Standard Power MOSFETs File Number 1826 IRF350, IRF351, IRF352, IRF353 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode N-CHANNEL ENHANCEMENT MODE Power Field-Effect Transistors p 13 A and 15 A, 350 V - 400 V rps(on) = 0.38.Q and0.40 Features: = SOA is power-dissipation limited Nanosecond switching speeds s 1 Linear transfer characteristics sees -357% High input impedance Majority carrier device TERMINAL DIAGRAM The IRF350, IRF351, IRF352 and IRF353 are n-channel enhancement-mode silicon-gate power field-effect transistors designed for applications such as switching DRAIN regulators, switching converters, motor drivers, relay SOURCE (FLANGE) drivers, and drivers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA metal GATE 928-3780! package. TERMINAL DESIGNATION JEDEC TO-204AA Absolute Maximum Ratings Parameter (RF350 IRF351 (RF352 IRF353 Units Vos Drain - Source Voltage 400 350 400 350 Vv Voor Drain - Gate Voltage (Rgg = 20 ka) 400 350 400 350 v Ip @ Te = 25C Continuous Drain Current 15 15 13 13 A ip @ Tc = 100C Continuous Drain Current 9.0 9.0 8.0 8.0 A lpm Pulsed Drain Current @ 60 60 52 52 A Vv Gate - Source Voltage +20 Vv Pp @Tc = 25C Max. Power Dissipation 150 (See Fig. 14) Ww Linear Derating Factor 1.2 (See Fig. 14) WwrC liu inductive Current, Clamped (See Fig. 15 and 16}L = 100uH A 60 L 60 | 52 { 52 T 7 Tatg Storage Temperature Henge 88 to 150 *c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) c 3-109Zrnacltl/Ryhyc. NORMALIZED EF FECTIVE TRANSIENT THERMAL IMPEDANCE (PER UNIT) Standard Power MOSFETs IRF350, IRF351, IRF352, IRF353 10 BO ys PULSE QO ws PULSE TEST a Vos > 'D(on) x Ros(on) max. a ae : w 8 g =5.5V 2 Fs = 2 = = = = z 6 Ty= +1259C e etl z 3 : = = Ty = 2500 3 = 4 z = Ty= -59C z Ss = a 3 2 0 50 100 150 200 250 300 0 1 2 3 4 5 6 ? 8 Vos. DRAIN-TO-SOURCE VOLTAGE (VOLTS} Vg, GATE-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics 100 TION BYR Ves = 10v 50 DS(on) 80 us PULSE TEST 5.0V 20 10 us a 100 g = 19 = = w 5 = x = . te = z = oc ac 2 2 Pp o eo z : z = = 10 a a 3 Ss Tc = 25C ~ 9.5 F~ y= 150C MAX. Rinse = 0.83 KW F351, 3 02 [- SINGLE PULSE RF350, 2 0.1 0 1 2 3 4 5 102 5 10 26 50 100 200 500 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vg. DAAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics Fig. 4 -- Maximum Safe Operating Area 2 10 05 02 01 [et 4 mY 0.08 : 1, DUTY FACTOR, = 21 SINGLE PULSE (TRANSIENT Q 0.02 THERMAL IMPEDANCE) 2, PER UNIT BASE = Rengc = 0.83 DEG. C/W. 3. Tym - To = Pom Ztnsc!t). 0.01 10-5 2 10-4 2 5 19-3 2 5 10-2 2 5 1071 2 5 1.0 2 5 10 14, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-111Standard Power MOSFETs IRF350, IRF351, IRF352, IRF353 C, CAPACITANCE (pF) BVpgg, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE {NORMALIZED} 4000 3200 2400 1600 20 Ty = -550C ms 12 yet dfs. TRANSCONDUCTANCE (SIEMENS) 4 Vos > 'p(on) x Rosion) max. i | | 80 us PULSE TEST a 4 8 12 16 20 Ip, ORAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 4.25 on 1.05 0.95 0.85 0.75 -40 0 40 80 120 160 Ty, JUNCTION TEMPERATURE (2C) Fig. 8 Breakdown Voltage Vs. Temperature Vgsz0 f f= 1MHz Ciss Cisg = Cgg + Cg, Cds SHORTED Crsy = Cog gs Cd Cos + Cod = Cys + Cgq Coss = Cas + 800 9 At) 20 3 40 50 Vos. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage 3-112 lpn. REVERSE DRAIN CURRENT (AMPERES} 2. ~ on N Ty= 150C a on . 0 1 2 3 4 Vgp, SQURCE-TO-ORAIN VOLTAGE (VOLTS) Fig. 7 Typical Source-Drain Diode Forward Voltage Rpg jon). DRAIN-T9-SOURTE ON RESISTANCE (NORMALIZED) 2.2 06 0.2 -40) Q 40 80 120 Ty, JUNCTION TEMPERATURE (C) Fig. 9 Normalized On-Resistance Vs. Temperature Vg. GATE-TO-SOURCE VOLTAGE (VOLTS) 20 Ving = 80 Vos = 200V 1 | Vag = 320V ip = 18A FOR TEST CIRCUIT SEE FIGURE 18 0 28 5B 84 2 140 Qg, TOTAL GATE CHARGE {nC) Fig. 11 Typical Gate Charge Vs. Gate-to-Source Valtage08 07 = 10V ~~ ee 0.6 0.5 04 03 0.2 Ros(on) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 ys PULSE IS MINIMAL.) 0 10 20 30 40. 50 60 70 Ip. ORAIN CURRENT (AMPERES) Rosion). QRAIN-TO-SOURCE ON RESISTANCE (OHMS) Fig. 12 Typical On-Resistance Vs. Drain Current 140 \ 4120 \ \ 2 e = 100 N z \ 3 & N = 80 B 3 g 60 = \ 2 4 K 20 N 0 2 8640182140 Tc, CASE TEMPERATURE (C) Fig. 14 Power Vs. Temperature Derating Curve Von ADJUST Ry TO OBTAIN $ p, SPECIFIED Ig Vos Vos T putse OUT. | GENERATOR 102 SOURCE J] | IMPEDANCE L_ FJ Fig. 17 Switching Time Test Circuit Standard Power MOSFETs IRF350, IRF351, IRF352, IRF353 20 12 RF360, 361 RF382, Ig, DRAIN CURRENT (AMPERES) Qo 25 50 75 100 128 150 Tg, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK (,_ Vgg = 10V [ty E}=05BVpss Ec = 0.75 BVggg Fig. 15 Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms o Vos (ISOLATED SUPPLY} CURRENT REGULATOR SAME TYPE 12v BATTERY -Vps CURRENT = CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit 3-113