PD - 95010A IRFP260NPbF HEXFET(R) Power MOSFET l l l l l l l l Advanced Process Technology Dynamic dv/dt Rating 175C Operating Temperature Fast Switching Fully Avalanche Rated Ease of Paralleling Simple Drive Requirements Lead-Free D VDSS = 200V RDS(on) = 0.04 G ID = 50A S Description Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low onresistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications. The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole. TO-247AC Absolute Maximum Ratings Parameter ID @ TC = 25C ID @ TC = 100C IDM PD @TC = 25C VGS EAS IAR EAR dv/dt TJ TSTG Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery dv/dt Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 srew Max. Units 50 35 200 300 2.0 20 560 50 30 10 -55 to +175 A W W/C V mJ A mJ V/ns C 300 (1.6mm from case ) 10 lbf*in (1.1N*m) Thermal Resistance Parameter RJC RCS RJA www.irf.com Junction-to-Case Case-to-Sink, Flat, Greased Surface Junction-to-Ambient Typ. Max. Units --- 0.24 --- 0.50 --- 40 C/W 1 08/18/10 IRFP260NPbF Electrical Characteristics @ TJ = 25C (unless otherwise specified) RDS(on) VGS(th) gfs Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Qg Qgs Qgd td(on) tr td(off) tf Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Min. 200 --- --- 2.0 27 --- --- --- --- --- --- --- --- --- --- --- Typ. --- 0.26 --- --- --- --- --- --- --- --- --- --- 17 60 55 48 IDSS Drain-to-Source Leakage Current LD Internal Drain Inductance --- 5.0 LS Internal Source Inductance --- 13 Ciss Coss Crss Input Capacitance Output Capacitance Reverse Transfer Capacitance --- --- --- 4057 603 161 V(BR)DSS V(BR)DSS/TJ IGSS Max. Units Conditions --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 0.04 VGS = 10V, ID = 28A 4.0 V VDS = VGS, ID = 250A --- S VDS = 50V, ID = 28A 25 VDS = 200V, VGS = 0V A 250 VDS = 160V, VGS = 0V, TJ = 150C 100 VGS = 20V nA -100 VGS = -20V 234 ID = 28A 38 nC VDS = 160V 110 VGS = 10V --- VDD = 100V --- ID = 28A ns --- RG = 1.8 --- VGS = 10V D Between lead, --- 6mm (0.25in.) nH G from package --- and center of die contact S --- VGS = 0V --- pF VDS = 25V --- = 1.0MHz Source-Drain Ratings and Characteristics IS ISM VSD trr Qrr ton Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Min. Typ. Max. Units Conditions D MOSFET symbol --- --- 50 showing the A G integral reverse --- --- 200 S p-n junction diode. --- --- 1.3 V TJ = 25C, IS = 28A, VGS = 0V --- 268 402 ns TJ = 25C, IF = 28A --- 1.9 2.8 C di/dt = 100A/s Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Notes: Repetitive rating; pulse width limited by ISD 28A, di/dt 486A/s, VDD V(BR)DSS, Starting TJ = 25C, L = 1.5mH Pulse width 400s; duty cycle 2%. max. junction temperature. TJ 175C RG = 25, IAS = 28A. 2 www.irf.com IRFP260NPbF 1000 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP 100 I D , Drain-to-Source Current (A) I D , Drain-to-Source Current (A) TOP 100 10 4.5V 1 20s PULSE WIDTH TJ = 25 C 0.1 0.1 1 10 4.5V 10 1 100 I D , Drain-to-Source Current (A) 1000 TJ = 175 C 1 4.0 TJ = 25 C V DS = 50V 20s PULSE WIDTH 5.0 6.0 7.0 8.0 9.0 10.0 VGS , Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 10 100 Fig 2. Typical Output Characteristics RDS(on) , Drain-to-Source On Resistance (Normalized) Fig 1. Typical Output Characteristics 10 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 20s PULSE WIDTH TJ = 175 C 0.1 0.1 3.5 ID = 50A 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -60 -40 -20 0 VGS = 10V 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature ( C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRFP260NPbF 7000 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 6000 Coss = Cds + Cgd Ciss 5000 4000 Coss 3000 2000 Crss 1000 16 VGS , Gate-to-Source Voltage (V) C, Capacitance(pF) 8000 0 10 100 V DS= 160V V DS= 100V V DS= 40V 12 8 4 0 1 ID = 28A 1000 0 50 100 150 200 QG , Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage 1000 1000 ISD , Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) ID , Drain Current (A) 100 TJ = 175 C 10 TJ = 25 C 1 0.1 0.2 V GS = 0 V 0.6 1.0 1.4 1.8 VSD ,Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 10us 100 2.2 100us 10 1 1ms TC = 25 C TJ = 175 C Single Pulse 1 10ms 10 100 1000 VDS , Drain-to-Source Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFP260NPbF VGS D.U.T. RG ID , Drain Current (A) ID , Drain Current (A) 40 40 + V DD - 10V 30 30 Pulse Width 1 s Duty Factor 0.1 % 20 20 Fig 10a. Switching Time Test Circuit VDS 10 10 0 RD VDS 50 50 90% 0 25 25 50 75 100 125 150 50 T 75 125 C) , Case100 Temperature (150 C TC , Case Temperature ( C) 175 175 10% VGS td(on) Fig 9. Maximum Drain Current Vs. Case Temperature tr t d(off) tf Fig 10b. Switching Time Waveforms Thermal Response(Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 SINGLE PULSE (THERMAL RESPONSE) PDM 0.01 0.001 0.00001 t1 t2 Notes: 1. Duty factor D = t1 / t 2 2. Peak TJ = P DM x Z thJC + TC 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFP260NPbF L VDS DRIVER EAS , Single Pulse Avalanche Energy (mJ) 1500 15V TOP BOTTOM ID 11A 20A 28A 1000 D.U.T RG 20V + V - DD IAS 0.01 tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp A 500 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature ( C) Fig 12c. Maximum Avalanche Energy Vs. Drain Current I AS Fig 12b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. 50K QG 12V .2F .3F 10 V QGS D.U.T. QGD + V - DS VGS VG 3mA Charge Fig 13a. Basic Gate Charge Waveform 6 IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit www.irf.com IRFP260NPbF Peak Diode Recovery dv/dt Test Circuit + D.U.T Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer + - - + RG * * * * Driver Gate Drive P.W. + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Period D= - V DD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple 5% ISD * VGS = 5V for Logic Level Devices Fig 14. For N-Channel HEXFETS www.irf.com 7 IRFP260NPbF TO-247AC Package Outline Dimensions are shown in millimeters (inches) -D- 3.65 (.143) 3.55 (.140) 15.90 (.626) 15.30 (.602) -B- -A- 0.25 (.010) M D B M 2.50 (.089) 1.50 (.059) 4 5.50 (.217) 20.30 (.800) 19.70 (.775) 2X 1 2 5.30 (.209) 4.70 (.185) NOTES: 5.50 (.217) 4.50 (.177) 1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982. 2 CONTROLLING DIMENSION : INCH. 3 CONFORMS TO JEDEC OUTLINE TO-247-AC. 3 -C- 14.80 (.583) 14.20 (.559) 2.40 (.094) 2.00 (.079) 2X 5.45 (.215) 2X 4.30 (.170) 3.70 (.145) 0.80 (.031) 3X 0.40 (.016) 1.40 (.056) 3X 1.00 (.039) 0.25 (.010) M 2.60 (.102) 2.20 (.087) C A S 3.40 (.133) 3.00 (.118) LEAD ASSIGNMENTS Hexfet IGBT 1 -LEAD GateASSIGNMENTS 1 - Gate 1 - GATE2 - Collector 2 - Drain 2 - DRAIN 3 - Source 3 - Emitter 3 - SOURCE 4 - Drain 4 - DRAIN4 - Collector TO-247AC Part Marking Information EXAMPLE: T HIS IS AN IRFPE30 WIT H AS S EMBLY LOT CODE 5657 AS SEMBLED ON WW 35, 2000 IN T HE AS SEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INT ERNAT IONAL RECTIFIER LOGO AS SEMBLY LOT CODE PART NUMBER IRFPE30 56 035H 57 DAT E CODE YEAR 0 = 2000 WEEK 35 LINE H Notes: 1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/ 2. For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/2010 8 www.irf.com