See Table 2 for Pin Descriptions.
General Description
The DS1631, DS1631A, and DS1731 digital thermome-
ters provide 9, 10, 11, or 12-bit temperature readings over
a -55°C to +125°C range. The DS1631 and DS1631A
thermometer accuracy is ±0.5°C from 0°C to +70°C with
3.0V VDD 5.5V, and the DS1731 accuracy is ±1°C
from -10°C to +85°C with 3.0V VDD 5.5V. The ther-
mostat on all three devices provides custom hysteresis
with user-defined trip points (TH and TL). The TH and
TL registers and thermometer configuration settings are
stored in NV EEPROM so they can be programmed prior
to installation. In addition, the DS1631A automatically
begins taking temperature measurements at power-up,
which allows it to function as a stand-alone thermostat.
Pin descriptions for the DS1631/DS1631A/DS1731 are pro-
vided in Table 2 and user-accessible registers are summa-
rized in Table 3. A functional diagram is shown in Figure 1.
Applications
Network Routers and Switches
Cellular Base Stations
Portable Products
Any Space-Constrained Thermally Sensitive Product
Benets and Features
Maximize System Accuracy in Broad Range of
Thermal Management Applications
Operating Temperature Range: -55°C to +125°C
(-67°F to +257°F)
DS1631 and DS1631A: ±0.5°C Accuracy over 0°C
to +70°C Range
DS1731: ±1°C Accuracy over a -10°C to +85°C Range
User-Selectable Output Resolution from 9 Bits to
12 Bits
Reduce Cost with No External Components
Simplify Distributed Temperature-Sensing Applications
with Multidrop Capability
Up to Eight Devices Can Operate on a 2-Wire Bus
Flexible and Nonvolatile User-Defined Thermostatic
Modes with Custom Hysteresis
Available in 8-Pin µSOP and SO (DS1631 and
DS1631A Only) and the 8-Pin DIP (DS1631 Only)
Packages
Ordering Information appears at end of data sheet.
19-7488; Rev 1; 1/15
Pin Congurations
2
SDA
SCL
T
OUT
GND
V
DD
A
0
A
1
A
2
DS1631
µSOP
(DS1631U+, DS1631AU+, DS1731U+)
+
1
4
3
7
8
5
6
TOP VIEW
2
SDA
SCL
T
OUT
GND
V
DD
A
0
A
1
A
2
DS1631
SO (150mil and 208mil)
(DS1631Z+, DS1631S+)
+
1
4
3
7
8
5
6
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
Voltage on any Pin Relative to Ground ................ -0.5V to +6.0V
Operating Temperature Range ......................... -55°C to +125°C
Storage Temperature Range ............................ -55°C to +125°C
Solder Dip Temperature (10s) .......See IPC/JEDEC J-STD-020A
Specification
Reflow Oven Temperature ...............................................+220°C
(VDD = 2.7V to 5.5V; TA = -55°C to +125°C.)
PARAMETER SYMBOL CONDITION MIN MAX UNITS
Supply Voltage VDD (Note 1) 2.7 5.5 V
DS1631, DS1631A
Thermometer Error (Note 2) TERR
0°C to +70°C,
3.0V ≤ VDD ≤ 5.5V ±0.5
°C
0°C to +70°C,
2.7V ≤ VDD < 3.0V ±1
-55°C to +125°C ±2
DS1731 Thermometer Error
(Note 2) TERR
-10°C to +85°C,
3.0V ≤ VDD ≤ 5.5V ±1
°C
-10°C to +85°C,
2.7V ≤ VDD < 3.0V ±1.5
-55°C to +125°C ±2
Low-Level Input Voltage VIL -0.5 0.3 x VDD V
High-Level Input Voltage VIH 0.7 x VDD VDD + 0.3 V
SDA Low-Level Output
Voltage
VOL1 3mA sink current 0 0.4 V
VOL2 6mA sink current 0 0.6
Input Current Each I/O Pin 0.4 < VI/O < 0.9VDD -10 +10 µA
Active Supply Current (Note 3) IDD
Temperature conversion
-55°C to +85°C 1
mA
Temperature conversion
+85°C to +125°C 1.25
E2 write 400 µA
Communication only 110
Standby Supply Current ISTBY 0°C to +70°C (Note 4) 800 nA
TOUT Output Logic Voltage VOH 1mA source current (Note 1) 2.4 V
VOL 4mA sink current (Note 1) 0.4 V
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
2
Absolute Maximum Ratings
*These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure
to absolute maximum rating conditions for extended periods of time may affect reliability.
DC Electrical Characteristics
(VDD = 2.7V to 5.5V; TA = -55°C to +125°C.)
Note 1: All voltages are referenced to GND.
Note 2: See Figure 2 for Typical Operating Curves.
Note 3: Specified with TOUT pin open; A0, A1, A2 = 0V or VDD; and fSCL2Hz.
Note 4: Specified with temperature conversions stopped; TOUT pin open; SDA = VDD; SCL = VDD; and A0, A1, A2 = 0V or VDD.
Note 5: See Timing Diagram in Figure 3. All timing is referenced to 0.9 x VDD and 0.1 x VDD.
Note 6: After this period the first clock pulse is generated.
Note 7: For example, if CB = 300pF, then tR[min] = tF[min] = 50ns.
(VDD = 2.7V to 5.5V; TA = -55°C to +125°C.)
PARAMETER SYMBOL CONDITION MIN TYP MAX UNITS
Temperature Conversion Time tTC
9-bit resolution 93.75
ms
10-bit resolution 187.5
11-bit resolution 375
12-bit resolution 750
SCL Frequency fSCL 0 400 kHz
Bus Free Time Between a STOP
and START Condition tBUF (Note 5) 1.3 µs
START and Repeated START
Hold Time from Falling SCL tHD:STA (Note 5, 6) 0.6 µs
Low Period of SCL tLOW (Note 5) 1.3 µs
High Period of SCL tHIGH (Note 5) 0.6 µs
Repeated START Condition
Setup Time to Rising SCL tSU:STA (Note 5) 0.6 µs
Data-Out Hold Time from
Falling SCL tHD:DAT (Note 5) 0 0.9 µs
Data-In Setup Time to
Rising SCL tSU:DAT (Note 5) 100 ns
Rise Time of SDA and SCL tR(Note 5, 7) 20 + 0.1CB1000 ns
Fall Time of SDA and SCL tF(Note 5, 7) 20 + 0.1CB300 ns
STOP Setup Time to Rising
SCL tSU:STO (Note 5) 0.6 µs
Capacitive Load for Each
Bus Line CB400 pF
I/O Capacitance CI/O 10 pF
Input Capacitance CI5 pF
Spike Pulse Width that can be
Suppressed by Input Filter tSP 0 50 ns
PARAMETER SYMBOL CONDITION MIN TYP MAX UNITS
EEPROM Write Cycle Time twr 4 10 ms
EEPROM Writes NEEWR -55°C to +55°C 50k Writes
EEPROM Data Retention tEEDR -55°C to +55°C 10 Years
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
3
AC Electrical Characteristics
EEPROM AC Electrical Characteristics
PIN SYMBOL DESCRIPTION
1 SDA Data Input/Output Pin for 2-Wire Serial Communication Port. Open-Drain.
2 SCL Clock Input Pin for 2-Wire Serial Communication Port.
3 TOUT Thermostat Output Pin. Push-Pull.
4 GND Ground Pin
5 A2Address Input Pin
6 A1Address Input Pin
7 A0Address Input Pin
8 VDD Supply Voltage Pin. +2.7V to +5.5V Power-Supply Pin.
Figure 1. Functional Diagram
Figure 2. Typical Operating Curves
ADDRESS
AND
I/O CONTROL
V
DD
SCL
SDA
A
0
A
1
A
2
GND
CONFIGURATION REGISTER
AND CONTROL LOGIC
TEMPERATURE SENSOR
AND ∆Σ ADC
TEMPERATURE REGISTER
T
H
REGISTER
T
L
REGISTER
DIGITAL
COMPARATOR/LOGIC
T
OUT
DS1631
ERROR (°C)
0.8
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
0 10 20 30 40 50 60 70
REFERENCE TEMPERATURE (°C)
DS1631/DS1631A
+3σ
MEAN
-3σ
ERROR (°C)
0.8
-10
REFERENCE TEMPERATURE (°C)
0.6
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
0 10 20 30 40 50 60 70 80
DS1731
+3σ
MEAN
-3σ
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
4
Table 2. Detailed Pin Description
Table 3. Register Summary
REGISTER NAME
(USER ACCESS)
SIZE
(BYTES)
MEMORY
TYPE
REGISTER CONTENTS
AND POWER-UP STATE
Temperature (Read Only) 2 SRAM Measured temperature in two’s complement format.
Power-up state: -60ºC (1100 0100 0000 0000)
TH (Read/Write) 2 EEPROM Upper alarm trip point in two’s complement format.
Factory state: 15ºC (0000 1111 0000 0000)
TL (Read/Write) 2 EEPROM Lower alarm trip point in two’s complement format.
Factory state: 10ºC (0000 1010 0000 0000)
Conguration (Various bits are Read/
Write and Read Only—See Table 5) 1SRAM,
EEPROM
Conguration and status information. Unsigned data.
6 MSbs = SRAM
2 LSbs (POL and 1SHOT bits) = EEPROM
Power-up state: 100011XX (XX = user dened)
Figure 3. Timing Diagram
ALL TIMING IS REFERENCED TO 0.9 X V
DD
AND 0.1 x V
DD
.
SDA
STOP
SCL
START REPEATED
START
t
BUF
t
LOW
t
R
t
HD:STA
t
F
t
HD:STA
t
SP
t
HD:DAT
t
HIGH
t
SU:DAT
t
SU:STA
t
SU:STO
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
5
Operation—Measuring Temperature
The DS1631, DS1631A, and DS1731 measure tempera-
ture using bandgap-based temperature sensors. A delta-
sigma analog-to-digital converter (ADC) converts the
measured temperature to a 9-, 10-, 11-, or 12-bit (user-
selectable) digital value that is calibrated in °C; for °F
applications a lookup table or conversion routine must be
used. Throughout this data sheet, the term “conversion” is
used to refer to the entire temperature measurement and
ADC sequence.
The DS1631 and DS1731 always power-up in a low-pow-
er idle state, and the Start Convert T command must be
used to initiate conversions. The DS1631A begins conver-
sions automatically at power-up in the mode determined
by the configuration register’s 1SHOT bit.
The DS1631, DS1631A, and DS1731 can be programmed
to perform continuous consecutive conversions (continu-
ous-conversion mode) or to perform single conversions
on command (one-shot mode). The conversion mode is
programmed through the 1SHOT bit in the configuration
register as explained in the Configuration Register sec-
tion of this data sheet. In continuous-conversion mode,
the DS1631A begins performing continuous conversions
immediately at power-up, and the DS1631 and DS1731
begin continuous conversions after a Start Convert T
command is issued. For all three devices, consecu-
tive conversions continue to be performed until a Stop
Convert T command is issued, at which time the device
goes into a low-power idle state. Continuous conversions
can be restarted at any time using the Start Convert T
command.
In one-shot mode the DS1631A performs a single con-
version at power-up, and the DS1631 and DS1731
perform a single temperature conversion when a Start
Convert T command is issued. For all three devices,
when the conversion is complete the device enters a
low-power idle state and remains in that state until a
single temperature conversion is again initiated by a Start
Convert T command.
The resolution of the output digital temperature data is
user-configurable to 9, 10, 11, or 12 bits, corresponding
to temperature increments of 0.5°C, 0.25°C, 0.125°C, and
0.0625°C, respectively. The default resolution at power-
up is 12 bits, and it can be changed through the R0 and
R1 bits in the configuration register. Note that the conver-
sion time doubles for each additional bit of resolution.
After each conversion, the digital temperature is stored
as a 16-bit two’s complement number in the two-byte
temperature register as shown in Figure 4. The sign bit
(S) indicates if the temperature is positive or negative:
for positive numbers S = 0 and for negative numbers
S = 1. The Read Temperature command provides user
access to the temperature register. Bits 3 through 0 of
the temperature register are hardwired to 0. When the
device is configured for 12-bit resolution, the 12 MSbs
(bits 15 through 4) of the temperature register contain
temperature data. For 11 bit resolution, the 11 MSbs (bits
15 through 5) of the temperature register contain data,
and bit 4 is 0. Likewise, for 10-bit resolution, the 10 MSbs
(bits 15 through 6) contain data, and for 9-bit the 9 MSbs
(bits 15 through 7) contain data, and all unused LSbs con-
tain 0s. Table 4 gives examples of 12-bit resolution output
data and the corresponding temperatures.
Table 4. 12-Bit Resolution Temperature/
Data Relationship
TEMPERATURE
(°C)
DIGITAL OUTPUT
(BINARY)
DIGITAL
OUTPUT (HEX)
+125 0111 1101 0000 0000 7D00h
+25.0625 0001 1001 0001 0000 1910h
+10.125 0000 1010 0010 0000 0A20h
+0.5 0000 0000 1000 0000 0080h
0 0000 0000 0000 0000 0000h
-0.5 1111 1111 1000 0000 FF80h
-10.125 1111 0101 1110 0000 F5E0h
-25.0625 1110 0110 1111 0000 E6F0h
-55 1100 1001 0000 0000 C900h
Figure 4. Temperature, TH, And TL Register Format
BIT 15 BIT 14 BIT 13 BIT 12 BIT 11 BIT 10 BIT 9 BIT 8
MS BYTE S 26252423222120
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
LS BYTE 2-1 2-2 2-3 2-4 0000
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
6
Operation—Thermostat Function
The thermostat output (TOUT) is updated after every
temperature conversion, based on a comparison between
the measured digital temperature and user-defined upper
and lower thermostat trip points. TOUT remains at the
updated value until the next conversion completes. When
the measured temperature meets or exceeds the value
stored in the upper trip-point register (TH), TOUT becomes
active and remains active until the measured temperature
falls below the value stored in the lower trip-point register
(TL) (see Figure 5). This allows the user to program any
amount of hysteresis into the output response. The active
state of TOUT is user-programmable through the polarity
bit (POL) in the configuration register.
The user-defined values in the TH and TL registers (see
Figure 4) must be in two’s complement format with the
MSb (bit 15) containing the sign bit (S). The TH and TL
resolution is determined by the R0 and R1 bits in the
configuration register (see Table 6), so the TH and TL
resolution matches the output temperature resolution. For
example, for 10-bit resolution bits 5 through 0 of the TH
and TL registers read out as 0 (even if 1s are written to
these bits), and the converted temperature is compared
to the 10 MSbs of TH and TL.
The TH and TL registers are stored in EEPROM; there-
fore, they are NV and can be programmed prior to device
installation. Writing to and reading from the TH and TL
registers is achieved using the Access TH and Access
TL commands. When making changes to the TH and TL
registers, conversions should first be stopped using the
Stop Convert T command if the device is in continuous
conversion mode. Note that if the thermostat function is
not used, the TH and TL registers can be used as general-
purpose NV memory.
Another thermostat feature is the temperature high and
low flags (THF and TLF) in the configuration register.
These bits provide a record of whether the temperature
has been greater than TH or less than TL at anytime since
the device was powered up. These bits power up as 0s,
and if the temperature ever exceeds the TH register value,
the THF bit is set to 1, or if the temperature ever falls
below the TL value, the TLF bit is set to 1. Once THF and/
or TLF has been set, it remains set until overwritten with a
0 by the user or until the power is cycled.
Ds1631A Stand-Alone
Thermostat Operation
Since the DS1631A automatically begins taking tem-
perature measurements at power-up, it can function as
a standalone thermostat (i.e., it can provide thermostatic
operation without microcontroller communication). For
standalone operation, the NV TH and TL registers and the
POL and 1SHOT bits in the configuration register should
be programmed to the desired values prior to installation.
Since the default conversion resolution at power-up is 12
bits (R1 = 1 and R0 = 1 in the configuration register), the
conversion resolution is always 12 bits during standalone
thermostat operation.
Conguration Register
The configuration register allows the user to program
various DS1631 options such as conversion resolution,
TOUT polarity, and operating mode. It also provides infor-
mation to the user about conversion status, EEPROM
activity, and thermostat activity. The configuration register
is arranged as shown in Figure 6 and detailed descrip-
tions of each bit are provided in Table 5. This register
can be read from and written to using the Access Config
command. When writing to the configuration register, con-
versions should first be stopped using the Stop Convert T
command if the device is in continuous conversion mode.
Note that the POL and 1SHOT bits are stored in EEPROM
so they can be programmed prior to installation is desired.
All other configuration register bits are SRAM and power
up in the state shown in Table 5.
Figure 5. Thermostat Output Operation
Figure 6. Configuration Register
T
L
TEMP
T
OUT
POL = 1 (T
OUT
IS ACTIVE HIGH)
T
H
LOGIC 1
LOGIC 0
MSB BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 LSB
DONE THF TLF NVB R1 R0 POL* 1SHOT*
*NV (EEPROM)
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
7
Table 5. Configuration Register Bit Descriptions
Table 6. Resolution Configuration
*Stored in EEPROM
BIT NAME (USER ACCESS) FUNCTIONAL DESCRIPTION
DONE—Temperature Conversion
Done (Read Only)
Power-up state = 1.
DONE = 0. Temperature conversion is in progress.
DONE = 1. Temperature conversion is complete.
THF—Temperature High Flag
(Read/Write)
Power-up state = 0.
THF = 0. The measured temperature has not exceeded the value stored in the TH
register since power-up.
THF = 1. At some point since power-up the measured temperature has been higher
than the value stored in the TH register. THF remains a 1 until it is overwritten with a 0
by the user, the power is cycled, or a Software POR command is issued.
TLF—Temperature Low Flag
(Read/Write)
Power-up state = 0.
TLF = 0. The measured temperature has not been lower than the value stored in the TL
register since power-up.
TLF = 1. At some point since power-up the measured temperature has been lower than
the value stored in the TL register. TLF remains a 1 until it is overwritten with a 0 by the
user, the power is cycled, or a Software POR command is issued.
NVB—NV Memory Busy
(Read Only)
Power-up state = 0.
NVB = 1. A write to EEPROM memory is in progress.
NVB = 0. NV memory is not busy.
R1—Resolution Bit 1 (Read/Write) Power-up state = 1.
Sets conversion, TH, and TL resolution (see Table 6).
R0—Resolution Bit 0 (Read/Write) Power-up state = 1.
Sets conversion, TH, and TL resolution (see Table 6).
POL*—TOUT Polarity (Read/Write)
Power-up state = last value written to this bit. Factory setting = 0.
POL = 1. TOUT is active high.
POL = 0. TOUT is active low.
1SHOT*—Conversion Mode
(Read/Write)
Power-up state = last value written to this bit. Factory setting = 0.
1SHOT = 1. One-Shot Mode. The Start Convert T command initiates a single
temperature conversion and then the device goes into a low-power standby state.
1SHOT = 0. Continuous Conversion Mode. The Start Convert T command initiates
continuous temperature conversions.
R1 R0 RESOLUTION (BIT) CONVERSION TIME (MAX)
0 0 9 93.75ms
0 1 10 187.5ms
1 0 11 375ms
1 1 12 750ms
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
8
2-Wire Serial Data Bus
The DS1631, DS1631A, and DS1731 communicate over
a bidirectional 2-wire serial data bus that consists of a
serial clock (SCL) signal and serial data (SDA) signal.
The DS1631, DS1631A, and DS1731 interface to the bus
through their SCL input pins and open-drain SDA I/O pins.
The following terminology is used to describe 2-wire com-
munication:
Master Device: Microprocessor/microcontroller that con-
trols the slave devices on the bus. The master device gen-
erates the SCL signal and START and STOP conditions.
Slave:
All devices on the bus other than the master. The
DS1631, DS1631A, and DS1731 always function as
slaves.
Bus Idle or Not Busy:
Both SDA and SCL remain high.
SDA is held high by a pullup resistor when the bus is idle,
and SCL must either be forced high by the master (if the
SCL output is push-pull) or pulled high by a pullup resistor
(if the SCL output is open-drain).
Transmitter:
A device (master or slave) that is sending
data on the bus.
Receiver:
A device (master or slave) that is receiving data
from the bus.
START Condition:
Signal generated by the master to
indicate the beginning of a data transfer on the bus. The
master generates a START condition by pulling SDA from
high to low while SCL is high (see Figure 8). A “repeated”
START is sometimes used at the end of a data transfer
(instead of a STOP) to indicate that the master will per-
form another operation.
STOP Condition: Signal generated by the master to
indicate the end of a data transfer on the bus. The master
generates a STOP condition by transitioning SDA from low
to high while SCL is high (see Figure 8). After the STOP is
issued, the master releases the bus to its idle state.
Acknowledge (ACK):
When a device is acting as a
receiver, it must generate an acknowledge (ACK) on the
SDA line after receiving every byte of data. The receiv-
ing device performs an ACK by pulling the SDA line low
for an entire SCL period (see Figure 8). During the ACK
clock cycle, the transmitting device must release SDA.
A variation on the ACK signal is the “not acknowledge”
(NACK). When the master device is acting as a receiver,
it uses a NACK instead of an ACK after the last data byte
to indicate that it is finished receiving data. The master
indicates a NACK by leaving the SDA line high during the
ACK clock cycle.
Slave Address:
Every slave device on the bus has a
unique 7-bit address that allows the master to access
that device. The 7-bit bus address is 1 0 0 1 A2 A1 A0,
where A2, A1, and A0 are user-selectable through the
corresponding input pins. The three address pins allow
up to eight DS1631s, DS1631As, or DS1731s to be mul-
tidropped on the same bus.
Control Byte: The control byte is transmitted by the mas-
ter and consists of the 7-bit slave address plus a read/
write (R/W) bit (see Figure 7). If the master is going to read
data from the slave device then R/W = 1, and if the master
is going to write data to the slave device then R/W = 0.
Command Byte:
The command byte can be any of the
command protocols described in the Command Set sec-
tion of this data sheet.
Figure 7. Control Byte
Figure 8. START, STOP, and ACK signals
BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
1 0 0 1 A2A1A0R/W
SDA
SCL
START
CONDITIONS
ACK (OR NACK)
FROM RECEIVER
STOP
CONDITION
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
9
General 2-Wire Information
All data is transmitted MSb rst over the 2-wire bus.
One bit of data is transmitted on the 2-wire bus each
SCL period.
A pullup resistor is required on the SDA line and,
when the bus is idle, both SDA and SCL must remain
in a logic-high state.
All bus communication must be initiated with a START
condition and terminated with a STOP condition. Dur-
ing a START or STOP is the only time SDA is allowed
to change states while SCL is high. At all other times,
changes on the SDA line can only occur when SCL is
low: SDA must remain stable when SCL is high.
After every 8-bit (1-byte) transfer, the receiving device
must answer with an ACK (or NACK), which takes
one SCL period. Therefore, nine clocks are required
for every one-byte data transfer.
Initiating 2-Wire Communication
To initiate 2-wire communication, the master generates a
START followed by a control byte containing the DS1631,
DS1631A, or DS1731 slave address. The R/W bit of the
control byte must be a 0 (“write”) since the master next
writes a command byte. The DS1631/DS1631A/DS1731
responds with an ACK after receiving the control byte.
This must be followed by a command byte from the mas-
ter, which indicates what type of operation is to be per-
formed. The DS1631/DS1631A/DS1731 again respond
with an ACK after receiving the command byte.
If the command byte is a Start Convert T or Stop Convert
T command (see Figure 9), the transaction is finished,
and the master must issue a STOP to signal the end of
the communication sequence. If the command byte indi-
cates a write or read operation, additional actions must
occur as explained in the following sections.
2-Wire Writes
The master can write data to the DS1631/DS1631A/
DS1731 by issuing an Access Config, Access TH, or
Access TL command following the control byte (see
Figures 9b and 9d). Since the R/W bit in the control byte
was a 0 (“write”), the DS1631/DS1631A/DS1731 are
already prepared to receive data. Therefore, after receiv-
ing an ACK in response to the command byte, the master
device can immediately begin transmitting data. When
writing to the configuration register, the master must
send one byte of data, and when writing to the TH or TL
registers the master must send two bytes of data. After
receiving each data byte, the DS1631/DS1631A/DS1731
respond with an ACK, and the transaction is finished with
a STOP from the master.
2-Wire Reads
The master can read data from the DS1631/DS1631A/
DS1731 by issuing an Access Config, Access TH, Access
TL, or Read Temperature command following the control
byte (see Figures 9c and 9e). After receiving an ACK in
response to the command, the master must generate
a repeated START followed by a control byte with the
same slave address as the first control byte. However,
this time the R/W bit must be a 1, which tells the DS1631/
DS1631A/DS1731 that a “read” is being performed. After
the DS1631/DS1631A/DS1731 send an ACK in response
to this control byte, it begins transmitting the requested
data on the next clock cycle. One byte of data will be trans-
mitted when reading from the configuration register after
which the master must respond with a NACK followed by a
STOP. For two-byte reads (i.e., from the Temperature, T
H
,
or T
L
register), the master must respond to the first data
byte with an ACK and to the second byte with a NACK fol-
lowed by a STOP. If only the most significant byte of data
is needed, the master can issue a NACK followed by a
STOP after reading the first data byte.
Command Set
The DS1631/DS1631A/DS1731 command set is detailed
below:
Start Convert T [ 51h ]
Initiates temperature conversions. If the part is in one-shot
mode (1SHOT = 1), only one conversion is performed. In
continuous mode (1SHOT = 0), continuous temperature
conversions are performed until a Stop Convert T com-
mand is issued.
Stop Convert T [ 22h ]
Stops temperature conversions when the device is in
continuous conversion mode (1SHOT = 0).
Read Temperature [ AAh ]
Reads last converted temperature value from the 2-byte
temperature register.
Access TH [ A1h ]
Reads or writes the 2-byte TH register.
Access TL [ A2h ]
Reads or writes the 2-byte TL register.
Access Config [ ACh ]
Reads or writes the 1-byte configuration register.
Software POR [ 54h ]
Initiates a software power-on-reset (POR), which stops
temperature conversions and resets all registers and
logic to their power-up states. The software POR allows
the user to simulate cycling the power without actually
powering down the device.
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
10
Figure 9. (a, b, c, d, e). 2-Wire Interface Timing
A
D2
D6 D5 D4 D3 D1 D0A0 W AA1 1 0 1 0 1 1 0 0 A D7A2S 1 10 0 P
A) ISSUE A "START CONVERT T” OR “STOP CONVERT T” COMMAND
SCL
SDA S 1 0 0 1 A2 A1 A0 W A C7 C6 C5 C4 C3 C2 C1 C0 A P
STOP
ACK
(THERM)
COMMAND BYTE
ACK
(THERM)
CONTROL BYTE
START
B) WRITE TO THE CONFIGURATION REGISTER
SCL
SDA
ACK
(THERM)
COMMAND BYTE
ACK
(THERM)
CONTROL BYTE
START DATA BYTE
(FROM MASTER)
STOP
ACK
(THERM)
C) READ FROM THE CONFIGURATION REGISTER
SCL
SDA S 1 0 0 A0 W AA1 1 0 1 0 1 1 0 0 AA2
1S 1 0 0 1 A2 A1 A0 R A D7 D6 D5 D4 D3 D2 D1 D0 N P
ACK
(THERM)
COMMAND BYTE
ACK
(THERM)
CONTROL BYTE
START REPEAT
START
CONTROL BYTE ACK
(THERM)
DATA BYTE
(FROM THERM)
NACK
(MASTER)
STOP
SCL
SDA S 1 0 0 A0 W AA1A2
1
D) WRITE TO THE T
H
OR T
L
REGISTER
C7 C6 C5 C4 C3 C2 C1 C0 AD7 D6 D5 D4 D3 D2 D1 D0 A D7 D6 D5 D4 D3 D2 D1 D0 A P
COMMAND BYTE
ACK
(THERM)
CONTROL BYTE
START ACK
(THERM)
MS DATA BYTE
(FROM MASTER)
ACK
(THERM)
LS DATA BYTE
(FROM MASTER)
ACK
(THERM)
STOP
E) READ FROM THE TEMPERATURE, T
H
, OR T
L
REGISTER
SCL
SDA S 1 0 0 1 A2 A1 A0 W A C7 C6 C5 C4 C3 C2 C1 C0 A S 1 0 0 1 A2 A1 A0 R A D7 D6 D5 D4 D3 D2 D1 D0 A
ACK
(THERM)
COMMAND BYTE
ACK
(THERM)
CONTROL BYTE
START REPEAT
START
CONTROL BYTE ACK
(THERM)
MS DATA BYTE
(FROM THERM)
ACK
(MASTER)
D5 N
D6 D4 D3 D2 D1 D0 P
D7
LS DATA BYTE
(FROM THERM)
NACK
(MASTER)
STOP
THERM = DS1631, DS1631A, or DS1731
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
11
Operation Example
In this example, the master configures the DS1631/DS1631A/DS1731 (A1A2A3 = 000) for continuous conversions and
thermostatic function.
*THERMOMETER = DS1631, DS1631A, or DS1731
MASTER
MODE
THERMETER*
MODE
DATA
(MSB FIRST)COMMENTS
TX RX START START condition from MASTER.
TX RX 90h MASTER sends control byte with R/W = 0.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX ACh MASTER sends Access Cong command.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX 02h MASTER writes a data byte to the conguration register to put the THERMOMETER
in continuous conversion mode and set the TOUT polarity to active high.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX STOP STOP condition from MASTER.
TX RX START START condition from MASTER.
TX RX 90h MASTER sends control byte with R/W = 0.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX A1h MASTER sends Access TH command.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX 28h MASTER sends most signicant data byte for TH = +40°C.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX 00h MASTER sends least signicant data byte for TH = +40°C.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX STOP STOP condition from MASTER.
TX RX START START condition from MASTER.
TX RX 90h MASTER sends control byte with R/W = 0.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX A2h MASTER sends Access TL command.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX 0Ah MASTER sends most signicant data byte for TL = +10°C.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX 00h MASTER sends least signicant data byte for TL = +10°C.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX STOP STOP condition from MASTER.
TX RX START START condition from MASTER.
TX RX 90h MASTER sends control byte with R/W = 0.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX 51h MASTER sends Start Convert T command.
RX TX ACK Acknowledge bit from THERMOMETER.
TX RX STOP STOP condition from MASTER.
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
12
Note: A “+” symbol will also be marked on the package near the Pin 1 indicator.
ORDERING NUMBER PACKAGE MARKING DESCRIPTION
DS1631U+ D1631 (See Note) DS1631 in Lead-Free 8-Pin µSOP
DS1631U+T&R D1631 (See Note) DS1631 in Lead-Free 8-Pin µSOP, 3000 Piece Tape-and-Reel
DS1631Z+ DS1631Z (See Note) DS1631 in Lead-Free 150 mil 8-Pin SO
DS1631Z+T&R DS1631Z (See Note) DS1631 in Lead-Free 150 mil 8-Pin SO, 2500 Piece Tape-and-Reel
DS1631AU+ 1631A (See Note) DS1631A in Lead-Free 8-Pin µSOP
DS1631AU+T&R 1631A (See Note) DS1631A in Lead-Free 8-Pin µSOP, 3000 Piece Tape-and-Reel
DS1631S+ DS1631S (See Note) DS1631 in Lead-Free 208 mil 8-Pin SO
DS1631S+T&R DS1631S (See Note) DS1631 in Lead-Free 208 mil 8-Pin SO, 2000 Piece Tape-and-Reel
DS1631+ DS1631 (See Note) DS1631 in Lead-Free 300 mil 8-Pin DIP
DS1731U+ D1731 (See Note) DS1731 in Lead-Free 8-Pin µSOP
DS1731U+T&R D1731 (See Note) DS1731 in Lead-Free 8-Pin µSOP, 3000 Piece Tape-and-Reel
DS1631U D1631 DS1631 in 8-Pin µSOP
DS1631U/T&R D1631 DS1631 in 8-Pin µSOP, 3000-Piece Tape-and-Reel
DS1631Z DS1631Z DS1631 in 150mil 8-Pin SO
DS1631Z/T&R DS1631Z DS1631 in 150mil 8-Pin SO, 2500-Piece Tape-and-Reel
DS1631AU 1631A DS1631A in 8-Pin µSOP
DS1631AU/T&R 1631A DS1631A in 8-Pin µSOP, 3000-Piece Tape-and-Reel
DS1631S DS1631S DS1631 in 208 mil 8-Pin SO
DS1631S/T&R DS1631S DS1631 in Lead-Free 208 mil 8-Pin SO, 2000 Piece Tape-and-Reel
DS1631 DS1631 DS1631 in 300 mil 8-Pin DIP
DS1731U D1731 DS1731 in 8-Pin µSOP
DS1731U/T&R D1731 DS1731 in 8-Pin µSOP, 3000-Piece Tape-and-Reel
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
www.maximintegrated.com Maxim Integrated
13
Table 1. Ordering Information
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
0 10/07 Initial release
1 1/15 Updated Benets and Features section 1
Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc. © 2015 Maxim Integrated Products, Inc.
14
DS1631/DS1631A/
DS1731
High-Precision Digital
Thermometer and Thermostat
Revision History
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated’s website at www.maximintegrated.com.
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Maxim Integrated:
DS1731U+T&R DS1631+ DS1631AU+T&R DS1631S+T&R DS1631Z+T&R DS1631AU+ DS1631S+ DS1631U+
DS1631U+T&R DS1631Z+ DS1731U+ DS1631Z