LM6132/34 Application Information
(Continued)
If the input signal exceeds the slew rate of the input stage
and the differential input voltage rises above a diode drop,
the excess signal bypasses the normal input transistors,
(Q1–Q4), and is routed in correct phase through the two ad-
ditional transistors, (Q5, Q6), directly into the current mirrors.
This rerouting of excess signal allows the slew-rate to in-
crease by a factor of 10 to 1 or more. (See
Figure 1
.)
As the overdrive increases, the opamp reacts better than a
conventional opamp. Large fast pulses will raise the slew-
rate to around 25V to 30V/µs.
This effect is most noticeable at higher supply voltages and
lower gains where incoming signals are likely to be large.
This speed-up action adds stability to the system when driv-
ing large capacitive loads.
DRIVING CAPACITIVE LOADS
Capacitive loads decrease the phase margin of all opamps.
This is caused by the output resistance of the amplifier and
the load capacitance forming an R-C phase lag network.
This can lead to overshoot, ringing and oscillation. Slew rate
limiting can also cause additional lag. Most opamps with a
fixed maximum slew-rate will lag further and further behind
when driving capacitive loads even though the differential in-
put voltage raises. With the LM6132, the lag causes the slew
rate to raise. The increased slew-rate keeps the output fol-
lowing the input much better. This effectively reduces phase
lag. After the output has caught up with the input, the differ-
ential input voltage drops down and the amplifier settles
rapidly.
These features allow the LM6132 to drive capacitive loads
as large as 500 pF at unity gain and not oscillate. The scope
photos (
Figure 3
and
Figure 4
) above show the LM6132 driv-
ing a 500 pF load. In
Figure 3
, the lower trace is with no ca-
pacitive load and the upper trace is with a 500 pF load. Here
we are operating on ±12V supplies with a 20 Vp-p pulse. Ex-
cellent response is obtained with a C
f
of 39 pF. In
Figure 4
,
the supplies have been reduced to ±2.5V, the pulse is
4 Vp-p and C
f
is 39 pF. The best value for the compensation
capacitor should be established after the board layout is fin-
ished because the value is dependent on board stray capac-
ity, the value of the feedback resistor, the closed loop gain
and, to some extent, the supply voltage.
Another effect that is common to all opamps is the phase
shift caused by the feedback resistor and the input capaci-
tance. This phase shift also reduces phase margin. This ef-
fect is taken care of at the same time as the effect of the ca-
pacitive load when the capacitor is placed across the
feedback resistor.
The circuit shown in
Figure 5
was used for these scope
photos.
Slew Rate vs Differential V
IN
V
S
=±12V
DS012349-40
FIGURE 1.
DS012349-36
FIGURE 2.
DS012349-45
FIGURE 3.
LM6132/LM6134
www.national.com9