IRFH5406PbF HEXFET(R) Power MOSFET VDS 60 V RDS(on) max 14.4 m Qg (typical) 21 nC RG (typical) 1.1 40 A (@VGS = 10V) ID (@Tc(Bottom) = 25C) PQFN 5X6 mm Applications * * * * Secondary Side Synchronous Rectification Inverters for DC Motors DC-DC Brick Applications Boost Converters Features and Benefits Features Benefits Low RDSon (< 14.4 m) Low Thermal Resistance to PCB (< 2.7C/W) 100% Rg tested Low Profile (<0.9 mm) results in Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Lower Conduction Losses Enables better thermal dissipation Increased Reliability Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Orderable part number Package Type IRFH5406TRPbF IRFH5406TR2PBF Standard Pack Form Quantity PQFN 5mm x 6mm Tape and Reel 4000 PQFN 5mm x 6mm Tape and Reel 400 Note EOL notice # 259 Absolute Maximum Ratings VDS VGS ID @ TA = 25C ID @ TA = 70C ID @ TC(Bottom) = 25C ID @ TC(Bottom) = 100C IDM PD @TA = 25C PD @ TC(Bottom) = 25C Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range g g c g Max. 60 20 11 9 40 25 160 3.6 46 Units 0.029 -55 to + 150 W/C V A W C Notes through are on page 9 1 www.irf.com (c) 2015 International Rectifier Submit Datasheet Feedback March 12, 2015 IRFH5406PbF Static @ TJ = 25C (unless otherwise specified) BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th) IDSS IGSS Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Output Charge Min. 60 --- --- 2.0 --- --- --- --- --- 27 --- --- --- --- --- --- --- Typ. --- 0.07 11.4 --- -8.6 --- --- --- --- --- 21 3.6 1.9 6.5 9 8.4 7.4 Max. Units Conditions --- V VGS = 0V, ID = 250uA --- V/C Reference to 25C, ID = 1.0mA 14.4 m VGS = 10V, ID = 24A 4.0 V VDS = VGS, ID = 50A --- mV/C 20 VDS = 60V, VGS = 0V A 250 VDS = 60V, VGS = 0V, TJ = 125C 100 VGS = 20V nA -100 VGS = -20V --- S VDS = 25V, ID = 24A 32 --- VDS = 30V VGS = 10V --- nC ID = 24A --- --- --- --- nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance --- --- --- --- --- --- --- --- 1.1 5.4 8.7 12 3.5 1256 206 92 --- --- --- --- --- --- --- --- Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss e ns pF VDD = 30V, VGS = 10V ID = 24A RG=1.7 VGS = 0V VDS = 25V = 1.0MHz Avalanche Characteristics Parameter Single Pulse Avalanche Energy Avalanche Current EAS IAR c Typ. --- --- d Units mJ A Max. 45 24 Diode Characteristics Parameter Continuous Source Current IS (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ISM Typ. --- --- Max. Units 40 A c VSD trr Qrr ton Min. --- --- 160 Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25C, IS = 24A, VGS = 0V TJ = 25C, IF = 24A, VDD = 30V di/dt = 500A/s --- --- 1.3 V --- 20 30 ns --- 74 111 nC Time is dominated by parasitic Inductance S e e Thermal Resistance RJC (Bottom) RJC (Top) RJA RJA (<10s) 2 f f Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter g g www.irf.com(c) 2015 International Rectifier Typ. --- --- --- --- Submit Datasheet Feedback Max. 2.7 15 35 22 Units C/W March 12, 2015 IRFH5406PbF VGS 15V 10V 8.00V 5.50V 5.00V 4.50V 4.00V 3.75V ID, Drain-to-Source Current (A) TOP 100 10 BOTTOM 1000 60s PULSE WIDTH Tj = 25C VGS 15V 10V 8.00V 5.50V 5.00V 4.50V 4.00V 3.75V TOP ID, Drain-to-Source Current (A) 1000 1 0.1 100 BOTTOM 10 3.75V 1 60s PULSE WIDTH 3.75V 0.01 Tj = 150C 0.1 0.1 1 10 100 0.1 V DS, Drain-to-Source Voltage (V) 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 100 Fig 2. Typical Output Characteristics 1000 100 T J = 150C 10 T J = 25C 1 VDS = 25V 60s PULSE WIDTH 2 3 4 5 6 7 8 9 ID = 24A VGS = 10V 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.1 -60 -40 -20 0 10 Fig 4. Normalized On-Resistance Vs. Temperature Fig 3. Typical Transfer Characteristics 100000 14 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 24A C oss = C ds + C gd 10000 Ciss 1000 Coss Crss 100 20 40 60 80 100 120 140 160 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) 10 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 12 VDS= 48V VDS= 30V VDS= 12V 10 8 6 4 2 0 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage 3 1 www.irf.com(c) 2015 International Rectifier 0 5 10 15 20 25 30 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage Submit Datasheet Feedback March 12, 2015 IRFH5406PbF 1000 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY RDS(on) T J = 150C 100 T J = 25C 10 100 100sec 10 1msec 10msec 1 Tc = 25C Tj = 150C Single Pulse VGS = 0V 1.0 0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 0.10 VSD, Source-to-Drain Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 5.0 40 4.5 VGS(th), Gate threshold Voltage (V) 45 35 ID, Drain Current (A) 1 30 25 20 15 10 5 4.0 3.5 3.0 2.5 2.0 1.5 ID = 1.0A ID = 1.0mA ID = 250A ID = 50A 1.0 0.5 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( C ) T C , Case Temperature (C) Fig 9. Maximum Drain Current Vs. Case (Bottom) Temperature Fig 10. Threshold Voltage Vs. Temperature Thermal Response ( Z thJC ) C/W 10 1 D = 0.50 0.20 0.1 0.10 0.02 0.01 0.05 0.01 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com(c) 2015 International Rectifier Submit Datasheet Feedback March 12, 2015 35 200 EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m ) IRFH5406PbF ID = 24A 30 25 TJ = 125C 20 15 10 T J = 25C 5 ID TOP 3.1A 6.7A BOTTOM 24A 150 100 50 0 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 Starting T J , Junction Temperature (C) VGS, Gate -to -Source Voltage (V) Fig 13. Maximum Avalanche Energy vs. Drain Current Fig 12. On-Resistance vs. Gate Voltage V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width 1 s Duty Factor 0.1 Fig 15a. Switching Time Test Circuit 5 I AS 0.01 tp www.irf.com(c) 2015 International Rectifier 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms Submit Datasheet Feedback March 12, 2015 IRFH5406PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 www.irf.com(c) 2015 International Rectifier Qgd Qgodr Fig 18. Gate Charge Waveform Submit Datasheet Feedback March 12, 2015 IRFH5406PbF PQFN 5x6 Outline "B" Package Details For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER ("4 or 5 digits") MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 7 www.irf.com(c) 2015 International Rectifier Submit Datasheet Feedback March 12, 2015 IRFH5406PbF PQFN 5x6 Tape and Reel REEL DIMENSIONS TAPE DIMENSIONS CODE Ao Dimension design to accommodate the component width Bo Dimension design to accommodate the component lenght Ko Dimension design to accommodate the component thickness Overall width of the carrier tape Pitch between s ucces sive cavity centers W P1 DES CRIPTION QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Note: All dimens ion are nominal Package T ype Reel Diameter (Inch) QTY Reel Width W1 (mm) Ao (mm) Bo (mm) Ko (mm) P1 (mm) W (mm) Pin 1 Quadrant 5 X 6 PQFN 13 4000 12.4 6.300 5.300 1.20 8.00 12 Q1 Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ 8 www.irf.com(c) 2015 International Rectifier Submit Datasheet Feedback March 12, 2015 IRFH5406PbF Qualification information Indus trial Qualification level (per JE DE C JE S D47F Moisture Sensitivity Level PQFN 5mm x 6mm RoHS compliant guidelines ) MS L1 (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.156mH, RG = 50, IAS = 24A. Pulse width 400s; duty cycle 2%. R is measured at TJ of approximately 90C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Date 12/16/2013 3/12/2015 Comments * Updated ordering information to reflect the End-Of-life (EOL) of the mini-reel option (EOL notice #259) * Updated data sheet with new IR corporate template * Updated package outline and tape and reel on pages 7 and 8. IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/ 9 www.irf.com(c) 2015 International Rectifier Submit Datasheet Feedback March 12, 2015 IMPORTANT NOTICE The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie") . With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.