TYPE NUMBER	M F R	A P P	C M P	GBP MIN	SLEW RATE MIN	Vs+ MAX	V _S - MAX	T _{op} MAX	A _{VOL} MIN	V _{IO} MAX	I _B	I _{IO} MAX	P _{TOT} MAX	I _{OUT} MIN	V _{OUT} MIN	V _{ICM} MAX	V _{IDF} MAX	dV _{iO} /dT MA X	P _Q MAX	I _O MAX	CM RR MIN	PS RR MIN	R _{IN} MIN
LM312D	NAU	SBA	INT			+187	-18V	70C	88dB	7.5MV	7NA	1NA	500MWF	1MA	13V	140	147	15uV/C		. 8MA	80dB	80dB	10M
LM312F	NAU	SBA	INT			+187	-187	70C	88dB	7.5MV	7NA	1NA	500MWF	1MA	13V	140	147	15uV/C		. 8MA	80dB	80dB	10M
M312H	NAU	SBA	INT	.		+187	-187	70C	88dB	7.5MV	7NA	1NA	500MWF	1MA	137	147	147	15uV/C		. 8MA	80dB	80dB	10M
	NAU	LBC		. 1		+201	-201	70C	92dB	3MV	50pA	15pA	500MWF	1MA	137	150	147			. 6MA	80dB	80dB	2G
1		LBC		. (,	+201	-20V	70C	92dB	3MV	50pA		500MWF	IMA	137	15٧	147			. 6MA	80dB	80dB	2G
M316AH	NAIS	LBC	TNT			+207	-20V	70C	92 dB	3MV	50pA	15n4	500MWF	1MA	137	150	147			. 6MA	80dB	80dB	2G
1	NAU		INT		•	+200	-207	70C	86dB	t .	150pA	50pA	500MWF	1MA	137	150	147		:	. 8MA	80dB	80dB	300M
		LBC		.	•	+207	-207	70C	86dB		150pA	50pA	500MWF	1MA	137	15V	149			. 8MA	80dB	80dB	300M
		LBC		. [•	+201	-200	70C	86dB		150pA	50pA	500MWF	1MA	130	150	147	·		. 8MA	80dB	80dB	
		XSR			50V/uS	1	-200	70C	88dB	i .			500MWF	6MA	120	150	17		Ì .	8MA	70dB	65dB	
M318F	ADU	XSR	TNT		50V/uS	+201	-200	70C	88dB	10MV	500NA	200NA	500MWF	6ма	120	157	1٧			8MA	70 dB	65dB	500K
	1	XSR	.]		50V/uS	Į.	-201	70C	88dB		500NA		500MWF	6MA	120	150	19		1	8MA	70dB	65dB	
		XSR			50V/uS		-200	70C	88dB		500NA		500MWF	6MA	120	15V	10			8MA	70dB	65dB	
i		DCP				+187	-187	70C	78dB	VM8		0.2uA	500MWF	. 1		157	51			2MA	١.		١.
		DCP				+187		70C	78 dB	8MV	1		500MWF			15V	57			12MA			
		000					1.00	700	70.0	01.11/		h	E O O I MIT			151	EV.			124			
I		DCP DCP	INI			+18V +18V	-18V -18V	70C	78dB 78dB	VM8			500MWF	Y	٠,	15V	5V 5V		:	12MA 12MA			
		DCP		'		+187	-187	70C	78dB	8MV			500MWF			157	57		•	12MA			1
	NAU					+187		70C	78dB	8MV			500MWF			150	5V		1	12MA			
		DCP	, ,			i .	-187	70C	78dB	8MV	1	,	500MWF		Ì .	150	50	i i] .	12MA			1:
			•									T				ļ					ĺ	i	
		DCP				+187	-187	70C	78dB	8MV		0.2uA				150	5٧			12MA			
		DCP				+187	-187	70C	78dB	8MV		0.2uA				150	57			2MA			1 :
		PIA		-		+201		70C		0.4MV		0.5NA	500MWF	١.		150	1	0.2uV/C			126dB		
		PIA				+201		70C	Į.	0.4MV		0.5NA	500MWF		١.	150	1	0.2uV/C		A.	126dB	120dB	
M321AH	NAU	PIA	EXT	-	-	+201	-200	70C	22dB	0.4MV	15NA	0.5NA	500MWF		j ·	150	154	0.2uV/C		3MA	126dB	120dB	2M
M321D	NAU	PIA	EXT			+200	-200	70C	22dB	1.5MV	18NA	2NA	500MWF			150	150	1uV/C		ЗМА			
M321F	NAU	PIA	EXT			+201	-207	70C	22dB	1.5MV	18NA	2NA	500MWF			150	157	luV/C				114dB	
M321H	NAU	PIA	EXT			+201	-207	70C	22dB	1.5MV	18NA	2NA	500MWF			150	150	luV/C			114dB	114dB	
M324A	SJU	QGK	INT.			+167	-167	70C	88dB	7MV	250NA		570MWF			167	167	35uV/C		2MA	65dB	65dB	
4324AD	ADU	QGK	INT			+167	-167	70C	88dB	3MA	100NA	30NA	900MWF	١.	·	167	167	30uV/C		2MA	65dB	65dB	
M324AJ	NAU	QGK	INT			+167	-167	70C	88dB	ЗМУ	100NA	30NA	900MWF			167	167	30uV/C	١.	2MA	65dB	65dB	
M324AN		QGK				+167		70C	88dB		100NA	30NA		١.		167	167	30uV/C		2MA	65dB	65dB	١.
M324D		QGK		[+167		70C	88dB		250NA	50NA	900MWF	١.		164	169	35uV/C		2MA	65dB	65dB	
M324D		QGK	,			+167		70C	88dB		250NA	50NA			j .	167	167	35uV/C	.	2MA	65dB	65dB	1 .
M324000	ING	QGK	INT	-		+167	-16٧	70C	88dB	7MV	250NA	SONA	900MWF			167	167	35uV/C	١.	2MA	65dB	65dB	
_M324F	C III	QGK	TNT			+167	-16V	70C	88dB	 7M/V	250NA	50NA	900MWF			169	167	35uV/C		2MA	65dB	65dB	
LM324J		QGK	í			+16V		700	88dB		250NA		900MWF			160	160	35uV/C		2MA	65dB	65dB	
_M324N	NAU					+167		70C	88dB		250NA	1	900MWF			167	167	35uV/C	[2MA	65dB	65dB	
_M324N(14)	SJU		INT			+164	1/1/1	70C	88dB		250NA		570MWF	i :		167	167	35uV/C		2MA	65dB	65dB	
LM324NPD	i	QGK					-164	70C	88dB	1	250NA		900MWF			160	167	35uV/C					
								700	20.10	51.11	250114	CONIA	0001895	CIA		100	100	1		24			
LM339A		QCP					-187		88dB		250NA		900MWF			189	187			2MA			1.
M339AA			EXT				-187				250NA		900MWF		· ·	187	187			2MA			1 .
M339AF		QCP			-		-187	700	94dB		250NA		900MWF	6MA		18V	18V			2MA 2MA	1		1.
LM339AJ LM339AN(14)			EXT				-18V -18V	70C	ł		250NA 250NA		900MWF	6MA	•	187	187	'		2MA		'	'
(PI)MAECCM.	MUG	QCF	EAT			1101	101	1,00	3400	ZMT	ZJUNA	JUNA	300mm	OMIA	\	10,	101			Lima		1	1
_M339F	MUG	QCP	EXT			+187	-187	70C	88dB	5MV	250NA		900MWF	6MA		180	187		١.	2MA			
_M339J	NAU	QCP	EXT				-187	70C	88dB		250NA		900MWF	6MA		187	187) .	2MA	1 -		
LM339L	TDG		EXT				-187	700			250NA		900MWF	6MA		187	187			2MA			1 .
M339N(14)	MUG		EXT		ł .		-18V				250NA		900MWF	6MA	} -	187	187			2MA	} •		
1339AD	NAU	QCP	EXT			+184	-18V	70C	94dB	2MV	250NA	JUNA	900MWF	6MA		180	187			2MA			
M339ADDD	ING	QCP	EXT			+180	-187	700	94dB	2MV	250NA	50NA	900MWF	6ма	١.	187	187		١.	2MA			
_M339AN			EXT				-180	1			250NA		900MWF	6MA		187	187			2MA			{ .
LM333AN			EXT				-180	700		2MV	250NA	50NA	900MWF	6MA		187	187	1 .	.	2MA			
	NAU	QCP	EXT			+187	-180	700	88dB	5MV	250NA		1	6MA		187	187			2MA			
M339ANPD		OCP	EXT	.		+187	-180	700	88dB	5MV	250NA	50NA	900MWF	6MA		187	187			2MA			
M339ANPD M339D	ING		1			1	1	1	1	1	į.	Į.	Į.				1	1	t	1	1		1
_M339ANPD _M339D LM339DDD			FXT			+189	-18V	700	88dR	5MV	250NA	50N∆	800MWF		١.	187	187	1.	J .	2MA) .) .
LM339ANPD	NAL	QCP	EXT			+18V	-18V	70C 70C		5MV 5MV	250NA 250NA		800MWF	:	:	18V	18V	:	<i>:</i>	2MA 2MA	:		:
LM339ANPD LM339D LM339DDD	NAL ING	QCP QCP			1V/uS		-187		88dB		250NA	50NA		4MA	20V	1	1			1	70dB	74dB	
LM339ANPD LM339DDD LM339DDD LM339N LM339NPD	NAU ING NAU	QCP QCP HV0	EXT	. 3MHZ		+187	-18V -34V	70C 70C	88dB 97dB	SMV 8MV 8MV	250NA 40NA	50NA 10NA 10NA	800MWF	4MA	20V 20V	18V 34V 34V	18V 68V 68V			2MA	70dB 70dB 70dB 70dB	74dB	3

For detailed explanations of										T								EUROPE	USA	Ti	
column heading notations, see	CASE	LD			LD 4	rp	LD 6	LD	LD		ro	LD	LD	LD	LD	LD	LD	SUBSTI	SUBSTI	s	TYPE
App. A.	(APP F)	1	2	3	4	5	0	7	8	9	10	11	12	13	14	15	16	TUTE	TUTE	S	NUMBER
Also for ready references the	DIL-14/1M	I N	T	w	E-	E+	w +	V-	N	F	R	۷+	T*	N	N				LM212D	h	LM312D
more important abbreviations	FLP-10/3G		w	Ë-	E+	₩*	v-	R	۷+	ľ _T	T*	, ,	'	"	"				LM212F	11.	LM312F
used in the column headings are	T05-8/1M	T	E-	E+	٧-	F	R	V+	T *	Ι΄.	Ì .						Ė		LM212H		LM312H
listed below:	DIL-14/1M	N	Ī	W	Ē-	E+	₩*	V-	N	F	R.	٧+	T*	N.	N	·		<u>;</u>	LM216AD		LM316AD
LEFT HAND PAGE	FLP-10/3G		W	E-	E+	₩*	V-	R	٧+	T	T*	١.	١.	١.					LM216AF	b	LM316AF
APP = application						İ															
(codes at APP.E.)	T05-8/1M	T	E-	E+	٧-	F	R	٧+	T*										LM216AH	0	LM316AH
CMRR = common mode	DIL-14/1M		T	₩	E-	E+	W*	٧-	N	F	R	٧+	T*	N	N			MLM316D	LM216D		LM316D
rejection ratio CMP = compensation	FLP-10/3G	N	W	E-	E+	W *	٧-	R	۷+	T	T*				.				LM216F		LM316F
	T05-8/1M	T	E-	E+	٧-	F	R	٧+	T*	L:_									LM216H		LM316H
(frequency) dV _{iii} /dT = input offset voltage	DIL-14/1M	N.	N	T*F	E-	E+	٧-	N	N	F*T	R	V+	ø	N	N				SN72318JA	Ю	LM318D
temperature drift	ELD 10/20		TAF	_	٦.	\ \	F*T	l_	,, .		١			1					1 1101 00		L 11210E
GBP = gain bandwidth	FLP-10/3C T05-8/1M	T*F	T*F E-	E-	E+ V-	V- F*T	R	R V+	V+ Ø	ø	N	٠.	· ·	١.		•		TDE0118CM	LM218F SN72318L		LM318F LM318H
product	DIL-8/1P	T*F		E+	٧-	F*T	R	V-	ø	١.		٠.		١.	.	•	•	IDEUITOCM	SN72318JP		LM318N
_H = input bias current	DIL-14/1P	1	N	G1		E-1		R2	G2	E+2	E-2	۷+	R1	N.	N.	•	•	TDB0119DP	LM319N		LM319A
I_{i0} = input bias offset	DIL-14/1M		N	G1		E-1		R2	G2		E-2		R1	N	N			TDB0119DP	LM219D		LM319D
current						-														ľ	
= quiescent supply	DIL-14/10	N	N	G1	E+1	E-1	V-	R2	G2	E+2	E-2	٧+	R1	N	N			TDB0119DP	LM319J	0	LM319F
current — quiescent supply	FLP-10/3G	R1	G1	E+1	E-1	٧-	R2	G2	E+2	E-2	¥+			١.					LM219F	0	LM319F
MFR = manufacturer	T05-10/1M	R1	G1		E-1		R2	G2	E+2						.	.	.	TDB0119CM	LM219H		LM319H
(codes at App.C.)	DIL-14/1C		N	G1	4	E-1		R2	G2	E+2		٧+	R1	N	N	.		TDB0119DP	LM219J		LM319J
P _n = quiescent power	T05-10/1M	R1	G1	E+1	E-1	٧-	R2	G2	E+2	E-2	V +				.	.		TDB0119CM	LM319H	0	LM319K
consumer — quiescent power		l.,	l		١		ļ.,						١	l							
PSRR = power supply rejection	DIL-14/1P		N	G1		E-1		R2	G2	E+2			R1	N	N		٠	TDB0119DP	LM219N		LM319N
ratio	DIL-14/1P		N	G1	E+1 E-	E-1	V- W*	R2 V-	G2	E+2	E-2	V+ V+	R1	N N	N			TDB0119DP	LM319N		LM319N(14)
V _{ICM} = common mode input	DIL-14/1M FLP-10/3G		R W	₩ E-	E+	E+ W*	٧-	T .	N T*	۷+	R*		R*	n	N	•		•	LM221AD LM221AF	1	LM321AD LM321AF
voltage rating	T05-8/1M	R	E-	E+	۷-	η. Τ	T*	V+	R*	**	K.				١.		- 1	•	LM221AF		LM321AH
V _{DF} = differential input	103-07 IM	"	-	Ε,	•	' '	'	, ,	"			٠,				.		•	LMZZIAN	۲	CMJZIAN
voltage rating	DIL-14/1M	N	R	w	E-	E+	w*	V-	N	т	T*	٧+	R*	N	N	.			LM321AD	0	LM321D
V _{ii} = input offset voltage	FLP-10/3G		W	Ë-	E+	W*	٧-	Ť	T*	v+	R*	"	Α.	Ϊ.	"			•	LM321AF		LM321F
V _c = dc supply voltage	T05-8/1M	R	Ë-	Ē+	٧-	T	T*	V+	R*	Ι΄. Ι	·".			<u>`</u>					LM221H	4 1	LM321H
as aspriy toxings	DIL-14/1P	R1	E-1	E+1	٧+	E+2	E-2	R2	R3	E-3	E+3	G	E+4	E-4	R4	.	.]	MLM324J	LM324N		LM324A
RIGHT HAND PAGE	DIL-14/1M	R1	E-1	E+1	٧+	E+2	E-2	R2	R3	E-3	E+3	G	E+4	E-4	R4	.			LM224AD	0	LM324AD
Lead out coding summary																				Н	
Idetails at APP.G.I for different	DIL-14/10			E+1			E-2		R3	E-3				E-4					LM224AD		LM324AJ
cases (APP.F.)	DIL-14/1P		E-1				E-2		R3	E-3				E-4		.			LM224AD		LM324AN
A = gain adjust	DIL-14/1C			E+1			E-2		R3	E-3				E-4		.	.		MLM324L		LM324D
B = bias adjust	MDL-14/4P		€-1				E-2		R3	E-3				E-4		.			TDA0324D		LM324D
C = case	DIL-14/1C	KI	F-1	E+1	۷+	E+2	E-2	R∠	R3	E-3	E+3	G	E+4	E-4	K4	.	٠,	MLM324L	LM324D	١٩	LM324DDD
E— = inverting input	DIL-14/1C	D3	E-1	E+1	V.	E + 3	E-2	na	R3	E-3	E+3	G	E+4	E-4	D.A		- 1	LM324N	LMSSALL	ارا	LNOOF
E+ = non-inverting input	DIL-14/10 DIL-14/10		E-1		V+	E+2			R3	E-3	E+3		E+4		R4	.	•	LM324N	LM324J MLM324L		LM324F LM324J
F.F* = input frequency	DIL-14/1P		E-1	E+1	۷+		E-2		R3	E-3	E+3			E-4	R4	.	- 1		MLM324L		LM3240
compensation	DIL-14/1P	1	E-1	E+1	۷+				R3	E-3	E+3	G	E+4	E-4	R4		.	MLM324L	LM324N		LM324N(14)
G = ground	DIL-14/1P			E+1	V+		E-2		R3	E-3				E-4				MLM324L	LM324N	1 1	LM324NPD
J = high level input						ĺ										- 1					
K = output, open collector	DIL-14/1P	R2	R1	٧+							E-4	E+4	G	R4	R3		. [MLM339L	LM339D	0	LM339A
L = output, open emitter	DIL-14/1P			٧+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4		R4	R3		.	MLM339AL	LM339AD		LM339AA
M = metal case	DIL-14/10	R2	R1	٧+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4	G	R4	R3		.	MLM339AL	LM339AJ		LM339AF
N = not connected	DIL-14/10		R1								E-4			R4	R3	- 1			MLM339AL		LM339AJ
0 = special terminal	DIL-14/1P	R2	R1	۷+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4	G	R4	R3	. [MLM339AL	LM339AD	이	LM339AN(14)
R,R* = outputs	DTI 14/10	١,,	D1		- 1	F. 1	- 1	F. 3	د.ء	- 1	E-4	F. 4	_	L.	n2					إرا	1.112205
S = strobe	DIL-14/1C DIL-14/1C		R1 R1	V+ V+							E-4			R4 R4	R3 R3	•		MLM339L	LM339J MLM339L		LM339F LM339J
T.T* = offset balance	DIL-14/10		R1	V+							E-4			R4	R3	.		MLM339L	LM339J		LM339L
V· = +ve dc supply	DIL-14/1P		R1	V+							E-4			R4	R3		,	MLM339L	LM339D		LM339N(14)
V = -ve dc supply	DIL-14/1M		R1								E-4			R4	R3			MLM333L	MLM339AL		LM339AD
W = guard ring							- 1		- 1	_]	_]	- '	-			.			MEMOS SAL	ľ	LMOOJAD
X = blank position, no lead	DIL-14/10	R2	R1	٧+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4	G	R4	R3	.		MLM339AL	LM339AD	o	LM339ADDD
++=+ve supplementary dc	DIL-14/1P	R2	R1	٧+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4	G	R4	R3		.		MLM339AL		LM339AN
supply	DIL-14/1P		R1	٧+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4	G	R4	R3	.	.	MLM339AL	LM339AN		LM339ANPD
= -ve supplementary dc	DIL-14/1M		R1								E-4			R4	R3	. [.	MLM339L		LM3390
supply	DIL-14/1C	R2	R1	٧+	E-1	E+1	E-2	E+2	E+3	E-3	E-4	E+4	G	R4	R3	.		MLM339L	LM339D	0	LM339DDD
ø. ∮* = output frequency	DV		_	,	إرا			ا				ارا									
compensation	DIL-14/1P		R1		E-1						E-4			R4	R3	-	\cdot		MLM339L		LM339N
	DIL-14/1P		R1					E+2				E+4		R4	R3	-]	.	MLM339L	LM339N		LM339NPD
	DIL-14/1M TO5-8/1M		N E-	T E+		- 1	- 1	N V+	N	T*	R	٧+	N	N	N	.	.	.	MC14360		LM343D
	DIL-14/1M			FT				- 1	N N	T:	R	٧+	ŗ.	N .	N.			•	MC1436G		LM343H LM344D
	D.L. 17/1M		. 1		-	- 1	. 1			. 1		. 1	'	. 1	1	.	.		·	4	L-1747U

Appendix A

Explanatory notes to tabulations

The general layout plan of the information in the tables of this compendium should be immediately evident from the data tabulation explanatory chart set out overleaf.

Supporting Appendices with additional information are:

```
App. B Glossary of Opamp Terms
App. C Tabulation Codes for Manufacturers
App. D IC Manufacturers' House Numbers
App. E Tabulation Codes for Applications
App. F Case Outline and Leadout Diagrams
App. G Codes for Leadout Connections
```

Unit symbols used in the tables are:

```
= amperes
С
      = ^{\circ} centigrade
      = decibels
      = gigaohms (megohms \times 10<sup>3</sup>)
GHZ = gigahertz (megahertz \times 10^3)
      = kilohms
KHZ = kilohertz
      = megohms
MA = milliamperes, mA
MAX = maximum
MHZ = megahertz
MIN = minimum
MV = millivolts
MWC = milliwatts, case at 25C
MWF = milliwatts, free air at 25C
MWH = milliwatts, heat sink, 25C
     = nanoamps (microamps \times 10<sup>-3</sup>)
NV
      = nanovolts (microvolts \times 10<sup>-3</sup>)
РΑ
      = picoamps (microamps \times 10<sup>-12</sup>)
R
      = ohms
      = teraohms (megohms \times 106)
WC
      = watts, case at 25C
      = watts, free air at 25C
WF
WH
      = watts, heatsink, 25C
      = microamps
μΑ
μS
      = microseconds
μV
      = microvolts
\mu W
      = microwatts
\mu WF = microwatts, free air at 25C
```

Where a unit symbol appears in the middle of a value, it indicates the position of the decimal point, e.g. 3K3 = 3.3K.

TYPE NO NUMERO-ALPHARETIC LISTING MFR. MALPHABETIC LISTING MFR. ALPHABETIC LISTING MFR. MAY PER PAPELCATION CODED AS APP. C COMPENSATION WITH INT. INTERNAL LIST. INT. INT. INT. INT. INT. INT. INT. IN	TYPE NUMBER	M F R	A P P	С М Р	GBP	SLEW RATE MIN	V _S '	V _S .	T _{op} MAX	A _{VOL} MIN	V _{IO} MAX	I _B MAX	I _{IO} MAX	P _{TOT} MAX	I _{OUT} MIN	V _{OUT} MIN	V _{ICM} MAX	V _{IDF}	dV _{IO} ′dT MAX	P _O MAX	I _Q MAX	CM RR MIN	PS RR MIN	R _{IN} MIN
NUMERO- ALPHABETIC LISTING MFR = MANUFACTURER CODED AS APP. C APP = APPLICATION COMEON ASTAIN NITH INTENIAL EXT = EXTERNAL GBP MIN = UNITY GAIN BANDWIDTH PRODUCT, MIN: IN KHZ, MHZ, or GHZ SLEW RATE MIN, IN VOLTS PER MICROSECOND, V/µS V ₂ MAX = MAX PERMISSIBLE +VE DC SUPPLY VOLTAGE IN VOLTS, V V ₃ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₄ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₅ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₆ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₇ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₈ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₉ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₂ MAX = MAX PERMISSIBLE -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE OPERATIONAL -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE OPERATIONAL -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE OPERATIONAL -DC SUPPLY VOLTAGE IN VOLTS, V V ₁ MAX = MAX PERMISSIBLE OPERATIONAL -DC SUPPLY VOLTAGE IN VOLTS, V V ₂ MAX = MAX PERMISSIBLE OPERATIONAL -DC SUPPLY VOLTAGE IN VOLTS, V V ₂ MAX = MAX VIPPLIT OPERATIONS IN VOLTS, V V ₃ MAX = MAX VIPPLIT OPERATIONS IN VOLTS, V		NAU	FET	INT	. 3MHZ	1V/uS	+22٧	-227	85C	97d8	6м۷	25pA	5pA	500MWF	10 M A	100	15V	30V	15uV/C	85 MW	ЗМА	70 d B	70 d B	0.17
AT 25°C IN MV or μV. AT 25	NUMERO-ALPHABETIC LISTING MFR = MANUFACTU CODED AS AI CODED AS AI CMP = FREQU COMPENSATI INT = INTERN. EXT = EXTERN GBP MIN = UN BANDWIDTH IN KHZ. MHZ. SLEW RATE. IN TERN. VS. MAX = MAY. VE DC SUPI VS. MAX = MAY. AVOL MIN = MIN AVOL MIN = MIN AVOL MIN = GAI VID MAX = MA AT 25°C IN M IB MAX = MAX.	PP. C ATIO ATIO ATIO ATIO ATIO ATIO AL	OLT/ CRMINATULE RMINATULE RMINA	T, MI T,	BLE IN VOL LE IN VOL ILE OPE I °C.	TS, V RATION										C=	W, m = CAS	I _{OUT} N CURF X = M/ W, μV E 25°	dV, OF	O SIGMURREN POMAX NO SICPOWER OF AT METERS OF AT MAX MAX MAX MAX MON MON MON ARANTA AR	CMMAX. AX = MAX F F F F F F F F F F F F F F F F F F F	MINI I WESTER AND IN THE STATE OF THE STATE	N- ANCE TION I. RE- N DB I MW TURE IN V. LE TAGE TPUT TTUT	

Appendix A

LEFT HAND PAGE For detailed explanations of column heading notations, see App. A. Also for ready references the more important abbreviations used in the column headings are listed below: APP = application (codes at APP.E.) $\mathsf{CMRR} = \mathsf{common} \; \mathsf{mode}$ rejection ratio CMP = compensation (frequency) dV_{10}/dT = input offset voltage temperature drift $\mathsf{GBP} \ = \mathsf{gain} \ \mathsf{bandwidth}$ product = input bias current = input bias offset 110 current = quiescent supply l_o current MFR = manufacturer (codes at App.C.) = quiescent power consumer PSRR = power supply rejection ratio = common mode input voltage rating V_{IDF} = differential input voltage rating V_{10} = input offset voltage = dc supply voltage RIGHT HAND PAGE Lead out coding summary (details at APP.G.) for different cases (APP.F.) Α = gain adjust В = bias adjust C = case E-= inverting input Ē+ = non-inverting input F,F* = input frequency compensation G = ground = high level input = output, open collector = output, open emitter М = metal case N = not connected 0 = special terminal R.R* = outputs = strobe S T,T*

= offset balance

= +ve dc supply = -ve dc supply

= guard ring = blank position, no lead + + = +ve supplementary dc supply -- = -ve supplementary dc supply ø.♠* = output frequency compensation

٧+

W

CASE (APP F)	LD 1	LD 2	LD 3	LD 4	LD 5	LD 6	LD 7	LD 8	LD 9	LD 10	LD 11	LD 12	LD 13	LD 14	LD 15	LD 16	EUROPE SUBSTI- TUTE	USA SUBSTI- TUTE		TYPE NUMBER
T05-8/1M	T	E-	E+	٧-	۲۰	R	۷+	N									,	LH0022H	O	LH00220
												į								
		\	\	\										/	/	/			/	
CASE = PAC DIFFERENT CODED AC FIRST NU	CORD	SING	то	APP.	F														REP	E No. EATED ON MARGIN
NUMBER C EG DIL-14:)F LEA = 14-1	AD P LEAD	OSIT	ION	s													ISS=IS OF DAT		NUMBEI NTRY
	DUAL-IN-LINE PACKAGE D1, LD2, ETC=LEAD NUMBERS WITH CONNECTIONS																	STITUTE = TIVE AVAII		
ACCORDIN	ACCORDING TO PAGE FOOTNOTE OR APP. G.														STITUTE = PF					

Appendix C

Tabulation Codes for Manufacturers

A D.L.	Advanced Micro Devices Inc.,		DA145HT, UK
ADU	901 Thompson Pl., Sunnyvale, CA 94086, USA	ITU	ITT Semiconductors
ANG	Analog Devices Ltd,		74 Commerce Way, Woburn, MA, 01801, USA
ANG	Central Ave., East Molesey, KT8 9BR, Surrey,	MNG	Mitsubishi Shoji Kaisha Ltd,
	UK		Bow Bells House, Bread St., London, EC4, UK
ANU	Analog Devices Inc.,	MNJ	Mitsubishi Electric Corp.,
7110	P.O. Box 280, Norwood, Mass., 02062		2–12 Marunouchi, Chiyoda-ku, Tokyo, Japan
BLG	Bell & Howell Ltd,	MTG	Motorola Ltd (Semiconductor Products Div.),
0_0	Lennox Road, Basingstoke, Hants, UK		York House, Empire Way, Wembley, Middlesex,
BLU	Bell & Howell (Control Products Divison),		HA9 OPR, UK
	706 Bostwick Ave, Bridgeport, Conn. 06605,	MTU	Motorola Semiconductor Products Inc.,
	USA		5005 E. McDowell Road, Phoenix, AZ, 85008,
BUG	Burr-Brown International Ltd,		USA
	17 Exchange Rd, Watford, WQD1 7EB, Herts.,	MUG	Mullard Ltd,
	UK		Mullard House, Torrington Place, London,
BUU	Burr-Brown Research Corp.,		WC1E7HD, UK
	P.O. Box 11400, Tucson, AZ. 85734, USA	NAG	National Semiconductor (UK) Ltd,
CMG	Computing Techniques Ltd,		Harpur Centre, Bedford, MK40 3LF, UK
	Brookers Rd, Billingshurst, Sussex, RH14 9RZ,	NAU	National Semiconductor Corp., 2900 Semiconductor Drive, Santa Clara, CA,
	UK		
DAG	Datel UK Ltd,		95051, USA
	Stephenson Close, Portway Ind. Estate,	NIJ	Nippon Electric Co. Ltd, 1753 Shimonumabe, Nakahara-ku, Kawasaki,
	Andover, Hants, UK		
DAU	Datel Systems Inc.,	OAU	Japan Opamp Labs Inc.,
E A C	1020 Turnpike St., Canton, MA 02021, USA	UAU	1033 N. Sycamore Ave., Los Angeles, CA
FAG	Fairchild Camera & Instrument (UK) Ltd, 230 High St., Potters Bar, Herts., UK		90038, USA
FAU	Fairchild Semiconductor	OBS	Obsolete – no longer commercially available.
FAU	464 Ellis St., Mountain View, CA 94042, USA	OTU	Optical Electronics Inc.,
FEG	Ferranti Ltd, (Electronic Department),	0.0	P.O. Box 11140, Tucson, AZ, 85734, USA
1 L G	Gem Mill, Chadderton, Oldham, Lancs.,	PLG	Plessey Semiconductors.
	OL9 8NP, UK		Cheney Manor, Swindon, Wilts., SN2 2QW, UK
FUJ	Fujitsu Ltd,	PRG	Precision Monolithics (Bourns Trimpot Ltd)
	1015 Kamikodanaka, Kawasaki, Japan		17/27 High St., Hounslow, Middlesex, UK
HAG	Harris Semiconductor (Memec) Ltd,	PRU	Precision Monolithics (Bourns) Inc.,
	The Firs, Whitchurch, Nr. Aylesbury, Bucks.,		1500 Space Park Drive, Santa Clara, CA,
	HP22 4JU, UK		95050, USA
HAU	Harris Semiconductor	RAG	Raytheon Semiconductor
	P.O. Box 883, Melbourne, FL, 32901, USA		The Pinnacles, Harlow, Essex, CM19 5BB, UK
HIJ	Hitachi Ltd (Semiconductor and IC Div.),	RAU	Raytheon Semiconductor,
	1450 Josuihonimachi, Kodaira City, Tokyo,		350 Ellis Street, Mountain View, CA, 94042,
	Japan	000	USA
ING	Intersil Inc.,	RCG	RCA (Great Britain) Ltd, Lincoln Way, Windmill Road, Sunbury-on-
	8 Tessa Rd, Richfield Trading Estate, Reading,		Thames, Middlesex, UK
LNU	Berks., UK	RCU	RCA Solid State Division
INU	Intersil Inc., 10900 N. Tantau Ave, Cupertino, CA, 95014,	nco	Route 202, Somerville, NJ, 08876, USA
	USA	SAJ	Sanken Electric Co. Ltd,
ITG	ITT Semiconductors	0,10	1-22-8 Nishi-Ikebukuro, Toshima-Ku, Tokyo,
,10	Maidstone Rd Foots Cray Sideup Kent		Japan

SGG	SGS-ATES (UK) Ltd, Planar House, Walton Street, Aylesbury, Bucks., UK	SPU	Sprague Electric Company (Semiconductor Div.), 115 Northeast Cutoff, Worcester, MA, 01606,
SGI	SGS-ATES Componenti Spa, Via Olivetti, 2 Agrate Brianza, 20041, Milan,	TDG	USA Teledyne Semiconductor,
SHG	Italy Shindengen Hyokuto Boeki Haisha Ltd, St. Alphage House, Fore St., London, EC2Y 5DA,	TDU	Heathrow House, Bath Road, Cranford, Hounslow, Middlesex, TW5 9QP, UK Teledyne (Amelco) Semiconductor,
SHJ	UK Shindengen Electric Mfg Co., Ltd,	100	1300 Terra Bella Ave, Mountain View, CA, 94032, USA
	New Ohtemachi Bldng, 2–1, 2-chome, Ohtemachi, Chiyoda-ku, Tokyo, Japan	TEB	Teledyne-Philbrick, Heathrow House, Bath Road, Cranford, Houns-
SIG	Siemens Ltd, Great West Road, Brentford, Middlesex, TW8 9DG, UK	TEU	low, Middlesex, TW5 9QP, UK Teledyne-Philbrick, Allied Drive at Route 128, Dedham, MA, 02026,
SIW	Siemens Aktiengesellschaft, Richard-Strauss-Strasse 76, D-8000 Munchen	TGG	USA Texas Instruments Ltd,
SJG	2, Postfach 202109, W. Germany Signetics International Corporation Yeoman House, 63 Croydon Rd, London, SE20,	TGU	Manton Lane, Bedford, UK Texas Instruments Inc. (Components Group), P.O. Box 5012, Dallas, Texas, 75222, USA
SJU	UK Signetics Corp.,	THF	Thomson-CSF (Sescosem), 50 Rue Jean Pierre Timbaud, BP 120, 92403,
01/11	811 East Arques Ave, Sunnydale, CA. 94086, USA	THG	Courbevoie, France Thomson-CSF (UK) Ltd, Ringway House, Bell Rd, Daneshill, Basing-
SKU	Silicon General Inc., 7382 Bolsa Avenue, Westminster, CA, 92683, USA	TKJ	stoke, Hants., RG24 0QG, UK. Tokyo Sanyo Electric Co. Ltd (Semiconductor
SLG	Siliconix Ltd, 30A High St., Thatcham, Newbury, Berks.,		Div.), Oizumachi, Oragun, Gumma, Japan
SLU	RG13 4JG, UK Siliconix Incorporated, 2201 Laurelwood Road, Santa Clara, CA.	TOG	Toshiba (UK) Ltd, Toshiba House, Great South West Rd, Feltham, Middlesex, UK
soJ	95054, USA Sony Semiconductor Corp.,	TOJ	Toshiba (Tokyo Shibaura) Electric Co., 2–1, 5-chome, Ginza Chuo-ku, Tokyo, Japan
	14—1, Asa hi-sho 4, Atsuigi-shi, Kanagawa-ken, 243, Japan	TRU	Transitron Electronic Corp., 168 Albion St., Wakefield, MA, 01881, USA
SPG	Sprague Electric (UK) Ltd, 159 High St., Yiewsley, W. Drayton, Middlesex, UB7 7RY, UK	ZEU	Zeltex Inc., 940 Detroit Ave, Concord, CA, 94518, USA

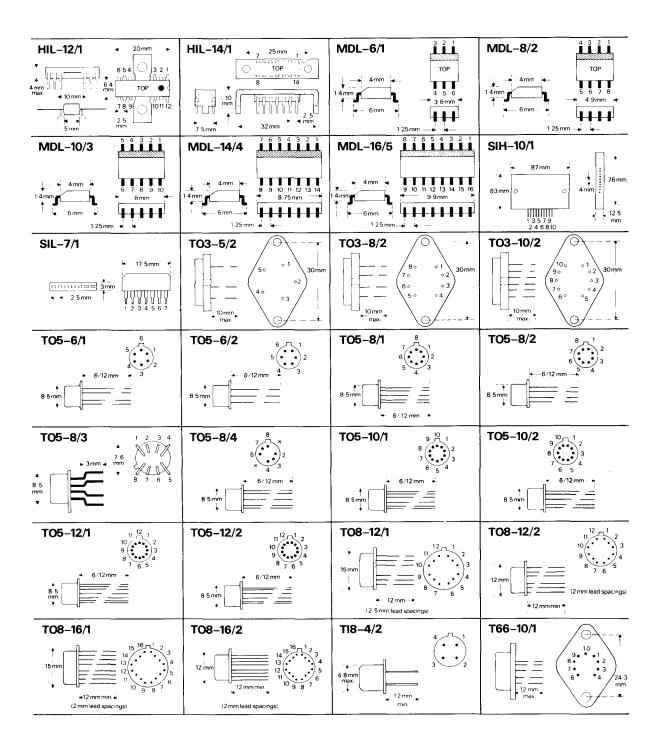
Appendix D IC Manufacturers' House Numbers

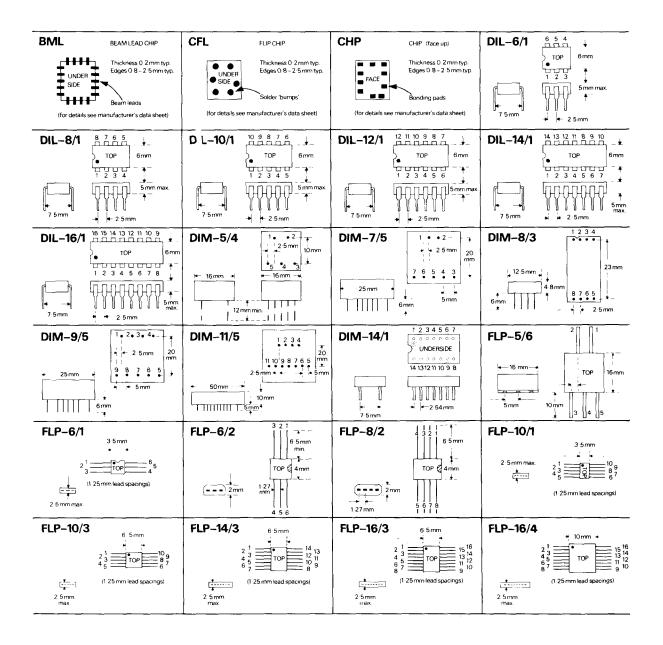
OP

(General Note: Manufacturers often adopt their own 'in-house' serial numbering for their ICs. Listed below are the initial letters of numerical series used by different manufacturers.)

Analog Devices RA ADO Analog Devices RC Advanced Micro Devices; Datel AM AMD Advanced Micro Devices RM **AMLM** Advanced Micro Devices **RSN AMSSS** Advanced Micro Devices RV **AMU** Advanced Micro Devices Bell & Howell SA CA **RCA** SE CIA Teledyne-Philbrick **SFC** CMP Precision Monolithics SG CN Ferranti SH Teledyne-Philbrick DA Teledyne-Philbrick EΡ SL **ESL** Teledyne-Philbrick SN **FSL** Teledyne-Philbrick **FSS** Ferranti sa SSS Harris HA HEPC Motorola SU ICH Intersil ICL Intersil TA Fairchild TAA JM Thomson-CSF JSF TBA Analog Devices; SGS-ATES TBB LA Teledyne-Philbrick TBC LF National Semiconductor TBE LH National Semiconductor TCA National Semiconductor TDA LM TDB Mitsubishi TDC Motorola Semiconductors MC мсс Motorola Semiconductors TDE MCCF Motorola Semiconductors TOA Motorola Semiconductors MCE **MCH** Motorola Semiconductors **TSC** MIC ITT Semiconductors MLF Motorola: Teledyne-Philbrick ULN Motorola Semiconductors MLM ULS MLMC Motorola Semiconductors USL MONO-OP **Precision Monolithics** Signetics: Mullard ZEL General Instruments (obs.) NC ZLD ΖN Signetics; Mullard National Semiconductor μΑ

Precision Monolithics Teledyne-Philbrick Teledyne-Philbrick ΡF PG General Instruments (obs.) Teledyne-Philbrick Radiation (now Harris) Raytheon Raytheon Raytheon Raytheon Raytheon **Signetics** Teledyne-Philbrick Signetics; Mullard Thomson-CSF Silicon General Fairchild RCA Plessey: Teledyne-Philbrick Texas Instruments Teledyne-Philbrick Teledyne-Philbrick Precision Monolithics Signetics; Mullard Teledyne-Philbrick Transitron AEG-Telefunken Proelectron Standard AEG-Telefunken Transitron Transitron Fairchild Sprague Sprague Teledyne-Philbrick Zeltex Zeltex Ferranti Ferranti


Fairchild


Appendix E Tabulation Codes for Applications

BDO	Balanced differential-output amplifier	PAA	Parametric amplifier
CDA	Current-difference amplifier	PIA	Precision instrumentation amplifier
CHP	Chopper-stabilized amplifier	PRA	Programmable opamp
CPR	DC comparator	QCD	Quad current-difference amplifier
DBD	Dual balanced differential-output amplifier	QCP	Quad comparator
DCP	Dual Comparator	QFE	Quad fet-input opamp
DFE	Dual fet-input opamp	QGK	Quadgeneral-purpose, internally-compensated,
DGK	Dual general purpose opamp	2011	opamp
DGU	Dual general-purpose uncompensated opamp	QGU	Quad general-purpose, uncompensated, opamp
DHS	Dual high-slew-rate opamp	gra	Quad low-quiescent-power opamp
DLN	Dual low-noise opamp	QPI	Quad precision instrumentation amplifier
DPI	Dual precision instrumentation amplifier	QPR	Quad programmable opamp
DPR	Dual programmable opamp	QSB	Quad super-beta opamp
DSB	Dual super-beta opamp	SBA	Super-beta opamp
FET	Fet-input opamp	TCP	Triple comparator
GPK	General-purpose, internally-compensated,	TFE	Triple fet-input opamp
J	opamp	TGK	Triple general-purpose, internally compensated,
GPU	General-purpose, uncompensated, opamp		opamp
HCO	High current output opamp	TGU	Triple general-purpose, uncompensated, opamp
HIR	High input resistance opamp	TLN	Triple low-noise opamp
HPO	High power output opamp	TLP	Triple low-quiescent-power opamp
HSR	High slew rate opamp	TOT	Triple operational transconductance amplifier
HVO	High voltage output opamp	TPI	Triple precision instrumentation amplifier
LBC	Low input bias current opamp	TPR	Triple programmable opamp
LCD	Low input offset current drift opamp	TSB	Triple super-beta opamp
LNA	Low noise opamp	VFA	Voltage-follower amplifier
LOC	Low input offset current opamp	WBA	Wide-band opamp
ĽOV	Low input offset voltage opamp	XHG	Extra-high-gain opamp
LQP	Low guiescent power opamp	XLP	Extra-low quiescent power opamp
LVD	Low input offset voltage drift opamp	XSR	Extra-high slew rate opamp
MWB	Medium-wideband opamp	XWB	Extra-wide-band opamp
OTA	Operational transconductance amplifier		

Appendix G Codes for Leadout Connections

```
Connection Codes in Serial Order
                                                            II: Lead Assignments in Alphabetical Order
   = Gain adjust, 1
                                                            Balance, offset, 1 = T
   = Gain adjust, 2
                                                            Balance, offset, 2 = T^*
   = Bias adjust or set
                                                            Bias adjust = B
                                                            Blank position, without lead = X
   = Case, package, screen
   = Input, non-inverting, low-level
                                                            Case = C
   = Input, inverting, low-level
                                                            Compensation, input, 1 = F
   = Input frequency compensation, 1
                                                            Compensation, input, 2 = F^*
   = Input frequency compensation, 2
                                                            Compensation, output, 1 = \varphi
   = Ground, common, earth, zero volts
                                                            Compensation, output, 2 = \phi^*
   = Input, non-inverting, high-level
                                                            DC supply, + ve = V +
   = Input, inverting, high-level
                                                            DC supply, -ve = V -
   = Output, open collector
                                                            Frequency compensation, input, 1 = F
   = Output, open emitter
                                                            Frequency compensation, input, 2 = F*
   = Metal casing
                                                            Frequency compensation, output, 1 = \varphi
   = Not connected, i.e. isolated lead
                                                            Frequency compensation, output, 2 = \phi^*
                                                            Gain adjust, 1 = A
Gain adjust, 2 = A^*
   = Special terminal (consult manufacturer's data)
   = Output, 1
   = Output, 2
                                                            Ground = G
   = Strobe
                                                            Guard ring=W
                                                            Input, inverting, high-level=J
   = Offset balance, trim or null, 1
                                                            Input, non-inverting, high-level = J+
   = Offset balance, trim or null, 2
   = + ve dc supply
                                                            Input, inverting, low-level = E-
   = -ve dc supply
                                                            Input, non-inverting, low-level = E+
   = Guard ring
                                                            Input offset voltage, adjust, 1 = T
   = Blank position, lead omitted
                                                            Input offset voltage, adjust, 2=T*
   = + ve supplementary dc supply
                                                            Lead omitted, blank position = X
   = -ve supplementary dc supply
                                                            Lead in position but not connected = N
   = Output frequency compensation, 1
                                                            Metal case = M
   = Output frequency compensation, 2
                                                            Not connected, but lead in position = N
                                                            Null, offset, 1=T
Null, offset, 2=T*
                                                            Offset voltage adjust, 1=T
Offset voltage adjust, 2=T*
Output, 1=R
Output, 2=R*
                                                            Output, open-collector = K
                                                            Output, open-emitter = L
                                                            Package = C
                                                            Special purpose terminal (data sheet to be consulted) = Q
                                                            Strobe = S
                                                            Supply, dc, +ve=V+
                                                            Supply, dc, -ve = V -
                                                            Supply, dc, supplementary, +ve=++
Supply, dc, supplementary, -ve=--
Trim (offset voltage), 1 = T
                                                            Trim (offset voltage), 2 = T^*
```