File No. 228 URCBAU RF Power Transistors Solid State Division 2N4427 Silicon N-P-N Overlay Transistor High-Gain Driver for VHF-UHF Features: 1W output with 10 dB gain (min.) at 175 MHz JEDEC TO-39 Vec=12V 0.4 W output with 5 dB gain (typ.) at 470 MHz H1381 Vec =12V RCA-2N4427 is an epitaxial silicon n-p-n planar transistor of single base and collector region. When compared with other the overlay emitter electrode construction. It is intended structures, this arrangement provides a substantial increase in for class A, B, or C amplifier, frequency-multiplier, or emitter periphery for higher current or power, and a oscillator circuits; it may be used in output, driver, or corresponding decrease in emitter and collector areas for pre-driver stages in vhf and uhf equipment. lower input and output capacitances. The overlay structure thus offers greater power output, gain, efficiency, and In the overlay structure, a number of individual emitter sites frequency capability. are connected in parallel and used in conjunction with a MAXIMUM RATINGS, Absolute-Maximum Values: * COLLECTOR-TO-BASE VOLTAGE . 11.10... eee eee Vcso 40 Vv * COLLECTOR-TO-EMITTER VOLTAGE: With base open 2... eee eee nee eee ee eee VcEO 20 Vv * EMITTER-TO-BASE VOLTAGE... 0... ct en ee een eee VEBO 2 Vv * CONTINUOUS COLLECTOR CURRENT .. 2... cece teens Io 0.4 A * CONTINUOUS BASE CURRENT 2.0.0... ccc cece ete e teens Ig 0.4 A * TRANSISTOR DISSIPATION: Py At case temperatures up to 100C 20... ee ete teens 2 Ww At case temperatures above 100C oo. ccc cece eee eee n eens See Fig. 14 * TEMPERATURE RANGE: Storage & Operating (Junction) 0... ee cette eee eee 65 to 200 c * LEAD TEMPERATURE (During soldering): At distances > 1/32 in. (0.8 mm) from insulating wafer for 10 $ Max... . 6. ee ee eee 230 c * In accordance with JEDEC registration data format JS-6 ROF-3. 81 11-712N4427 File No. 228 ELECTRICAL CHARACTERISTICS, At Case Temperature (Tc) = 25C. TEST CONDITIONS bc DC Characteristic Symbol Voltage Current Limits Units (v) (mA) Vee | Veep | Vos | Vce {te {| 'e fle | Min. | Max. * | Collector-Cutoff Current: With base open ICEO 12 0 - 0.02 With base-emitter junction reverse-biased 4 Icey 1.5 40 _ 0.1 Tc = 150C -1.5 12 - 5 * | Emitter-Cutoff Current EBO 2 = 0.1 mA mA Collector-to-Base Breakdown 0 0.1 40 - Vv Voltage V(BRICB * Collector-to-Emitter Sustaining Voltage: With base open VCEQ (sus) 0 5 20 With external base-to-emitter 5 4 - resistance (Ree) = 102 VCER(sus) Emitter-to-Base Breakdown 0.1 0 2 = Vv Voltage V(BRIEBO * | Collector-to-Emitter Saturation Voltage * | DC Forward Current h 5 360 5 _ ~ Transfer Ratio FE 5 100} 10 | 200 Magnitude of Common-Emitter Small-Signal, Short-Circuit Forward Current Transfer | [Pte | Ratio ( f = 200 MHz} * | Collector-to-Base Capacitance (f= 1 MHz} RF Power Output Class C Amplifier, Unneutralized ( f = 175 MHz, 12 Pie = 0.1 W, nc > 50%) POE (Vcc) See Fig. 2 *| Available Amplifier Signal Input Power (f = 175 MHz, Bj 12 01 wW POE =1W, Zin = 5092) (Vcc) See Fig. 2 VCE(sat) 20 100 - 0.5 Vv 15 50 2.5 - Cob 12 0 - 4 pF * | Collector Efficiency 12 (f= 175 MHz, Pog =1W, nC (Vec) 50 ~ % ZiN = 50 92) See Fig. 2 ce Thermat Resistance Junction-to-Case Reouc _ 50 e c/w, * In accordance with JEDEC registration data format JS6 RDF3. 82File No. 228 2N4427 of }-W & z 50. 3 pry = 6 = 175 MHz OPERATION COLLECTOR SUPPLY VOLTAGE (Viic)=12 V FREQUENCY(f) 175 MHz _ Neg + Vv, ce 92L8-1759 C1, C2, Cg, & C4: 3-15 pF trimmer, ARCO 403 or equivalent C5: 1,000 pF feedthrough Cg: 0.01 uF disc. L4: 2 turns No.16 wire, 3/16 in. {4.76 mm) ID, 1/4 in, (6.35 mm) long La: Ferrite choke, Z = 4502 L3: 2 turns No.16 wire, 1/4 in. (6.35 mm) IO, 1/4 in. (6.35 mm) long La: 4 turns No.16 wire, 3/8-in. (9.52 mrn} (0, RF POWER INPUT (Pj)~ mW 3/8 in. (9.52 mm) long 92LS- (758 Fig.1 Power output vs. power input. Fig.2175-MHz rf amplifier circuit for power-output test. RF POWER OUTPUT (Pop W 470 MHz OPERATION 2na427 5 L3 (2L +509) (2g = 802) L _ COLLECTOR SUPPLY VOLTAGE (Voc)#t2 V | Ce FREQUENCY(f)=470 MHz C La | ca 4 | A Aes L zt = + ove #2V 9218-1798 C1, C2, C5, & Cg: 0.9-7 pF trimmer, ARCO 400, or equivalent C3: 1000 pF feedthrough C4: 0.02 uF disc. Ly: 1 turn No.20 wire, 3/16 in. (4.76 mm) ID, Space wire diameter Lo: 0.47 wH Nytronics Corp., or equivalent L3: 2 turns No.18 wire, 1/4 in. (6.35 mm} ID, Space wire diameter C.T. 92L$~I796 La: 2 turns No.20 wire, 3/16 in. {4.76 mm) ID, Space wire diameter 20 130 RF POWER INPUT (Pye}m Fig.3 Power output vs. power input. Fig.4470-MHz rf amplifier circuit. 832N4427 File No. 228 COLLECTOR-TO-EMITTER VOLTAGE {(Vc_e)=I5V COLLECTOR -TO-EMITTER VOLTAGE (Vog)= [5V COLLECTOR CURRENT {I)=25 mA COLLECTOR CURRENT (I)=25mA C 228 CASE TEMPERATURE (Tc) = 25C I S000; SOP CASE TEMPERATURE (Tc]=25C 20 > SERIES INPUT RESISTANCE [Re (ZinJ2 S a Re (Ziq) a = Ny t NM 3 6 S A) Lie ta ; a T SERIES INPUT REACTANCE [Im (Zin}] 2 XQ + t a 50 100 500 FREQUENCY (f )} MHz | PARALLEL OUTPUT RESISTANCE 1/Re(Yo2) ho 8. a T PARALLEL OUTPUT CAPACITANCE (Cg )pF In 7 92LS- 1799 50 100 500 FREQUENCY (f)-MHz Fig.5Series input impedance vs. frequency. 92LS-IR00 Fig.6Parallel output resistance & capacitance vs. frequency. CCLLECTOR-TO-EMITTER VOLTAGE (VcE) = 15 V COLLECTOR~TO-EMITTER VOLTAGE (Vcg) = ISV CASE TEMPERATURE (Tc) 25C CASE TEMPERATURE (Tc) = 25C 5000] @ 3 if 4 oh g e z= ND PN o 30 $ oy el Ww a SS g MN c Q tb @ 1000 Lee z -~> a a 50 Crop HB 25h 8 re Une x g | ~~ 80_| - a ee Eny E | ~ ST 2 al_4!00 Che 5 COL, 7 E 2 2 PSL EC Tor 3 5 = 4 PF cup, c 3 o 2 RENT at bp i ~-(I6) = 100 m, A a 2 uw a o 15. E 100 50 & (00 @ * 500 50 100 500 FREQUENCY (f) MHz 92C8-I3I50RI FREQUENCY (f) MHz 92c8-13184R2 Fig.7Series input resistance vs. frequency. Fig.8-- Parallel output resistance vs. frequency. COLLECTOR-TO-EMITTER VOLTAGE (Vce) = I5 V COLLECTOR-TO-EMITTER VOLTAGE (Vp) = [SVJ CASE TEMPERATURE (Tc) = 25C CASE TEMPERATURE (Tc) = 25C _ 3 | i 1 6 a) a ow \ = ~ 4 8 al \ Ww =z Z EN 9 3 & Ne < 3 Stee & kb 8 C79, & Pa Up, 2 B 6 RE, & 5 NT (I)= 25 ma wn a 4 we = 4 100 % a 2 & 50 100 500 FREQUENCY (t}-MHz FREQUENCY (f} MHz 92CS-13t61R1 92CS-IZISSRI Fig.9 Series input reactance vs. frequency. Fig.10Parallel output capacitance vs. frequency. 84File No. 228 2N4427 CASE TEMPERATURE 1225C CASE TEMPERATURE (T,)=25C COLLECTOR 70, eo 8 eo . 8 - 7 Oo WB 9 Nn GAIN-BANDWIDTH PRODUCT (f7)MHz RF POWER OUTPUT (Po)W 50 )=100 200 300 400 500 600 FREQUENCY (f)MHz COLLECTOR CURRENT (I,}-mA 92LS-(757 92LS-1801 Fig.11- Power output vs. frequency. Fig.12Gain-bandwidth product vs. collector current. FREQUENCY (f} = | MHz CASE TEMPERATURE = 25C Ww , & t 2 g wy 2 = Z a b o a 4 ~ a z e 2 e gs a 2 2 vu wo w a oa 3 9 10 20 30 -100 -50 0 50 100 150 200 COLLECTOR-TO-BASE VOLTAGE (Vog) V TEMPERATURE C 92CS-13157R2 9208-19173 Fig.13Variation of collector-to-base capacitance. Fig.14 Dissipation derating curve. 852N4427 - _| | i ri ! ma oD | | tu SNS $b: -P h 2 f Q TEMPERATURE MEASURING POINT DIMENSIONAL OUTLINE JEDEC No. TO-39 SEATING PLANE - 92CS-1S64IRZ INCHES MILLIMETERS SYMBOL Trin. | max. | min, | max. | NOTES ga 0.190 | 0.210 | 4.83 | 5.33 A 0.240 | 0.260 | 6.10 | 6.60 b | 0.016 | 0.021 | 0.406! 0.533 2 b2 | 0.016 | 0.019 | 0.406} 0.483 2 D | 0.350 | 0.370 | 8.89 | 9.40 gD4 | 0.315 | 0.335 | 8.00 | 8.51 h 0.009 | 0.041 | 0.229] 1.04 j 0.028 | 0.034 | 0.711] 0.864 k 0.029 | 0.040 | 0.737] 1.02 3 I 0.500 12.70 2 MW 0.050 1.27 2 l2 0.250 6.35 2 P 0.100 2.54 1 Q 4 a 45 NOMINAL B 90 NOMINAL Note t: This zone is controiled for automatic handling. The variation in actual diameter within this zone shall not exceed 0.010 in {0.254 mm). Note 2: (Three leads} gb2 applies between ty and Ig. @b applies between Io and 0.5 in (12.70 mm) from seating plane. Diameter is uncontrolled in 14 and beyond 0.5 in (12.70 mm) from seating Note 3: Measured from maximum diameter of the actual device. plane. Note 4: Details of outline in this zone optional. TERMINAL CONNECTIONS LEAD 1 EMITTER LEAD 2 BASE LEAD 3 COLLECTOR, CASE 86 File No. 228