 Resources ................................................................................................. 9 4 Data Retention .......................................................................................... 9 5 About Code Examples ........................................................................... 10 6 AVR CPU Core ........................................................................................ 11 6.1Introduction ..............................................................................................................11 6.2Architectural Overview ............................................................................................11 6.3ALU - Arithmetic Logic Unit ....................................................................................12 6.4Stack Pointer ...........................................................................................................13 6.5Instruction Execution Timing ...................................................................................14 6.6Reset and Interrupt Handling ..................................................................................15 6.7Status Register ........................................................................................................17 6.8General Purpose Register File ................................................................................18 7 AVR Memories ........................................................................................ 20 7.1In-System Reprogrammable Flash Program Memory .............................................20 7.2SRAM Data Memory ...............................................................................................21 7.3EEPROM Data Memory ..........................................................................................23 7.4I/O Memory ..............................................................................................................27 7.5General Purpose I/O Registers ...............................................................................28 7.6EEPROM Register Description ................................................................................28 8 System Clock and Clock Options ......................................................... 30 8.1Clock Systems and their Distribution .......................................................................30 8.2Clock Sources .........................................................................................................31 8.3Default Clock Source ...............................................................................................32 8.4Calibrated Internal RC Oscillator .............................................................................32 8.5Crystal Oscillator .....................................................................................................33 i 8018O-AVR-10/09 ATmega169P 8.6Low-frequency Crystal Oscillator .............................................................................34 8.7External Clock .........................................................................................................36 8.8Timer/Counter Oscillator .........................................................................................37 8.9Clock Output Buffer .................................................................................................37 8.10System Clock Prescaler ........................................................................................37 8.11Register Description ..............................................................................................38 9 Power Management and Sleep Modes ................................................. 40 9.1Sleep Modes ...........................................................................................................40 9.2Idle Mode .................................................................................................................41 9.3ADC Noise Reduction Mode ...................................................................................41 9.4Power-down Mode ..................................................................................................41 9.5Power-save Mode ...................................................................................................42 9.6Standby Mode .........................................................................................................42 9.7Power Reduction Register .......................................................................................42 9.8Minimizing Power Consumption ..............................................................................43 9.9Register Description ................................................................................................45 10 System Control and Reset .................................................................... 47 10.1Resetting the AVR .................................................................................................47 10.2Reset Sources .......................................................................................................47 10.3Internal Voltage Reference ....................................................................................51 10.4Watchdog Timer ....................................................................................................51 10.5Register Description ..............................................................................................54 11 Interrupts ................................................................................................ 56 11.1Interrupt Vectors in ATmega169P .........................................................................56 11.2Moving Interrupts Between Application and Boot Space ......................................59 12 External Interrupts ................................................................................. 61 12.1Pin Change Interrupt Timing .................................................................................61 12.2Register Description ..............................................................................................62 13 I/O-Ports .................................................................................................. 65 13.1Overview ...............................................................................................................65 13.2Ports as General Digital I/O ...................................................................................66 13.3Alternate Port Functions ........................................................................................71 13.4Register Description for I/O-Ports ..........................................................................88 14 8-bit Timer/Counter0 with PWM ............................................................ 91 ii 8018O-AVR-10/09 ATmega169P 14.1Features ................................................................................................................91 14.2Overview ...............................................................................................................91 14.3Timer/Counter Clock Sources ...............................................................................92 14.4Counter Unit ..........................................................................................................92 14.5Output Compare Unit ............................................................................................93 14.6Compare Match Output Unit ..................................................................................95 14.7Modes of Operation ...............................................................................................96 14.8Timer/Counter Timing Diagrams .........................................................................100 14.98-bit Timer/Counter Register Description ............................................................102 15 16-bit Timer/Counter1 .......................................................................... 106 15.1Features ..............................................................................................................106 15.2Overview .............................................................................................................106 15.3Accessing 16-bit Registers ..................................................................................109 15.4Timer/Counter Clock Sources .............................................................................111 15.5Counter Unit ........................................................................................................112 15.6Input Capture Unit ...............................................................................................113 15.7Output Compare Units .........................................................................................115 15.8Compare Match Output Unit ................................................................................117 15.9Modes of Operation .............................................................................................118 15.10Timer/Counter Timing Diagrams .......................................................................126 15.1116-bit Timer/Counter Register Description ........................................................128 16 Timer/Counter0 and Timer/Counter1 Prescalers .............................. 135 16.1Prescaler Reset ...................................................................................................135 16.2Internal Clock Source ..........................................................................................135 16.3External Clock Source .........................................................................................135 16.4Register Description ............................................................................................137 17 8-bit Timer/Counter2 with PWM and Asynchronous Operation ...... 138 17.1Overview .............................................................................................................138 17.2Timer/Counter Clock Sources .............................................................................139 17.3Counter Unit ........................................................................................................139 17.4Output Compare Unit ..........................................................................................140 17.5Compare Match Output Unit ................................................................................142 17.6Modes of Operation .............................................................................................143 17.7Timer/Counter Timing Diagrams .........................................................................148 17.8Asynchronous operation of the Timer/Counter ....................................................150 iii 8018O-AVR-10/09 ATmega169P 17.9Timer/Counter Prescaler .....................................................................................152 17.108-bit Timer/Counter Register Description ..........................................................153 18 SPI - Serial Peripheral Interface ......................................................... 158 18.1Features ..............................................................................................................158 18.2Overview .............................................................................................................158 18.3SS Pin Functionality ............................................................................................163 18.4Data Modes .........................................................................................................164 18.5Register Description ............................................................................................165 19 USART ................................................................................................... 168 19.1Features ..............................................................................................................168 19.2Overview .............................................................................................................168 19.3Clock Generation .................................................................................................170 19.4Frame Formats ....................................................................................................173 19.5USART Initialization ............................................................................................175 19.6Data Transmission - The USART Transmitter ....................................................177 19.7Data Reception - The USART Receiver .............................................................180 19.8Asynchronous Data Reception ............................................................................185 19.9Multi-processor Communication Mode ................................................................188 19.10Examples of Baud Rate Setting ........................................................................190 19.11USART Register Description .............................................................................194 20 USI - Universal Serial Interface .......................................................... 199 20.1Overview .............................................................................................................199 20.2Functional Descriptions .......................................................................................200 20.3Alternative USI Usage .........................................................................................206 20.4USI Register Descriptions ...................................................................................207 21 AC - Analog Comparator ..................................................................... 212 21.1Analog Comparator Multiplexed Input .................................................................213 21.2Analog Comparator Register Description ............................................................214 22 ADC - Analog to Digital Converter ..................................................... 216 22.1Features ..............................................................................................................216 22.2Overview .............................................................................................................216 22.3Operation .............................................................................................................217 22.4Starting a Conversion ..........................................................................................218 22.5Prescaling and Conversion Timing ......................................................................219 iv 8018O-AVR-10/09 ATmega169P 22.6Changing Channel or Reference Selection .........................................................221 22.7ADC Noise Canceler ...........................................................................................222 22.8ADC Conversion Result ......................................................................................227 22.9ADC Register Description ...................................................................................229 23 LCD Controller ..................................................................................... 234 23.1Features ..............................................................................................................234 23.2Overview .............................................................................................................234 23.3Mode of Operation ...............................................................................................237 23.4LCD Usage ..........................................................................................................242 23.5LCD Register Description ....................................................................................246 24 JTAG Interface and On-chip Debug System ..................................... 252 24.1Overview .............................................................................................................252 24.2TAP - Test Access Port ......................................................................................253 24.3TAP Controller .....................................................................................................255 24.4Using the Boundary-scan Chain ..........................................................................256 24.5Using the On-chip Debug System .......................................................................256 24.6On-chip Debug Specific JTAG Instructions .........................................................257 24.7On-chip Debug Related Register in I/O Memory .................................................258 24.8Using the JTAG Programming Capabilities .........................................................258 24.9Bibliography .........................................................................................................258 25 IEEE 1149.1 (JTAG) Boundary-scan ................................................... 259 25.1Features ..............................................................................................................259 25.2System Overview ................................................................................................259 25.3Data Registers .....................................................................................................260 25.4Boundary-scan Specific JTAG Instructions .........................................................261 25.5Boundary-scan Chain ..........................................................................................262 25.6Boundary-scan Order ..........................................................................................272 25.7Boundary-scan Description Language Files ........................................................278 25.8Boundary-scan Related Register in I/O Memory .................................................279 26 Boot Loader Support - Read-While-Write Self-Programming ......... 280 26.1Features ..............................................................................................................280 26.2Overview .............................................................................................................280 26.3Application and Boot Loader Flash Sections .......................................................280 26.4Read-While-Write and No Read-While-Write Flash Sections ..............................281 26.5Boot Loader Lock Bits .........................................................................................284 v 8018O-AVR-10/09 ATmega169P 26.6Entering the Boot Loader Program ......................................................................285 26.7Addressing the Flash During Self-Programming .................................................286 26.8Self-Programming the Flash ................................................................................287 26.9Register Description ............................................................................................294 27 Memory Programming ......................................................................... 296 27.1Program And Data Memory Lock Bits .................................................................296 27.2Fuse Bits .............................................................................................................297 27.3Signature Bytes ...................................................................................................299 27.4Calibration Byte ...................................................................................................299 27.5Page Size ............................................................................................................299 27.6Parallel Programming Parameters, Pin Mapping, and Commands .....................299 27.7Parallel Programming ..........................................................................................302 27.8Serial Downloading .............................................................................................310 27.9Programming via the JTAG Interface ..................................................................316 28 Electrical Characteristics .................................................................... 329 28.1Absolute Maximum Ratings* ...............................................................................329 28.2DC Characteristics ..............................................................................................329 28.3Speed Grades .....................................................................................................331 28.4Clock Characteristics ...........................................................................................332 28.5System and Reset Characteristics ......................................................................333 28.6SPI Timing Characteristics ..................................................................................334 28.7ADC Characteristics - Preliminary Data ..............................................................336 28.8LCD Controller Characteristics ............................................................................337 29 Typical Characteristics ........................................................................ 338 29.1Active Supply Current ..........................................................................................338 29.2Idle Supply Current ..............................................................................................341 29.3Supply Current of I/O modules ............................................................................343 29.4Power-down Supply Current ...............................................................................344 29.5Power-save Supply Current ................................................................................345 29.6Standby Supply Current ......................................................................................346 29.7Pin Pull-up ...........................................................................................................350 29.8Pin Driver Strength ..............................................................................................353 29.9Pin Thresholds and Hysteresis ............................................................................359 29.10BOD Thresholds and Analog Comparator Offset ..............................................362 29.11Internal Oscillator Speed ...................................................................................365 vi 8018O-AVR-10/09 ATmega169P 29.12Current Consumption of Peripheral Units ..........................................................368 29.13Current Consumption in Reset and Reset Pulsewidth ......................................371 30 Register Summary ............................................................................... 373 31 Instruction Set Summary .................................................................... 377 32 Ordering Information ........................................................................... 380 33 Packaging Information ........................................................................ 381 33.164A ......................................................................................................................381 33.264M1 ...................................................................................................................382 33.364MC ...................................................................................................................383 34 Errata ..................................................................................................... 384 34.1ATmega169P Rev. G ..........................................................................................384 34.2ATmega169P Rev. A to F ...................................................................................384 35 Datasheet Revision History ................................................................ 385 35.1Rev. 8018P 08/10 ................................................................................................385 35.2Rev. 8018O 10/09 ...............................................................................................385 35.3Rev. 8018N 08/09 ...............................................................................................385 35.4Rev. 8018M 07/09 ...............................................................................................385 35.5Rev. L 08/08 ........................................................................................................385 35.6Rev. K 06/08 ........................................................................................................385 35.7Rev. J 08/07 ........................................................................................................386 35.8Rev. I 11/06 .........................................................................................................386 35.9Rev. H 09/06 .......................................................................................................386 35.10Rev. G 08/06 .....................................................................................................386 35.11Rev. F 08/06 ......................................................................................................386 35.12Rev. E 08/06 ......................................................................................................386 35.13Rev. D 07/06 .....................................................................................................387 35.14Rev. C 06/06 .....................................................................................................387 35.15Rev. B 04/06 ......................................................................................................387 35.16Rev. A 03/06 ......................................................................................................387 Table of Contents....................................................................................... i vii 8018O-AVR-10/09 Headquarters International Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600 Atmel Asia Unit 1-5 & 16, 19/F BEA Tower, Millennium City 5 418 Kwun Tong Road Kwun Tong, Kowloon Hong Kong Tel: (852) 2245-6100 Fax: (852) 2722-1369 Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-enYvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11 Atmel Japan 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581 Technical Support avr@atmel.com Sales Contact www.atmel.com/contacts Product Contact Web Site www.atmel.com Literature Requests www.atmel.com/literature Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life. (c) 2010 Atmel Corporation. All rights reserved. Atmel (R), Atmel logo and combinations thereof, AVR(R), AVR (R) logo, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows (R) and others are registered trademarks or trademarks of Microsoft (R) Corporation in the US and/or other countries. Other terms and product names may be trademarks of others. 8018O-AVR-10/09