PRODUCT PREVIEW
1 OMAP-L137 Low-Power Applications Processor
1.1 Features
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Six ALU (32-/40-Bit) Functional UnitsApplications
Supports 32-Bit Integer, SP (IEEE Single Industrial Control
Precision/32-Bit) and DP (IEEE Double USB, Networking
Precision/64-Bit) Floating Point High-Speed Encoding
Supports up to Four SP Additions Per Professional Audio
Clock, Four DP Additions Every 2Software Support
Clocks TI DSP/BIOS™
Supports up to Two Floating Point (SPor DP) Approximate Reciprocal or Chip Support Library and DSP Library
Square Root Operations Per CycleDual Core SoC
Two Multiply Functional Units 300-MHz ARM926EJ-S™ RISC MPU
Mixed-Precision IEEE Floating Point 300-MHz C674x™ VLIW DSP
Multiply Supported up to:ARM926EJ-S Core
2 SP x SP -> SP Per Clock 32-Bit and 16-Bit (Thumb®) Instructions
2 SP x SP -> DP Every Two Clocks DSP Instruction Extensions
2 SP x DP -> DP Every Three Clocks Single Cycle MAC
2 DP x DP -> DP Every Four Clocks ARM® Jazelle® Technology
Fixed Point Multiply Supports Two 32 x EmbeddedICE-RT™ for Real-Time Debug
32-Bit Multiplies, Four 16 x 16-BitARM9 Memory Architecture
Multiplies, or Eight 8 x 8-Bit Multipliesper Clock Cycle, and Complex MultiplesC674x Instruction Set Features
Instruction Packing Reduces Code Size Superset of the C67x+™ and C64x+™ ISAs
All Instructions Conditional 2400/1800 C674x MIPS/MFLOPS
Hardware Support for Modulo Loop Byte-Addressable (8-/16-/32-/64-Bit Data)
Operation 8-Bit Overflow Protection
Protected Mode Operation Bit-Field Extract, Set, Clear
Exceptions Support for Error Detection and Normalization, Saturation, Bit-Counting
Program Redirection Compact 16-Bit Instructions
128K-Byte RAM Shared MemoryC674x Two Level Cache Memory Architecture
Two External Memory Interfaces: 32K-Byte L1P Program RAM/Cache
EMIFA 32K-Byte L1D Data RAM/Cache
NOR (8-/16-Bit-Wide Data) 256K-Byte L2 Unified Mapped RAM/Cache
NAND (8-/16-Bit-Wide Data) Flexible RAM/Cache Partition (L1 and L2)
16-Bit SDRAM With 128MB Address 1024K-Byte L2 ROM
SpaceEnhanced Direct-Memory-Access Controller 3
EMIFB(EDMA3):
32-Bit or 16-Bit SDRAM With 256MB 2 Transfer Controllers
Address Space 32 Independent DMA Channels
Three Configurable 16550 type UART Modules: 8 Quick DMA Channels
UART0 With Modem Control Signals Programmable Transfer Burst Size
16-byte FIFOTMS320C674x™ Floating Point VLIW DSP Core
16x or 13x Oversampling Option Load-Store Architecture With Non-Aligned
LCD ControllerSupport
Two Serial Peripheral Interfaces (SPI) Each 64 General-Purpose Registers (32 Bit)
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of TexasInstruments semiconductor products and disclaimers thereto appears at the end of this document.C674x, TMS320C6000, C6000 are trademarks of Texas Instruments.ARM926EJ-S is a trademark of ARM Limited.All other trademarks are the property of their respective owners.
PRODUCT PREVIEW information concerns products in the
Copyright © 2008–2008, Texas Instruments Incorporatedformative or design phase of development. Characteristic data andother specifications are design goals. Texas Instruments reservesthe right to change or discontinue these products without notice.
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
With One Chip-Select Separate Power RailMultimedia Card (MMC)/Secure Digital (SD) One 64-Bit General-Purpose TimerCard Interface with Secure Data I/O (SDIO) (Configurable as Two 32-Bit Timers)Two Master/Slave Inter-Integrated Circuit (I
2
COne 64-Bit General-Purpose Timer (WatchBus™) Dog)USB 1.1 OHCI (Host) With Integrated PHY Three Enhanced Pulse Width Modulators(USB1) (eHRPWM):
Dedicated 16-Bit Time-Base Counter WithUSB 2.0 OTG Port With Integrated PHY (USB0)
Period And Frequency Control USB 2.0 High-/Full-Speed Client
6 Single Edge, 6 Dual Edge Symmetric or 3 USB 2.0 High-/Full-/Low-Speed Host
Dual Edge Asymmetric Outputs End Point 0 (Control)
Dead-Band Generation End Points 1,2,3,4 (Control, Bulk, Interrupt
PWM Chopping by High-Frequency Carrieror ISOC) Rx and Tx
Trip Zone InputThree Multichannel Audio Serial Ports:
Three 32-Bit Enhanced Capture Modules Transmit/Receive Clocks up to 50 MHz
(eCAP): Six Clock Zones and 28 Serial Data Pins
Configurable as 3 Capture Inputs or 3 Supports TDM, I2S, and Similar Formats
Auxiliary Pulse Width Modulator (APWM) DIT-Capable (McASP2)
outputs FIFO buffers for Transmit and Receive
Single Shot Capture of up to Four Event10/100 Mb/s Ethernet MAC (EMAC):
Time-Stamps IEEE 802.3 Compliant (3.3-V I/O Only)
Two 32-Bit Enhanced Quadrature Encoder RMII Media Independent Interface
Pulse Modules (eQEP) Management Data I/O (MDIO) Module
256-Ball Pb-Free Plastic Ball Grid ArrayOne Host-Port Interface (HPI) With 16-Bit-Wide
(PBGA) [ZKB Suffix], 1.0-mm Ball PitchMuxed Address/Data Bus For High Bandwidth
Commercial or Extended TemperatureReal-Time Clock With 32 KHz Oscillator and
2OMAP-L137 Low-Power Applications Processor Submit Documentation Feedback
PRODUCT PREVIEW
1.2 Trademarks
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
DSP/BIOS, TMS320C6000, C6000, TMS320, TMS320C62x, and TMS320C67x are trademarks of TexasInstruments.
All trademarks are the property of their respective owners.
Submit Documentation Feedback OMAP-L137 Low-Power Applications Processor 3
PRODUCT PREVIEW
1.3 Description
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The OMAP-L137 is a Low-power applications processor based on an ARM926EJ-S™ and a C674x™DSP core. It provides significantly lower power than other members of the TMS320C6000™ platform ofDSPs.
The OMAP-L137 enables OEMs and ODMs to quickly bring to market devices featuring robust operatingsystems support, rich user interfaces, and high processing performance life through the maximumflexibility of a fully integrated mixed processor solution.
The dual-core architecture of the OMAP-L137 provides benefits of both DSP and Reduced Instruction SetComputer (RISC) technologies, incorporating a high-performance TMS320C674x DSP core and anARM926EJ-S core.
The ARM926EJ-S is a 32-bit RISC processor core that performs 32-bit or 16-bit instructions andprocesses 32-bit, 16-bit, or 8-bit data. The core uses pipelining so that all parts of the processor andmemory system can operate continuously.
The ARM core has a coprocessor 15 (CP15), protection module, and Data and program MemoryManagement Units (MMUs) with table look-aside buffers. It has separate 16K-byte instruction and16K-byte data caches. Both are four-way associative with virtual index virtual tag (VIVT). The ARM corealso has a 8KB RAM (Vector Table) and 64KB ROM.
The OMAP-L137 DSP core uses a two-level cache-based architecture. The Level 1 program cache (L1P)is a 32KB direct mapped cache and the Level 1 data cache (L1D) is a 32KB 2-way set-associative cache.The Level 2 program cache (L2P) consists of a 256KB memory space that is shared between programand data space. L2 also has a 1024KB ROM. L2 memory can be configured as mapped memory, cache,or combinations of the two. Although the DSP L2 is accessible by ARM and other hosts in the system, anadditional 128KB RAM shared memory is available for use by other hosts without affecting DSPperformance.
The peripheral set includes: a 10/100 Mb/s Ethernet MAC (EMAC) with a Management Data Input/Output(MDIO) module; two inter-integrated circuit (I2C) Bus interfaces; 3 multichannel audio serial port (McASP)with 16/12/4 serializers and FIFO buffers; 2 64-bit general-purpose timers each configurable (oneconfigurable as watchdog); a configurable 16-bit host port interface (HPI); up to 8 banks of 16 pins ofgeneral-purpose input/output (GPIO) with programmable interrupt/event generation modes, multiplexedwith other peripherals; 3 UART interfaces (one with RTS and CTS); 3 enhanced high-resolution pulsewidth modulator (eHRPWM) peripherals; 3 32-bit enhanced capture (eCAP) module peripherals which canbe configured as 3 capture inputs or 3 auxiliary pulse width modulator (APWM) outputs; 2 32-bit enhancedquadrature pulse (eQEP) peripherals; and 2 external memory interfaces: an asynchronous and SDRAMexternal memory interface (EMIFA) for slower memories or peripherals, and a higher speed memoryinterface (EMIFB) for SDRAM.
The Ethernet Media Access Controller (EMAC) provides an efficient interface between the OMAP-L137and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and100 Mbps in either half- or full-duplex mode. Additionally an Management Data Input/Output (MDIO)interface is available for PHY configuration.
The HPI, I2C, SPI, USB1.1 and USB2.0 ports allow the OMAP-L137 to easily control peripheral devicesand/or communicate with host processors.
The rich peripheral set provides the ability to control external peripheral devices and communicate withexternal processors. For details on each of the peripherals, see the related sections later in this documentand the associated peripheral reference guides.
The OMAP-L137 has a complete set of development tools for both the ARM and DSP. These include Ccompilers, a DSP assembly optimizer to simplify programming and scheduling, and a Windows™debugger interface for visibility into source code execution.
OMAP-L137 Low-Power Applications Processor4Submit Documentation Feedback
PRODUCT PREVIEW
1.4 Functional Block Diagram
SwitchedCentralResource(SCR)
1024KBL2ROM
256KBL2RAM
32KB
L1RAM
32KB
L1Pgm
16KB
I-Cache
16KB
D-Cache
AET
4KBETB
C674x™
DSP CPU
ARM926EJ-SCPU
WithMMU
DSP Subsystem
ARMSubsystem
JTAGInterface
SystemControl
Input
Clock(s)
64KBROM
8KBRAM
(VectorTable)
Power/Sleep
Controller
Pin
Multiplexing
RTC/
32-KHz
OSC
PLL/Clock
Generator
w/OSC
General-
Purpose
Timer
General-
Purpose
Timer
(Watchdog)
SerialInterfaces
I C
(2)
2SPI
(2)
UART
(3)
AudioPorts
McASP
w/FIFO
(3)
DMA
Peripherals
Display InternalMemory
LCD
Ctlr 128KB
RAM
ExternalMemoryInterfaces
Connectivity
EDMA3
ControlTimers
ePWM
(3)
eCAP
(3)
eQEP
(2)
(10/100)
EMAC
(RMII)
MDIO
USB1.1
OHCICtlr
PHY
USB2.0
OTGCtlr
PHY
HPI MMC/SD
(8b)
EMIFA(8b/16B)
NAND/Flash
16bSDRAM
EMIFB
SDRAMOnly
(16b/32b)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Note: Not all peripherals are available at the same time due to multiplexing.
Submit Documentation Feedback OMAP-L137 Low-Power Applications Processor 5
PRODUCT PREVIEW
Contents
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
6.2 Recommended Clock and Control Signal Transition1 OMAP-L137 Low-Power Applications Processor .1
Behavior ............................................. 791.1 Features .............................................. 1
6.3 Power Supplies ...................................... 801.2 Trademarks ........................................... 3
6.4 Reset ................................................ 801.3 Description ............................................ 4
6.5 Crystal Oscillator or External Clock Input ........... 811.4 Functional Block Diagram ............................ 5
6.6 Clock PLLs .......................................... 822 Revision History ......................................... 7
6.7 Interrupts ............................................ 853 Device Overview ......................................... 8
6.8 General-Purpose Input/Output (GPIO) .............. 963.1 Device Characteristics ................................ 8
6.9 EDMA ............................................... 993.2 Device Compatibility .................................. 9
6.10 External Memory Interface A (EMIFA) ............. 1043.3 ARM Subsystem ...................................... 9
6.11 EMIFB Peripheral Registers Description(s) ........ 1143.4 DSP Subsystem ..................................... 12
6.12 MMC / SD / SDIO (MMCSD) ....................... 1193.5 Memory Map Summary ............................. 18
6.13 Ethernet Media Access Controller (EMAC) ........ 1223.6 Pin Assignments .................................... 21
6.14 Management Data Input/Output (MDIO) ........... 1283.7 Terminal Functions .................................. 22
6.15 Multichannel Audio Serial Ports (McASP0, McASP1,4 Device Configuration .................................. 38
and McASP2) ...................................... 1304.1 SYSCFG Module .................................... 38
6.16 Serial Peripheral Interface Ports (SPI0, SPI1) ..... 1464.2 Pin Multiplexing Control Registers .................. 39
6.17 ECAP Peripheral Registers Description(s) ........ 1644.3 Bus Master Priority Configuration ................... 60
6.18 EQEP Peripheral Registers Description(s) ........ 1674.4 Chip Configuration Registers (CFGCHIP and
6.19 eHRPWM .......................................... 169SUSPSRC) .......................................... 64
6.22 LCD Controller ..................................... 1734.5 ARM/DSP Communication Registers ............... 71
6.23 Timers .............................................. 1884.6 Device Support ...................................... 72
6.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1) .. 1904.7 Documentation Support ............................. 73
6.25 Universal Asynchronous Receiver/Transmitter5 Device Operating Conditions ........................ 75
(UART) ............................................. 1945.1 Absolute Maximum Ratings Over Operating Case
6.26 USB1 Host Controller Registers (USB1.1 OHCI) .. 196Temperature Range(Unless Otherwise Noted) .......................... 75 6.27 USB0 OTG (USB2.0 OTG) ........................ 1975.2 Recommended Operating Conditions ............... 76 6.32 Power and Sleep Controller (PSC) ................ 2045.3 Electrical Characteristics Over Recommended
6.34 Emulation Logic .................................... 207Ranges of Supply Voltage and Operating Case
6.35 Real Time Clock (RTC) ............................ 213Temperature (Unless Otherwise Noted) ............ 77
7 Mechanical Packaging and Orderable6 Peripheral Information and Electrical
Information ............................................. 216Specifications ........................................... 78
7.1 Thermal Data for ZKB .............................. 2166.1 Parameter Information .............................. 78
7.2 Mechanical Drawings .............................. 216
Contents 6Submit Documentation Feedback
PRODUCT PREVIEW
2 Revision History
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
This data manual revision history highlights the changes made to the SPRS563 device-specific datamanual to make it an SPRS563A revision.
Table 2-1. Revision History
SEE ADDITIONS/MODIFICATIONS/DELETIONS
Section 1.4 , Functional Block Diagram Updated the Functional Block Diagram.
Submit Documentation Feedback Revision History 7
PRODUCT PREVIEW
3 Device Overview
3.1 Device Characteristics
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-1 provides an overview of the OMAP-L137 Low power applications processor. The table showssignificant features of the device, including the capacity of on-chip RAM, peripherals, and the packagetype with pin count.
Table 3-1. Characteristics of the OMAP-L137 Processor
HARDWARE FEATURES OMAP-L137
EMIFB SDRAM only, 16/32-bit bus widthEMIFA Asynchronous (8/16-bit bus width) RAM, Flash, 16-bit SDRAM, NOR, NANDFlash Card Interface MMC and SD cards supported.EDMA3 32 independent channels, 8 QDMA channels, 2 Transfer controllers2 64-Bit General Purpose (configurable as 2 separate 32-bit timers, 1 configurable asTimers
Watch Dog)UART 3 (one with RTS and CTS flow control)SPI 2 (Each with one hardware chip select)I
2
C 2 (both Master/Slave)Peripherals
Multichannel Audio
3 (each with transmit/receive, FIFO buffer, 16/12/4 serializers)Serial Port [McASP]Not all peripherals pinsare available at the
10/100 Ethernet MACsame time (for more
with Management Data 1 (RMII Interface)detail, see the Device
I/OConfigurations section).
eHRPWM 6 Single Edge, 6 Dual Edge Symmetric, or 3 Dual Edge Asymmetric OutputseCAP 3 32-bit capture inputs or 3 32-bit auxiliary PWM outputseQEP 2 32-bit QEP channels with 4 inputs/channelUHPI 1 (16-bit multiplexed address/data)USB 2.0 (USB0) High-Speed OTG Controller with on-chip OTG PHYUSB 1.1 (USB1) Full-Speed OHCI (as host) with on-chip PHYGeneral-Purpose
8 banks of 16-bitInput/Output PortLCD Controller 1Size (Bytes) 488KB RAM, 1088KB ROM
DSP32KB L1 Program (L1P)/Cache (up to 32KB)32KB L1 Data (L1D)/Cache (up to 32KB)256KB Unified Mapped RAM/Cache (L2)1024KB ROM (L2)DSP Memories can be made accessible to ARM, EDMA3, and other peripherals.On-Chip Memory
Organization ARM
16KB I-Cache
16KB D-Cache8KB RAM (Vector Table)64KB ROM
ADDITIONAL SHARED MEMORY128KB RAMC674x CPU ID + CPU Control Status Register
0x1400Rev ID (CSR.[31:16])C674x Megamodule Revision ID Register
0x0000Revision (MM_REVID[15:0])JTAG BSDL_ID JTAGID Register 0x0B7D_F02F
674x DSP 300 MHzCPU Frequency MHz
ARM926 300 MHz
Device Overview8Submit Documentation Feedback
PRODUCT PREVIEW
3.2 Device Compatibility
3.3 ARM Subsystem
3.3.1 ARM926EJ-S RISC CPU
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-1. Characteristics of the OMAP-L137 Processor (continued)
HARDWARE FEATURES OMAP-L137
674x DSP 3.3 3 nsCycle Time ns
ARM926 3.3 3 nsCore (V) 1.2 VVoltage
I/O (V) 3.3 VPackage 17 mm x 17 mm, 256-Ball 1 mm pitch, PBGA (ZKB)Product Preview (PP),Advance InformationProduct Status (AI), PPor Production Data(PD)
The ARM926EJ-S RISC CPU is compatible with other ARM9 CPUs from ARM Holdings plc.
The C674x DSP core is code-compatible with the C6000™ DSP platform and supports features of boththe C64x+ and C67x+ DSP families.
The ARM Subsystem includes the following features:ARM926EJ-S RISC processorARMv5TEJ (32/16-bit) instruction setLittle endianSystem Control Co-Processor 15 (CP15)MMU
16KB Instruction cache16KB Data cacheWrite BufferEmbedded Trace Module and Embedded Trace Buffer (ETM/ETB)ARM Interrupt controller
The ARM Subsystem integrates the ARM926EJ-S processor. The ARM926EJ-S processor is a member ofARM9 family of general-purpose microprocessors. This processor is targeted at multi-tasking applicationswhere full memory management, high performance, low die size, and low power are all important. TheARM926EJ-S processor supports the 32-bit ARM and 16 bit THUMB instruction sets, enabling the user totrade off between high performance and high code density. Specifically, the ARM926EJ-S processorsupports the ARMv5TEJ instruction set, which includes features for efficient execution of Java byte codes,providing Java performance similar to Just in Time (JIT) Java interpreter, but without associated codeoverhead.
The ARM926EJ-S processor supports the ARM debug architecture and includes logic to assist in bothhardware and software debug. The ARM926EJ-S processor has a Harvard architecture and provides acomplete high performance subsystem, including:ARM926EJ -S integer coreCP15 system control coprocessorMemory Management Unit (MMU)Separate instruction and data cachesWrite bufferSeparate instruction and data (internal RAM) interfaces
Submit Documentation Feedback Device Overview 9
PRODUCT PREVIEW
3.3.2 CP15
3.3.3 MMU
3.3.4 Caches and Write Buffer
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Separate instruction and data AHB bus interfacesEmbedded Trace Module and Embedded Trace Buffer (ETM/ETB)
For more complete details on the ARM9, refer to the ARM926EJ-S Technical Reference Manual, availableat http://www.arm.com
The ARM926EJ-S system control coprocessor (CP15) is used to configure and control instruction anddata caches, Memory Management Unit (MMU), and other ARM subsystem functions. The CP15 registersare programmed using the MRC and MCR ARM instructions, when the ARM in a privileged mode such assupervisor or system mode.
A single set of two level page tables stored in main memory is used to control the address translation,permission checks and memory region attributes for both data and instruction accesses. The MMU uses asingle unified Translation Lookaside Buffer (TLB) to cache the information held in the page tables. TheMMU features are:Standard ARM architecture v4 and v5 MMU mapping sizes, domains and access protection scheme.Mapping sizes are: 1MB (sections)
64KB (large pages) 4KB (small pages) 1KB (tiny pages)Access permissions for large pages and small pages can be specified separately for each quarter ofthe page (subpage permissions)Hardware page table walksInvalidate entire TLB, using CP15 register 8Invalidate TLB entry, selected by MVA, using CP15 register 8Lockdown of TLB entries, using CP15 register 10
The size of the Instruction cache is 16KB, Data cache is 16KB. Additionally, the caches have the followingfeatures:
Virtual index, virtual tag, and addressed using the Modified Virtual Address (MVA)Four-way set associative, with a cache line length of eight words per line (32-bytes per line) and withtwo dirty bits in the DcacheDcache supports write-through and write-back (or copy back) cache operation, selected by memoryregion using the C and B bits in the MMU translation tablesCritical-word first cache refillingCache lockdown registers enable control over which cache ways are used for allocation on a line fill,providing a mechanism for both lockdown, and controlling cache corruptionDcache stores the Physical Address TAG (PA TAG) corresponding to each Dcache entry in the TAGRAM for use during the cache line write-backs, in addition to the Virtual Address TAG stored in theTAG RAM. This means that the MMU is not involved in Dcache write-back operations, removing thepossibility of TLB misses related to the write-back address.Cache maintenance operations provide efficient invalidation of, the entire Dcache or Icache, regions ofthe Dcache or Icache, and regions of virtual memory.
Device Overview10 Submit Documentation Feedback
PRODUCT PREVIEW
3.3.5 Advanced High-Performance Bus (AHB)
3.3.6 Embedded Trace Macrocell (ETM) and Embedded Trace Buffer (ETB)
3.3.7 ARM Memory Mapping
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The write buffer is used for all writes to a noncachable bufferable region, write-through region and writemisses to a write-back region. A separate buffer is incorporated in the Dcache for holding write-back forcache line evictions or cleaning of dirty cache lines. The main write buffer has 16-word data buffer and afour-address buffer. The Dcache write-back has eight data word entries and a single address entry.
The ARM Subsystem uses the AHB port of the ARM926EJ-S to connect the ARM to the Config bus andthe external memories. Arbiters are employed to arbitrate access to the separate D-AHB and I-AHB by theConfig Bus and the external memories bus.
To support real-time trace, the ARM926EJ-S processor provides an interface to enable connection of anEmbedded Trace Macrocell (ETM). The ARM926ES-J Subsystem in the OMAP-L137 also includes theEmbedded Trace Buffer (ETB). The ETM consists of two parts:Trace Port provides real-time trace capability for the ARM9.Triggering facilities provide trigger resources, which include address and data comparators, counter,and sequencers.
The OMAP-L137 trace port is not pinned out and is instead only connected to the Embedded Trace Buffer.The ETB has a 4KB buffer memory. ETB enabled debug tools are required to read/interpret the capturedtrace data.
By default the ARM has access to most on and off chip memory areas, including the DSP Internalmemories, EMIFA, EMIFB, and the additional 128K byte on chip shared SRAM. Likewise almost all of theon chip peripherals are accessible to the ARM by default.
To improve security and/or robustness the OMAP-L137 has extensive memory and peripheral protectionunits which can be configured to limit access rights to the various on / off chip resources to specific hosts;including the ARM as well as other master peripherals. This allows the system tasks to be partitionedbetween the ARM and DSP as best suites the particular application; while enhancing the overallrobustness of the solution.
See Table 3-3 for a detailed top level OMAP-L137 memory map that includes the ARM memory space.
Submit Documentation Feedback Device Overview 11
PRODUCT PREVIEW
3.4 DSP Subsystem
InstructionFetch
C674x
Fixed/FloatingPointCPU
Register
File A
Register
FileB
CacheControl
MemoryProtect
BandwidthMgmt
L1P
256
CacheControl
MemoryProtect
BandwidthMgmt
L1D
64 64
8x32
32KBytes
L1DRAM/
Cache
32KBytes
L1P RAM/
Cache
256
CacheControl
MemoryProtect
BandwidthMgmt
L2
256KBytes
L2RAM
256
1MByte
L2ROM
256
CFG
MDMA SDMA
EMC
PowerDown
Interrupt
Controller
IDMA
256
256
256
256
256
64
High
Performance
SwitchFabric
64 64 64
Configuration
Peripherals
Bus
32
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The DSP Subsystem includes the following features:C674x DSP CPU32KB L1 Program (L1P)/Cache (up to 32KB)32KB L1 Data (L1D)/Cache (up to 32KB)256KB Unified Mapped RAM/Cache (L2)1MB Mask-programmable ROMLittle endian
Figure 3-1. C674x Megamodule Block Diagram
12 Device Overview Submit Documentation Feedback
PRODUCT PREVIEW
3.4.1 C674x DSP CPU Description
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The C674x Central Processing Unit (CPU) consists of eight functional units, two register files, and twodata paths as shown in Figure 3-2 . The two general-purpose register files (A and B) each contain32 32-bit registers for a total of 64 registers. The general-purpose registers can be used for data or can bedata address pointers. The data types supported include packed 8-bit data, packed 16-bit data, 32-bitdata, 40-bit data, and 64-bit data. Values larger than 32 bits, such as 40-bit-long or 64-bit-long values arestored in register pairs, with the 32 LSBs of data placed in an even register and the remaining 8 or32 MSBs in the next upper register (which is always an odd-numbered register).
The eight functional units (.M1, .L1, .D1, .S1, .M2, .L2, .D2, and .S2) are each capable of executing oneinstruction every clock cycle. The .M functional units perform all multiply operations. The .S and .L unitsperform a general set of arithmetic, logical, and branch functions. The .D units primarily load data frommemory to the register file and store results from the register file into memory.
The C674x CPU combines the performance of the C64x+ core with the floating-point capabilities of theC67x core.
Each C674x .M unit can perform one of the following each clock cycle: one 32 x 32 bit multiply, one 16 x32 bit multiply, two 16 x 16 bit multiplies, two 16 x 32 bit multiplies, two 16 x 16 bit multiplies withadd/subtract capabilities, four 8 x 8 bit multiplies, four 8 x 8 bit multiplies with add operations, and four16 x 16 multiplies with add/subtract capabilities (including a complex multiply). There is also support forGalois field multiplication for 8-bit and 32-bit data. Many communications algorithms such as FFTs andmodems require complex multiplication. The complex multiply (CMPY) instruction takes for 16-bit inputsand produces a 32-bit real and a 32-bit imaginary output. There are also complex multiplies with roundingcapability that produces one 32-bit packed output that contain 16-bit real and 16-bit imaginary values. The32 x 32 bit multiply instructions provide the extended precision necessary for high-precision algorithms ona variety of signed and unsigned 32-bit data types.
The .L or (Arithmetic Logic Unit) now incorporates the ability to do parallel add/subtract operations on apair of common inputs. Versions of this instruction exist to work on 32-bit data or on pairs of 16-bit dataperforming dual 16-bit add and subtracts in parallel. There are also saturated forms of these instructions.
The C674x core enhances the .S unit in several ways. On the previous cores, dual 16-bit MIN2 and MAX2comparisons were only available on the .L units. On the C674x core they are also available on the .S unitwhich increases the performance of algorithms that do searching and sorting. Finally, to increase datapacking and unpacking throughput, the .S unit allows sustained high performance for the quad 8-bit/16-bitand dual 16-bit instructions. Unpack instructions prepare 8-bit data for parallel 16-bit operations. Packinstructions return parallel results to output precision including saturation support.
Other new features include:SPLOOP - A small instruction buffer in the CPU that aids in creation of software pipelining loops wheremultiple iterations of a loop are executed in parallel. The SPLOOP buffer reduces the code sizeassociated with software pipelining. Furthermore, loops in the SPLOOP buffer are fully interruptible.Compact Instructions - The native instruction size for the C6000 devices is 32 bits. Many commoninstructions such as MPY, AND, OR, ADD, and SUB can be expressed as 16 bits if the C674xcompiler can restrict the code to use certain registers in the register file. This compression isperformed by the code generation tools.Instruction Set Enhancement - As noted above, there are new instructions such as 32-bitmultiplications, complex multiplications, packing, sorting, bit manipulation, and 32-bit Galois fieldmultiplication.
Exceptions Handling - Intended to aid the programmer in isolating bugs. The C674x CPU is able todetect and respond to exceptions, both from internally detected sources (such as illegal op-codes) andfrom system events (such as a watchdog time expiration).Privilege - Defines user and supervisor modes of operation, allowing the operating system to give abasic level of protection to sensitive resources. Local memory is divided into multiple pages, each withread, write, and execute permissions.
Submit Documentation Feedback Device Overview 13
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Time-Stamp Counter - Primarily targeted for Real-Time Operating System (RTOS) robustness, afree-running time-stamp counter is implemented in the CPU which is not sensitive to system stalls.
For more details on the C674x CPU and its enhancements over the C64x architecture, see the followingdocuments:
TMS320C64x/C64x+ DSP CPU and Instruction Set Reference Guide (literature number SPRU732)TMS320C64x Technical Overview (literature number SPRU395)
14 Device Overview Submit Documentation Feedback
PRODUCT PREVIEW
src2
src2
Á
Á
Á
Á
Á
Á
Á
.D1
.M1
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
.S1
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
.L1
long src
odd dst
src2
src1
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
Á
src1
src1
src1
even dst
even dst
odd dst
dst1
dst
src2
src2
src2
long src
DA1
ST1b
LD1b
LD1a
ST1a
Data path A
Odd
register
file A
(A1, A3,
A5...A31)
Á
Á
Á
Odd
register
file B
(B1, B3,
B5...B31)
Á
Á
Á
.D2
Á
Á
Á
Á
src1
dst
src2
DA2
LD2a
LD2b
src2
.M2 src1
Á
Á
Á
dst1
Á
Á
Á
.S2 src1
Á
Á
Á
Á
even dst
long src
odd dst
ST2a
ST2b
long src
.L2
Á
Á
Á
Á
even dst
odd dst
Á
Á
Á
src1
Data path B
Control Register
32 MSB
32 LSB
dst2 (A)
32 MSB
32 LSB
2x
1x
32 LSB
32 MSB
32 LSB
32 MSB
dst2
(B)
(B)
(A)
8
8
8
8
32
32
32
32
(C)
(C)
Even
register
file A
(A0, A2,
A4...A30)
Even
register
file B
(B0, B2,
B4...B30)
(D)
(D)
(D)
(D)
A. On .M unit, dst2 is 32 MSB.
B. On .M unit, dst1 is 32 LSB.
C. On C64x CPU .M unit, src2 is 32 bits; on C64x+ CPU .M unit, src2 is 64 bits.
D. On .L and .S units, odd dst connects to odd register files and even dst connects to even register files.
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 3-2. TMS320C674x™ CPU (DSP Core) Data Paths
Submit Documentation Feedback Device Overview 15
PRODUCT PREVIEW
3.4.2 DSP Memory Mapping
3.4.2.1 ARM Internal Memories
3.4.2.2 External Memories
3.4.2.3 DSP Internal Memories
3.4.2.4 C674x CPU
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The DSP memory map is shown in Section 3.5 .
By default the DSP also has access to most on and off chip memory areas, with the exception of the ARMRAM, ROM, and AINTC interrupt controller. The DSP also boots first, and must release the ARM fromreset before the ARM can execute any code. This allows the DSP (the secure host) to configure thememory and IO protection and ensure security first, before the ARM can even attempt to access any ofthe device resources.
Additionally, the DSP megamodule includes the capability to limit access to its internal memories throughits SDMA port; without needing an external MPU unit.
The DSP does not have access to the ARM internal memory.
The DSP has access to the following External memories:Asynchronous EMIF / SDRAM / NAND / NOR Flash (EMIFA)SDRAM (EMIFB)
The DSP has access to the following DSP memories:L2 RAML1P RAML1D RAM
The C674x core uses a two-level cache-based architecture. The Level 1 Program cache (L1P) is 32 KBdirect mapped cache and the Level 1 Data cache (L1D) is 32 KB 2-way set associated cache. The Level 2memory/cache (L2) consists of a 256 KB memory space that is shared between program and data space.L2 memory can be configured as mapped memory, cache, or a combination of both.
Table 3-2 shows a memory map of the C674x CPU cache registers for the device.
Table 3-2. C674x Cache Registers
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 0000 L2CFG L2 Cache configuration register0x0184 0020 L1PCFG L1P Size Cache configuration register0x0184 0024 L1PCC L1P Freeze Mode Cache configuration register0x0184 0040 L1DCFG L1D Size Cache configuration register0x0184 0044 L1DCC L1D Freeze Mode Cache configuration register0x0184 0048 - 0x0184 0FFC - Reserved0x0184 1000 EDMAWEIGHT L2 EDMA access control register0x0184 1004 - 0x0184 1FFC - Reserved0x0184 2000 L2ALLOC0 L2 allocation register 00x0184 2004 L2ALLOC1 L2 allocation register 10x0184 2008 L2ALLOC2 L2 allocation register 20x0184 200C L2ALLOC3 L2 allocation register 30x0184 2010 - 0x0184 3FFF - Reserved0x0184 4000 L2WBAR L2 writeback base address register0x0184 4004 L2WWC L2 writeback word count register0x0184 4010 L2WIBAR L2 writeback invalidate base address register0x0184 4014 L2WIWC L2 writeback invalidate word count register
Device Overview16 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-2. C674x Cache Registers (continued)
HEX ADDRESS RANGE REGISTER ACRONYM DESCRIPTION
0x0184 4018 L2IBAR L2 invalidate base address register0x0184 401C L2IWC L2 invalidate word count register0x0184 4020 L1PIBAR L1P invalidate base address register0x0184 4024 L1PIWC L1P invalidate word count register0x0184 4030 L1DWIBAR L1D writeback invalidate base address register0x0184 4034 L1DWIWC L1D writeback invalidate word count register0x0184 4038 - Reserved0x0184 4040 L1DWBAR L1D Block Writeback0x0184 4044 L1DWWC L1D Block Writeback0x0184 4048 L1DIBAR L1D invalidate base address register0x0184 404C L1DIWC L1D invalidate word count register0x0184 4050 - 0x0184 4FFF - Reserved0x0184 5000 L2WB L2 writeback all register0x0184 5004 L2WBINV L2 writeback invalidate all register0x0184 5008 L2INV L2 Global Invalidate without writeback0x0184 500C - 0x0184 5027 - Reserved0x0184 5028 L1PINV L1P Global Invalidate0x0184 502C - 0x0184 5039 - Reserved0x0184 5040 L1DWB L1D Global Writeback0x0184 5044 L1DWBINV L1D Global Writeback with Invalidate0x0184 5048 L1DINV L1D Global Invalidate without writeback0x0184 8000 0x0184 80FF MAR0 - MAR63 Reserved 0x0000 0000 0x3FFF FFFFMemory Attribute Registers for EMIFA SDRAM Data (CS0) 0x4000 0000 0x0184 8100 0x0184 817F MAR64 MAR95
0x5FFF FFFFMemory Attribute Registers for EMIFA Async Data (CS2) 0x6000 0000 0x0184 8180 0x0184 8187 MAR96 - MAR97
0x61FF FFFFMemory Attribute Registers for EMIFA Async Data (CS3) 0x6200 0000 0x0184 8188 0x0184 818F MAR98 MAR99
0x63FF FFFFMemory Attribute Registers for EMIFA Async Data (CS4) 0x6400 0000 0x0184 8190 0x0184 8197 MAR100 MAR101
0x65FF FFFFMemory Attribute Registers for EMIFA Async Data (CS5) 0x6600 0000 0x0184 8198 0x0184 819F MAR102 MAR103
0x67FF FFFF0x0184 81A0 0x0184 81FF MAR104 MAR127 Reserved 0x6800 0000 0x7FFF FFFFMemory Attribute Register for Shared RAM 0x8000 0000 0x8001 FFFF0x0184 8200 MAR128
Reserved 0x8002 0000 0x81FF FFFF0x0184 8204 0x0184 82FF MAR129 MAR191 Reserved 0x8200 0000 0xBFFF FFFFMemory Attribute Registers for EMIFB SDRAM Data (CS2) 0xC000 0000 0x0184 8300 0x0184 837F MAR192 MAR223
0xDFFF FFFF0x0184 8380 0x0184 83FF MAR224 MAR255 Reserved 0xE000 0000 0xFFFF FFFF
See Table 3-3 for a detailed top level OMAP-L137 memory map that includes the DSP memory space.
Submit Documentation Feedback Device Overview 17
PRODUCT PREVIEW
3.5 Memory Map Summary
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-3. OMAP-L137 Top Level Memory Map
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem Map Master LCDCMap Peripheral MemMem Map Map
0x0000 0000 0x006F FFFF 6M + -1024K0x0070 0000 0x007F FFFF 1024K - DSP L2 ROM -0x0080 0000 0x0083 FFFF 256K - DSP L2 RAM -0x0084 0000 0x00DF FFFF 5M + -768K0x00E0 0000 0x00E0 7FFF 32K - DSP L1P RAM -0x00E0 8000 0x00EF FFFF 992K -0x00F0 0000 0x00F0 7FFF 32K - DSP L1D RAM -0x00F0 8000 0x017F FFFF 8M + -992K0x0180 0000 0x0180 FFFF 64K - DSP Interrupt -Controller0x0181 0000 0x0181 0FFF 4K - DSP Powerdown -Controller0x0181 1000 0x0181 1FFF 4K - DSP Security ID -0x0181 2000 0x0181 2FFF 4K - DSP Revision ID -0x0181 3000 0x0181 FFFF 52K - - -0x0182 0000 0x0182 FFFF 64K - DSP EMC -0x0183 0000 0x0183 FFFF 64K - DSP Internal -Reserved0x0184 0000 0x0184 FFFF 64K - DSP Memory -System0x0185 0000 0x01BB FFFF 3M + -600K0x01BC 0000 0x01BC 0FFF 4K ARM ETB -memory0x01BC 1000 0x01BC 17FF 2K ARM ETB reg -0x01BC 1800 0x01BC 18FF 256 ARM Ice -Crusher0x01BC 1900 0x01BF FFFF 260K -0x01C0 0000 0x01C0 7FFF 32K EDMA3 CC -0x01C0 8000 0x01C0 83FF 1024 EDMA3 TC0 -0x01C0 8400 0x01C0 87FF 1024 EDMA3 TC1 -0x01C0 8800 0x01C0 FFFF 30K -0x01C1 0000 0x01C1 0FFF 4K PSC 0 -0x01C1 1000 0x01C1 1FFF 4K PLL Controller -0x01C1 2000 0x01C1 3FFF 8K -0x01C1 4000 0x01C1 4FFF 4K BootConfig -0x01C1 5000 0x01C1 5FFF 4K -0x01C1 6000 0x01C1 6FFF 4K - -0x01C1 7000 0x01C1 7FFF 4K - -0x01C1 8000 0x01C1 FFFF 32K -0x01C2 0000 0x01C2 0FFF 4K Timer64P 0 -0x01C2 1000 0x01C2 1FFF 4K Timer64P 1 -0x01C2 2000 0x01C2 2FFF 4K I2C 0 -0x01C2 3000 0x01C2 3FFF 4K RTC -
18 Device Overview Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-3. OMAP-L137 Top Level Memory Map (continued)
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem Map Master LCDCMap Peripheral MemMem Map Map
0x01C2 4000 0x01C2 4FFF 4K - -0x01C2 5000 0x01C3 FFFF 110K -0x01C4 0000 0x01C4 0FFF 4K MMC/SD 0 -0x01C4 1000 0x01C4 1FFF 4K SPI 0 -0x01C4 2000 0x01C4 2FFF 4K UART 0 -0x01C4 3000 0x01CF FFFF 774K -0x01D0 0000 0x01D0 0FFF 4K McASP 0 Control -0x01D0 1000 0x01D0 1FFF 4K McASP 0 AFIFO Ctrl -0x01D0 2000 0x01D0 2FFF 4K McASP 0 Data -0x01D0 3000 0x01D0 3FFF 4K -0x01D0 4000 0x01D0 4FFF 4K McASP 1 Control -0x01D0 5000 0x01D0 5FFF 4K McASP 1 AFIFO Ctrl -0x01D0 6000 0x01D0 6FFF 4K McASP 1 Data -0x01D0 7000 0x01D0 7FFF 4K -0x01D0 8000 0x01D0 8FFF 4K McASP 2 Control -0x01D0 9000 0x01D0 9FFF 4K McASP 2 AFIFO Ctrl -0x01D0 A000 0x01D0 AFFF 4K McASP 2 Data -0x01D0 B000 0x01D0 BFFF 4K -0x01D0 C000 0x01D0 CFFF 4K UART 1 -0x01D0 D000 0x01D0 DFFF 4K UART 2 -0x01D0 E000 0x01D0 EFFF 4K - -0x01D0 F000 0x01DF FFFF 964K -0x01E0 0000 0x01E0 FFFF 64K USB0 -0x01E1 0000 0x01E1 0FFF 4K UHPI -0x01E1 1000 0x01E1 1FFF 4K -0x01E1 2000 0x01E1 2FFF 4K SPI 1 -0x01E1 3000 0x01E1 3FFF 4K LCD Controller -0x01E1 4000 0x01E1 4FFF 4K - -0x01E1 5000 0x01E1 5FFF 4K - -0x01E1 6000 0x01E1 FFFF 40K -0x01E2 0000 0x01E2 1FFF 8K EMAC Control Module RAM -0x01E2 2000 0x01E2 2FFF 4K EMAC Control Module Registers -0x01E2 3000 0x01E2 3FFF 4K EMAC Control Registers -0x01E2 4000 0x01E2 4FFF 4K EMAC MDIO port -0x01E2 5000 0x01E2 5FFF 4K USB1 -0x01E2 6000 0x01E2 6FFF 4K GPIO -0x01E2 7000 0x01E2 7FFF 4K PSC 1 -0x01E2 8000 0x01E2 8FFF 4K I2C 1 -0x01E2 9000 0x01E2 9FFF 4K - -0x01E2 A000 0x01EF FFFF 856K -0x01F0 0000 0x01F0 0FFF 4K eHRPWM 0 -0x01F0 1000 0x01F0 1FFF 4K HRPWM 0 -0x01F0 2000 0x01F0 2FFF 4K eHRPWM 1 -0x01F0 3000 0x01F0 3FFF 4K HRPWM 1 -0x01F0 4000 0x01F0 4FFF 4K eHRPWM 2 -0x01F0 5000 0x01F0 5FFF 4K HRPWM 2 -
Submit Documentation Feedback Device Overview 19
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-3. OMAP-L137 Top Level Memory Map (continued)
Start Address End Address Size ARM Mem DSP Mem Map EDMA Mem Map Master LCDCMap Peripheral MemMem Map Map
0x01F0 6000 0x01F0 6FFF 4K ECAP 0 -0x01F0 7000 0x01F0 7FFF 4K ECAP 1 -0x01F0 8000 0x01F0 8FFF 4K ECAP 2 -0x01F0 9000 0x01F0 9FFF 4K EQEP 0 -0x01F0 A000 0x01F0 AFFF 4K EQEP 1 -0x01F0 B000 0x01F0 BFFF 4K - -0x01F0 C000 0x116F FFFF 247M + -976K0x1170 0000 0x117F FFFF 1024K DSP L2 ROM -0x1180 0000 0x1183 FFFF 256K DSP L2 RAM -0x1184 0000 0x11DF FFFF 5M + -768K0x11E0 0000 0x11E0 7FFF 32K DSP L1P RAM -0x11E0 8000 0x11EF FFFF 992K -0x11F0 0000 0x11F0 7FFF 32K DSP L1D RAM -0x11F0 8000 0x3FFF FFFF 736M + -992K0x4000 0000 0x5FFF FFFF 512M EMIFA SDRAM data (CS0) -0x6000 0000 0x61FF FFFF 32M EMIFA async data (CS2) -0x6200 0000 0x63FF FFFF 32M EMIFA async data (CS3) -0x6400 0000 0x65FF FFFF 32M EMIFA async data (CS4) -0x6600 0000 0x67FF FFFF 32M EMIFA async data (CS5) -0x6800 0000 0x6800 7FFF 32K EMIFA Control Regs -0x6800 8000 0x7FFF FFFF 383M + -992K0x8000 0000 0x8001 FFFF 128K Shared RAM -0x8002 0000 0xAFFF FFFF 767M + -896K0xB000 0000 0xB000 7FFF 32K EMIFB Control Regs0xB000 8000 0xBFFF FFFF 255M + -992K0xC000 0000 0xDFFF FFFF 512M EMIFB SDRAM Data0xE000 0000 0xFFFC FFFF 511M + -832K0xFFFD 0000 0xFFFD FFFF 64K ARM local -ROM0xFFFE 0000 0xFFFE DFFF 56K -0xFFFE E000 0xFFFE FFFF 8K ARM Interrupt -Controller0xFFFF 0000 0xFFFF 1FFF 8K ARM local -RAM0xFFFF 2000 0xFFFF FFFF 56K -
Device Overview20 Submit Documentation Feedback
PRODUCT PREVIEW
3.6 Pin Assignments
3.6.1 Pin Map (Bottom View)
VSS VSS
TAXR1[0]/
GP4[0]
AXR1[11]/
GP5[11]
SPI0_CLK/
EQEP1I/
GP5[2]/
BOOT[2]
SPI1_CLK/
EQEP1S/
GP5[7]/
BOOT[7]
123456
EMA_CS[3]/
AMUTE2/
GP2[6]
7
EMA_CS[0]
UHPI_HAS
/
/
GP2[4]
8
EMA_A[0]/
LCD_D[7]/
GP1[0]
9
EMA_A[4]/
LCD_D[3]/
GP1[4]
10
EMA_A[8]/
LCD_PCLK/
GP1[8]
11
EMA_SDCKE/
GP2[0]
12
EMA_D[0]/
MMCSD_DAT[0]/
UHPI_HD[0]/
GP0[0]/
BOOT[12]
13
EMA_D[9]/
UHPI_HD[9]/
LCD_D[9]/
GP0[9]
14
VSS VSS
15 16
DVDD
RAXR1[1]/
GP4[1]
UART0_RXD/
I2C0_SDA/
TM64P0_IN12/
GP5[8]/
BOOT[8]
SPI1_ENA/
UART2_RXD/
GP5[12]
SPI0_ENA
UART0_CTS
/
/
EQEP0A/
GP5[3]/
BOOT[3]
SPIO_SOMI[0]/
EQEPOI/
GP5[0]/
BOOT[0]
EMA_OE
UHPI_HDS1
/
/
AXR0[13]/
GP2[7]
EMA_BA[0]/
LCD_D[4]/
GP1[14]
EMA_A[1]/
MMCSD_CLK/
UHPI_HCNTL0/
GP1[1]
EMA_A[5]/
LCD_D[2]/
GP1[5]
EMA_A[9]/
LCD_HSYNC/
GP1[9]
EMA_CLK/
OBSCLK/
AHCLKR2/
GP1[15]
EDMA_D[2]/
MMCSD_DAT[2]/
UHPI_HD[2]/
GP0[2]
EMA_D[10]/
UHPI_HD[10]/
LCD_D[10]/
GP0[10]
EMA_D[1]/
MMCSD_DAT[1]/
UHPI_HD[1]/
GP0[1]
DVDD
PAXR1[3]/
EQEP1A/
GP4[3]
AXR1[2]/
GP4[2]
UART0_TXD/
I2C0_SCL/
TM64P0_OUT12/
GP5[9]/
BOOT[9]
SPI1_SCS[0]/
UART2_TXD/
GP5[13]
SPI1_SOMI[0]/
I2C1_SCL/
GP5[5]/
BOOT[5]
SPI0_SIMO[0]/
EQEP0S/
GP5[1]/
BOOT[1]
EMA_CS[2]
UHPI_HCS
/
/
GP2[5]/
BOOT[15]
EMA_BA[1]/
LCD_D[5]/
UHPI_HHWIL/
GP1[13]
EMA_A[2]/
MMCSD_CMD/
UHPI_HCNTL1/
GP1[2]
EMA_A[6]/
LCD_D[1]/
GP1[6]
EMA_A[11]/
/
GP1[11]
LCD_AC_
ENB_CS
EMA_WE_
DQM[1]
UHPI_HDS2
/
/
AXR0[14]/
GP2[8]
EMA_D[4]/
MMCSD_DAT[4]/
UHPI_HD[4]/
GP0[4]
EMA_D[12]/
UHPI_HD[12]/
LCD_D[12]/
GP0[12]
EMA_D[3]/
MMCSD_DAT[3]/
UHPI_HD[3]/
GP0[3]
EMA_D[11]/
UHPI_HD[11]/
LCD_D[11]
GP0[11]
NAXR1[5]/
EPWM2B/
GP4[5]
AXR1[4]/
EQEP1B/
GP4[4]
AXR1[10]/
GP5[10]
SPI0_SCS[0]
UART0_RTS
/
/
EQEP0B/
GP5[4]/
BOOT[4]
SPI1_SIMO[0]/
I2C1_SDA/
GP5[6]/
BOOT[6]
EMA_WAIT[0]/
/
GP2[10]
UHPI_HRDY
EMA_RAS/
EMA_CS[5]/
GP2[2]
EMA_A[10]/
LCD_VSYNC/
GP1[10]
EMA_A[3]/
LCD_D[6]/
GP1[3]
EMA_A[7]/
LCD_D[0]/
GP1[7]
EMA_A[12]/
LCD_MCLK/
GP1[12]
EMA_D[8]/
UHPI_HD[8]/
LCD_D[8]/
GP0[8]
EMA_D[6]/
MMCSD_DAT[6]/
UHPI_HD[6]/
GP0[6]
EMA_D[14]/
UHPI_HD[14]/
LCD_D[14]/
GP0[14]
EMA_D[5]/
MMCSD_DAT[5]/
UHPI_HD[5]/
GP0[5]
EMA_D[13]/
UHPI_HD[13]/
LCD_D[13]/
GP0[13]
MAXR1[9]/
GP4[9]
AXR1[8]/
EPWM1A/
GP4[8]
AXR1[7]/
EPWM1B/
GP4[7]
AXR1[6]/
EPWM2A/
GP4[6]
DVDD VSS VSS DVDD DVDD VSS VSS DVDD
EMA_WE
W
/
UHPI_HR /
AXR0[12]/
GP2[3]/
BOOT[14]]
EMA_WE_
DQM[0]
UHPI_HINT
/
/
AXR0[15]/
GP2[9]
EMA_D[7]/
MMCSD_DAT[7]/
UHPI_HD[7]/
GP0[7]/
BOOT[13]
EMA_D[15]/
UHPI_HD[15]/
LCD_D[15]/
GP0[15]
LAHCLKR1/
GP4[11]
ACLKR1/
ECAP2/
APWM2/
GP4[12]
AFSR1/
GP4[13]
AMUTE0/
RESETOUT DVDD CVDD VSS VSS VSS VSS DVDD DVDD EMB_CAS EMB_D[22] EMB_D[23]
EMA_CAS
EMA_CS[4]
/
/
GP2[1]
KRTCK/
GP7[14]
AHCLKX1/
EPWM0B/
GP3[14]
ACLKX1/
EPWM0A/
GP3[15]
AFSX1/
EPWMSYNCI/
EPWMSYNCO/
GP4[10]
DVDD CVDD VSS VSS CVDD CVDD DVDD EMB_D[20]
EMB_WE_
DQM[0]/
GP5[15]
EMB_WE EMB_D[21]CVDD
TMS
JTDI TDO TRST EMU0/
GP7[15] CVDD CVDD VSS VSS CVDD CVDD CVDD EMB_D[5]/
GP6[5] EMB_D[19] EMB_D[6]/
GP6[6]
EMB_D[7]/
GP6[7]
RTC_XI
HRTC_XO TCK USB0_
VSSA33
USB0_
VDDA33 CVDD VSS VSS CVDD CVDD EMB_D[3]/
GP6[3] EMB_D[17] EMB_D[18] EMB_D[4]/
GP6[4]
RTC_CVDD
GRTC_VSS RESET USB0_DM DVDD CVDD VSS VSS CVDD CVDD DVDD
CVDD EMB_D[1]/
GP6[1] EMB_D[31] EMB_D[16] EMB_D[2]/
GP6[2]
OSCOUT
FOSCIN USB0_VSSA USB0_DP DVDD CVDD RSV1 VSS VSS VSS DVDD DVDD EMB_D[15]/
GP6[15] EMB_D[29] EMB_D[30] EMB_D[0]/
GP6[0]
PLL0_VSSA
EOSCVSS USB0_
VDDA18
USB0_
DRVVBUS/
GP4[15]
DVDD VSS VSS DVDD VSS VSS
DVDD DVDD EMB_D[13]/
GP6[13] EMB_D[27] EMB_D[28] EMB_D[14]/
GP6[14]
PLL0_VDDA
DUSB0_ID USB0_VBUS
AMUTE1/
EHRPWMTZ/
GP4[14]
AFSX0/
GP2[13]/
BOOT[10]
UART1_TXD/
AXR0[10]/
GP3[10]
AXR0[6]/
RMII_RXER/
ACLKR2/
GP3[6]
AXR0[2]/
RMII_TXEN/
AXR2[3]/
GP3[2]
EMB_CS[0] EMB_A[0]/
GP7[2]
EMB_A[4]/
GP7[6]
EMB_A[8]/
GP7[10]
EMB_D[9]/
GP6[9]
EMB_D[10]/
GP6[10]
EMB_D[11]/
GP6[11]
EMB_D[12]/
GP6[12]
USB1_
VDDA33
CUSB1_
VDDA18
USB0_
VDDA12
AFSR0/
GP3[12]
ACLKX0/
ECAP0/
APWM0/
GP2[12]
UART1_RXD/
AXR0[9]/
GP3[9]
AXR0[5]/
RMII_RXD[1]/
AFSX2/
GP3[5]
AXR0[1]/
RMII_TXD[1]/
ACLKX2/
GP3[1]
EMB_BA[0]/
GP7[1]
EMB_A[1]/
GP7[3]
EMB_A[5]/
GP7[7]
EMB_A[9]/
GP7[11] EMB_SDCKE EMB_CLK
EMB_WE_
DQM[1]/
GP5[14]
EMB_D[8]/
GP6[8]
BRSV2 VSS USB1_DM
ACLKR0/
ECAP1/
APWM1/
GP2[15]
AHLKX0/
AHCLKX2/
USB_
REFCLKIN/
GP2[11]
AXR0[8]/
MDIO_D/
GP3[8]
AXR0[4]/
RMII_RXD[0]/
AXR2[1]/
GP3[4]
AXR0[0]/
RMII_TXD[0]/
AFSR2/
GP3[0]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
EMB_BA[1]/
GP7[0]
EMB_A[2]/
GP7[4]
EMB_A[6]/
GP7[8]
EMB_A[11]/
GP7[13]
EMB_WE_
DQM[2] EMB_D[25] EMB_A[12]/
GP3[13] DVDD
AVSS VSS USB1_DP
AHCLKR0/
RMII_MHZ_
50_CLK/
GP2[14]/
BOOT[11]
AXR0[11]/
AXR2[0]/
GP3[11]
AXR0[7]/
MDIO_CLK/
GP3[7]
AXR0[3]/
RMII_CRS_DV/
AXR2[2]/
GP3[3]
EMB_RAS EMB_A[10]/
GP7[12]
EMB_A[3]/
GP7[5]
EMB_A[7]/
GP7[9]
EMB_WE_
DQM[3] EMB_D[24] EMB_D[26] VSS VSS
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
CVDD CVDD
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Extensive use of pin multiplexing is used to accommodate the largest number of peripheral functions inthe smallest possible package. Pin multiplexing is controlled using a combination of hardwareconfiguration at device reset and software programmable register settings.
Figure 3-3 shows the pin assignments for the BGA package.Note that micro-vias are not required. Contactyour TI representative for routing recommendations.
Figure 3-3. Pin Map (BGA)
Submit Documentation Feedback Device Overview 21
PRODUCT PREVIEW
3.7 Terminal Functions
3.7.1 Device Reset and JTAG
3.7.2 High-Frequency Oscillator and PLL
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-4 to Table 3-24 identify the external signal names, the associated pin/ball numbers along with themechanical package designator, the pin type (I, O, IO, OZ, or PWR), whether the pin/ball has any internalpullup/pulldown resistors, whether the pin/ball is configurable as an IO in GPIO mode, and a functional pindescription.
Table 3-4. Reset and JTAG Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
PULL
(2)
DESCRIPTIONZKB
RESET
RESET G3 I Device reset inputAMUTE0/ RESETOUT L4 O
(3)
IPD Reset output. Multiplexed with McASP0 mute output.
JTAG
TMS J1 I IPU JTAG test mode select
TDI J2 I IPU JTAG test data input
TDO J3 O IPU JTAG test data output
TCK H3 I IPU JTAG test clock
TRST J4 I IPD JTAG test reset
EMU[0]/GP7[15] J5 I/O IPU Miscellaneous emulation pin.
RSVD/GP7[14] K1 I/O IPU Reserved
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor(3) Open drain mode for RESETOUT function.
Table 3-5. High-Frequency Oscillator and PLL Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
PULL
(2)
DESCRIPTIONZKB
1.2-V OSCILLATOR
OSCIN F2 I Oscillator input
OSCOUT F1 O Oscillator output
OSCVSS E2 GND Oscillator ground (for filter only)
1.2-V PLL
PLL0_VDDA D1 PWR PLL analog V
DD
(1.2-V filtered supply)
PLL0_VSSA E1 GND PLL analog V
SS
(for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview22 Submit Documentation Feedback
PRODUCT PREVIEW
3.7.3 Real-Time Clock and 32-kHz Oscillator
3.7.4 External Memory Interface A (ASYNC, SDRAM)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-6. Real-Time Clock (RTC) and 1.2-V, 32-kHz Oscillator Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
PULL
(2)
DESCRIPTIONZKB
RTC_CVDD G1 PWR RTC module core power ( isolated from rest of chip CV
DD
)
RTC_XI H1 I Low-frequency (32-kHz) oscillator receiver for real-time clock
RTC_XO H2 O Low-frequency (32-kHz) oscillator driver for real-time clock
RTC_V
ss
G2 GND Oscillator ground (for filter)
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Table 3-7. External Memory Interface A (EMIFA) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMA_D[15]/UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPD
EMA_D[14]/UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPD
EMA_D[13]/UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPD
EMA_D[12]/UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD
UHPI, LCD,GPIOEMA_D[11]/UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPD
EMA_D[10]/UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPD
EMA_D[9]/UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPD
EMA_D[8]/UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPD
MMC/SD, UHPI,
EMIFA data busEMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU
GPIO, BOOT
EMA_D[6]/MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPU
EMA_D[5]/MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPU
EMA_D[4]/MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU
MMC/SD, UHPI,GPIOEMA_D[3]/MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPU
EMA_D[2]/MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPU
EMA_D[1]/MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU
MMC/SD, UHPI,EMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU
GPIO, BOOT
EMA_A[12]/LCD_MCLK/GP1[12] N11 O IPU
EMA_A[11]/LCD_AC_ENB_CS/GP1[11] P11 O IPU
EMA_A[10]/LCD_VSYNC/GP1[10] N8 O IPU
EMA_A[9]/LCD_HSYNC/GP1[9] R11 O IPU
EMA_A[8]/LCD_PCLK/GP1[8] T11 O IPU
LCD, GPIO EMIFA address busEMA_A[7]/LCD_D[0]/GP1[7] N10 O IPD
EMA_A[6]/LCD_D[1]/GP1[6] P10 O IPD
EMA_A[5]/LCD_D[2]/GP1[5] R10 O IPD
EMA_A[4]/LCD_D[3]/GP1[4] T10 O IPD
EMA_A[3]/LCD_D[6]/GP1[3] N9 O IPD
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Submit Documentation Feedback Device Overview 23
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-7. External Memory Interface A (EMIFA) Terminal Functions (continued)
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMA_A[2]/MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 O IPU
MMCSD, UHPI,GPIOEMA_A[1]/MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O IPU EMIFA address bus.
EMA_A[0]/LCD_D[7]/GP1[0] T9 O IPD LCD, GPIOLCD, UHPI,EMA_BA[1]/LCD_D[5]/UHPI_HHWIL/GP1[13] P8 O IPU
GPIO
EMIFA bank addressEMA_BA[0]/LCD_D[4]/GP1[14] R8 O IPU LCD, GPIO
EMA_CLK/AHCLKR2/GP1[15] R12 O IPU McASP2, GPIO EMIFA clock.EMIFA SDRAM clockEMA_SDCKE/GP2[0] T12 O IPU GPIO
enable.
EMIFA SDRAM rowEMA_RAS/ EMA_CS[5]/GP2[2] N7 O IPU
address strobe.EMIF A chipselect, GPIO
EMIFA SDRAM columnEMA_CAS/ EMA_CS[4]/GP2[1] L16 O IPU
address strobe.EMA_RAS/ EMA_CS[5]/GP2[2] N7 O IPU
EMIF ASDRAM, GPIOEMA_CAS/ EMA_CS[4]/GP2[1] L16 O IPU
EMA_CS[3]/AMUTE2/GP2[6] T7 O IPU McASP2, GPIO EMIFA Async ChipSelectUHPI, GPIO,EMA_CS[2]/ UHPI_HCS/GP2[5]/BOOT[15] P7 O IPU
BOOT
EMA_CS[0]/ UHPI_HAS/GP2[4] T8 O IPU UHPI, GPIOUHPI, MCASP0, EMIFA SDRAM writeEMA_WE/UHPI_HR W/AXR0[12]/GP2[3]/BOOT[14] M13 O IPU
GPIO, BOOT enable.
EMIFA writeEMA_WE_DQM[1]/ UHPI_HDS2/AXR0[14]/GP2[8] P12 O IPU enable/data mask forEMA_D[15:8]UHPI, McASP,
GPIO
EMIFA writeEMA_WE_DQM[0]/ UHPI_HINT/AXR0[15]/GP2[9] M14 O IPU enable/data mask forEMA_D[7:0].UHPI, McASP0,EMA_OE/ UHPI_HDS1/AXR0[13]/GP2[7] R7 O IPU EMIFA output enable.GPIO
EMIFA waitEMA_WAIT[0]/UHPI_HRDY/GP2[10] N6 I IPU UHPI, GPIO
input/interrupt.
Device Overview24 Submit Documentation Feedback
PRODUCT PREVIEW
3.7.5 External Memory Interface B (only SDRAM )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-8. External Memory Interface B (EMIFB) Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMB_D[31] G14 O IPD
EMB_D[30] F15 O IPD
EMB_D[29] F14 O IPD
EMB_D[28] E15 O IPD
EMB_D[27] E14 O IPD
EMB_D[26] A14 O IPD
EMB_D[25] B14 O IPD
EMB_D[24] A13 O IPD
EMB_D[23] L15 O IPD
EMB_D[22] L14 O IPD
EMB_D[21] K16 O IPD
EMB_D[20] K13 O IPD
EMB_D[19] J14 O IPD
EMB_D[18] H15 O IPD
EMB_D[17] H14 O IPD
EMB_D[16] G15 O IPD
EMIFB SDRAM data bus.EMB_D[15]/GP6[15] F13 I/O IPD
EMB_D[14]/GP6[14] E16 I/O IPD
EMB_D[13]/GP6[13] E13 I/O IPD
EMB_D[12]/GP6[12] D16 I/O IPD
EMB_D[11]/GP6[11] D15 I/O IPD
EMB_D[10]/GP6[10] D14 I/O IPD
EMB_D[9]/GP6[9] D13 I/O IPD
EMB_D[8]/GP6[8] C16 I/O IPD
GPIOEMB_D[7]/GP6[7] J16 I/O IPD
EMB_D[6]/GP6[6] J15 I/O IPD
EMB_D[5]/GP6[5] J13 I/O IPD
EMB_D[4]/GP6[4] H16 I/O IPD
EMB_D[3]/GP6[3] H13 I/O IPD
EMB_D[2]/GP6[2] G16 I/O IPD
EMB_D[1]/GP6[1] G13 I/O IPD
EMB_D[0]/GP6[0] F16 I/O IPD
EMB_A[12]/GP3[13] B15 O IPD
EMB_A[11]/GP7[13] B12 O IPD
EMB_A[10]/GP7[12] A9 O IPD
EMB_A[9]/GP7[11] C12 O IPD
EMIFB SDRAM row/columnGPIO
address bus.EMB_A[8]/GP7[10] D12 O IPD
EMB_A[7]/GP7[9] A11 O IPD
EMB_A[6]/GP7[8] B11 O IPD
EMB_A[5]/GP7[7] C11 O IPD
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Submit Documentation Feedback Device Overview 25
PRODUCT PREVIEW
3.7.6 Serial Peripheral Interface Modules (SPI0, SPI1)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-8. External Memory Interface B (EMIFB) Terminal Functions (continued)
PIN NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMB_A[4]/GP7[6] D11 O IPD
EMB_A[3]/GP7[5] A10 O IPD
EMIFB SDRAM row/columnEMB_A[2]/GP7[4] B10 O IPD
address.EMB_A[1]/GP7[3] C10 O IPD GPIO
EMB_A[0]/GP7[2] D10 O IPD
EMB_BA[1]/GP7[0] B9 O IPU
EMIFB SDRAM bank address.EMB_BA[0]/GP7[1] C9 O IPU
EMB_CLK C14 O IPU EMIF SDRAM clock.
EMB_SDCKE C13 I/O IPU EMIFB SDRAM clock enable.
EMB_WE K15 O IPU EMIFB write enableEMIFB SDRAM row addressEMB_RAS A8 O IPU
strobe.
EMB_CAS L13 O IPU EMIFB column address strobe.
EMB_CS[0] D9 O IPU EMIFB SDRAM chip select 0.
EMB_WE_DQM[3] A12 O IPU
EMB_WE_DQM[2] B13 O IPU
EMIFB write enable/data maskfor EMB_D.EMB_WE_DQM[1]/GP5[14] C15 O IPU
GPIOEMB_WE_DQM[0]/GP5[15] K14 O IPU
Table 3-9. Serial Peripheral Interface (SPI) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
SPI0
UART0, EQEP0B,SPI0_SCS[0]/ UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 I/O IPU SPI0 chip select.GPIO, BOOTUART0, EQEP0A,SPI0_ENA/ UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I/O IPU SPI0 enable.GPIO, BOOT
SPI0_CLK/EQEP1I/GP5[2]/BOOT[2] T5 I/O IPD eQEP1, GPIO, BOOT SPI0 clock.SPI0 dataSPI0_SIMO[0]/EQEP0S/GP5[1]/BOOT[1] P6 I/O IPD
slave-in-master-out.eQEP0, GPIO, BOOT
SPI0 dataSPI0_SOMI[0]/EQEP0I/GP5[0]/BOOT[0] R6 I/O IPD
slave-out-master-in.
SPI1
SPI1_SCS[0]/UART2_TXD/GP5[13] P4 I/O IPU SPI1 chip select.UART2, GPIOSPI1_ENA/UART2_RXD/GP5[12] R4 I/O IPU SPI1 enable.
SPI1_CLK/EQEP1S/GP5[7]/BOOT[7] T6 I/O IPD eQEP1, GPIO, BOOT SPI1 clock.SPI1 dataSPI1_SIMO[0]/I2C1_SDA/GP5[6]/BOOT[6] N5 I/O IPU
slave-in-master-out.I2C1, GPIO, BOOT
SPI1 dataSPI1_SOMI[0]/I2C1_SCL/GP5[5]/BOOT[5] P5 I/O IPU
slave-out-master-in.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview26 Submit Documentation Feedback
PRODUCT PREVIEW
3.7.7 Enhanced Capture/Auxiliary PWM Modules (eCAP0, eCAP1, eCAP2)
3.7.8 Enhanced Pulse Width Modulators (eHRPWM0, eHRPWM1, eHRPWM2)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The eCAP Module pins function as either input captures or auxilary PWM 32-bit outputs, depending uponhow the eCAP module is programmed.
Table 3-10. Enhanced Capture Module (eCAP) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
eCAP0
enhanced capture0 input orACLKX0/ ECAP0/APWM0/GP2[12] C5 I/O IPD McASP0, GPIO
auxiliary PWM 0output.
eCAP1
enhanced capture1 input orACLKR0/ ECAP1/APWM1/GP2[15] B4 I/O IPD McASP0, GPIO
auxiliary PWM 1output.
eCAP2
enhanced capture2 input orACLKR1 /ECAP2/APWM2/GP4[12] L2 I/O IPD McASP1, GPIO
auxiliary PWM 2output.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Table 3-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
eHRPWM0
eHRPWM0 A outputACLKX1/ EPWM0A/GP3[15] K3 I/O IPD
(with high-resolution).McASP1, GPIOAHCLKX1/ EPWM0B/GP3[14] K2 I/O IPD eHRPWM0 B output.McASP1, eHRPWM1, eHRPWM0 trip zoneAMUTE1/ EPWMTZ/GP4[14] D4 I/O IPD
GPIO, eHRPWM2 input.
Sync input toMcASP1, eHRPWM0, eHRPWM0 module orAFSX1/ EPWMSYNCI/EPWMSYNCO/GP4[10] K4 I/O IPD
GPIO sync output toexternal PWM.
eHRPWM1
eHRPWM1 A outputAXR1[8]/ EPWM1A/GP4[8] M2 I/O IPD
(with high-resolution).McASP1, GPIOAXR1[7]/ EPWM1B/GP4[7] M3 I/O IPD eHRPWM1 B output.McASP1, eHRPWM1, eHRPWM1 trip zoneAMUTE1/ EPWMTZ/GP4[14] D4 I/O IPD
GPIO, eHRPWM2 input.
eHRPWM2
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Submit Documentation Feedback Device Overview 27
PRODUCT PREVIEW
3.7.9 Enhanced Quadrature Encoder Pulse Module (eQEP)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-11. Enhanced Pulse Width Modulator (eHRPWM) Terminal Functions (continued)
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
eHRPWM2 A outputAXR1[6]/ EPWM2A/GP4[6] M4 I/O IPD
(with high-resolution).McASP1, GPIOAXR1[5]/ EPWM2B/GP4[5] N1 I/O IPD eHRPWM2 B output.McASP1, eHRPWM1, eHRPWM2 trip zoneAMUTE1/ EPWMTZ/GP4[14] D4 I/O IPD
GPIO, eHRPWM2 input.
Table 3-12. Enhanced Quadrature Encoder Pulse Module (eQEP) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
eQEP0
EQEP0A quadratureSPI0_ENA/ UART0_CTS/ EQEP0A/GP5[3]/BOOT[3] R5 I IPU
input.SPIO, UART0, GPIO,BOOT
EQEP0B quadratureSPI0_SCS[0]/ UART0_RTS/ EQEP0B/GP5[4]/BOOT[4] N4 I IPU
input.SPI0_SOMI[0]/ EQEP0I/GP5[0]/BOOT[0] R6 I IPD eQEP0 index.SPI1, GPIO, BOOTSPI0_SIMO[0]/ EQEP0S/GP5[1]/BOOT[1] P6 I IPD eQEP0 strobe.
eQEP1
eQEP1 quadratureAXR1[3]/ EQEP1A/GP4[3] P1 I IPD
input.McASP1, GPIOMcASP1, GPIO
eQEP1 quadratureAXR1[4]/ EQEP1B/GP4[4] N2 I IPD
input.SPI0_CLK/ EQEP1I/GP5[2]/BOOT[2] T5 I IPD eQEP1 index.SPI1, GPIO, BOOTSPI1_CLK/ EQEP1S/GP5[7]/BOOT[7] T6 I IPD eQEP1 strobe.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview28 Submit Documentation Feedback
PRODUCT PREVIEW
3.7.10 Boot
3.7.11 Universal Asynchronous Receiver/Transmitters (UART0, UART1, UART2)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-13. Boot Mode Selection Terminal Functions
(1)
PIN NOSIGNAL NAME TYPE
(2)
PULL
(3)
MUXED DESCRIPTIONZKB
EMA_CS[2]/ UHPI_HCS/GP2[5]/ BOOT[15] P7 I IPU EMIFA, UHPI, GPIOEMIFA, UHPI,EMA_WE/UHPI_HR W/AXR0[12]/GP2[3]/ BOOT[14] M13 I IPU
McASP0, GPIOEMA_D[7]/MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/ BOOT[13] M15 I IPU
EMIFA, MMC/SD,
UHPI, GPIOEMA_D[0]/MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/ BOOT[12] T13 I IPU
McASP0, EMAC,AHCLKR0/RMII_MHZ_50_CLK/GP2[14]/ BOOT[11] A4 I IPD
GPIOAFSX0/GP2[13]/ BOOT[10] D5 I IPD McASP0, GPIOUART0, I2C0, Timer0,UART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/ BOOT[9] P3 I IPU
GPIO
UART0, I2C0, Timer0,
Boot ModeUART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/ BOOT[8] R3 I IPU
GPIO
Selection PinsSPI1_CLK/EQEP1S/GP5[7]/ BOOT[7] T6 I IPD SPI1, eQEP1, GPIOSPI1_SIMO[0]/I2C1_SDA/GP5[6]/ BOOT[6] N5 I IPU
SPI1, I2C1, GPIOSPI1_SOMI[0]/I2C1_SCL/GP5[5]/ BOOT[5] P5 I IPU
SPI0, UART0,SPI0_SCS[0]/ UART0_RTS/EQEP0B/GP5[4]/ BOOT[4] N4 I IPU
eQEP0, GPIOSPI0, UART0,SPI0_ENA/ UART0_CTS/EQEP0A/GP5[3]/ BOOT[3] R5 I IPU
eQEP0, GPIOSPI0_CLK/EQEP1I/GP5[2]/ BOOT[2] T5 I IPD SPIO, eQEP1, GPIOSPI0_SIMO[0]/EQEP0S/GP5[1]/ BOOT[1] P6 I IPD
SPI0, eQEP0, GPIOSPI0_SOMI[0]/EQEP0I/GP5[0]/ BOOT[0] R6 I IPD
(1) Boot decoding will be defined in the ROM datasheet.(2) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(3) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Table 3-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
UART0
I2C0, BOOT,UART0_RXD/I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU UART0 receive data.Timer0, GPIO,I2C0, Timer0, GPIO, UART0 transmitUART0_TXD/I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 O IPU
BOOT data.
UART0SPI0_SCS[0]/ UART0_RTS/EQEP0B/GP5[4]/BOOT[4] N4 O IPU
ready-to-send outputSPIO, eQEP0,
GPIO, BOOT
UART0SPI0_ENA/ UART0_CTS/EQEP0A/GP5[3]/BOOT[3] R5 I IPU
clear-to-send input
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Submit Documentation Feedback Device Overview 29
PRODUCT PREVIEW
3.7.12 Inter-Integrated Circuit Modules(I2C0, I2C1)
3.7.13 Timers
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-14. Universal Asynchronous Receiver/Transmitter (UART) Terminal Functions (continued)
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
UART1
UART1_RXD/AXR0[9]/GP3[9] C6 I IPD UART1 receive data.McASP0, GPIO
UART1 transmitUART1_TXD/AXR0[10]/GP3[10] D6 O IPD
data.
UART2
SPI1_ENA/ UART2_RXD/GP5[12] R4 I IPU UART2 receive data.SPI1, GPIO
UART2 transmitSPI1_SCS[0]/ UART2_TXD/GP5[13] P4 O IPU
data.
Table 3-15. Inter-Integrated Circuit (I2C) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
I2C0
UART0, Timer0,UART0_RXD/ I2C0_SDA/TM64P0_IN12/GP5[8]/BOOT[8] R3 I/O IPU I2C0 serial data.GPIO, BOOTUART0, Timer0,UART0_TXD/ I2C0_SCL/TM64P0_OUT12/GP5[9]/BOOT[9] P3 I/O IPU I2C0 serial clock.GPIO, BOOT
I2C1
SPI1_SIMO[0]/ I2C1_SDA/GP5[6]/BOOT[6] N5 I/O IPU I2C1 serial data.SPI1, GPIO, BOOTSPI1_SOMI[0]/ I2C1_SCL/GP5[5]/BOOT[5] P5 I/O IPU I2C1 serial clock.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Table 3-16. Timers Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
TIMER0
UART0_RXD/I2C0_SDA/ TM64P0_IN12/GP5[8]/BOOT[8] R3 I IPU Timer0 lower input.UART0, I2C0,
Timer0 lowerGPIO, BOOTUART0_TXD/I2C0_SCL/ TM64P0_OUT12/GP5[9]/BOOT[9] P3 O IPU
output
TIMER1 (Watchdog )
No external pins. The Timer1 peripheral signals are not pinned out as external pins.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Device Overview30 Submit Documentation Feedback
PRODUCT PREVIEW
3.7.14 Universal Host-Port Interface (UHPI)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-17. Universal Host-Port Interface (UHPI) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMA_D[15]/ UHPI_HD[15]/LCD_D[15]/GP0[15] M16 I/O IPDEMA_D[14]/ UHPI_HD[14]/LCD_D[14]/GP0[14] N14 I/O IPDEMA_D[13]/ UHPI_HD[13]/LCD_D[13]/GP0[13] N16 I/O IPDEMA_D[12]/ UHPI_HD[12]/LCD_D[12]/GP0[12] P14 I/O IPD
EMIFA, LCD, GPIOEMA_D[11]/ UHPI_HD[11]/LCD_D[11]/GP0[11] P16 I/O IPDEMA_D[10]/ UHPI_HD[10]/LCD_D[10]/GP0[10] R14 I/O IPDEMA_D[9]/ UHPI_HD[9]/LCD_D[9]/GP0[9] T14 I/O IPDEMA_D[8]/ UHPI_HD[8]/LCD_D[8]/GP0[8] N12 I/O IPDEMA_D[7]/MMCSD_DAT[7]/ UHPI_HD[7]/GP0[7]/ EMIFA, MMC/SD,
UHPI data bus.M15 I/O IPUBOOT[13] GPIO, BOOTEMA_D[6]/MMCSD_DAT[6]/ UHPI_HD[6]/GP0[6] N13 I/O IPUEMA_D[5]/MMCSD_DAT[5]/ UHPI_HD[5]/GP0[5] N15 I/O IPUEMA_D[4]/MMCSD_DAT[4]/ UHPI_HD[4]/GP0[4] P13 I/O IPU
EMIFA, MMC/SD,
GPIOEMA_D[3]/MMCSD_DAT[3]/ UHPI_HD[3]/GP0[3] P15 I/O IPUEMA_D[2]/MMCSD_DAT[2]/ UHPI_HD[2]/GP0[2] R13 I/O IPUEMA_D[1]/MMCSD_DAT[1]/ UHPI_HD[1]/GP0[1] R15 I/O IPUEMA_D[0]/MMCSD_DAT[0]/ UHPI_HD[0]/GP0[0]/ EMIFA, MMC/SD,T13 I/O IPUBOOT[12] GPIO, BOOTEMA_A[2]/MMCSD_CMD/ UHPI_HCNTL1/GP1[2] P9 I/O IPU EMIFA,
MMCSD_CMD, UHPI access control.EMA_A[1]/MMCSD_CLK/ UHPI_HCNTL0/GP1[1] R9 I/O IPU
GPIO
UHPI half-wordEMA_BA[1]/LCD_D[5]/ UHPI_HHWIL/GP1[13] P8 I/O IPU EMIFA, LCD, GPIO
identification control.EMIFA, McASP,EMA_WE/ UHPI_HR W/AXR0[12]/GP2[3]/BOOT[14] M13 I/O IPU UHPI read/write.GPIO, BOOTEMIFA, GPIO,EMA_CS[2]/ UHPI_HCS/GP2[5]/BOOT[15] P7 I/O IPU UHPI chip select.BOOTEMA_WE_DQM[1]/ UHPI_HDS2/AXR0[14]/GP2[8] P12 I/O IPU
UHPI data strobe.EMIFA, McASP0,EMA_OE/ UHPI_HDS1/AXR0[13]/GP2[7] R7 I/O IPU
GPIOEMA_WE_DQM[0]/ UHPI_HINT/AXR0[15]/GP2[9] M14 I/O IPU UHPI host interrupt.EMA_WAIT[0]/ UHPI_HRDY/GP2[10] N6 I/O IPU UHPI ready.EMIFA, GPIO
UHPI addressEMA_CS[0]/ UHPI_HAS/GP2[4] T8 I/O IPU
strobe.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Submit Documentation Feedback Device Overview 31
PRODUCT PREVIEW
3.7.15 Multichannel Audio Serial Ports (McASP0, McASP1, McASP2)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
McASP0
EMA_WE_DQM[0]/ UHPI_HINT/ AXR0[15]/GP2[9] M14 I/O IPU
EMIFA, UHPI,EMA_WE_DQM[1]/ UHPI_HDS2/ AXR0[14]/GP2[8] P12 I/O IPU
GPIOEMA_OE/ UHPI_HDS1/ AXR0[13]/GP2[7] R7 I/O IPU
EMIFA, UHPI,EMA_WE/UHPI_HR W/ AXR0[12]/GP2[3]/BOOT[14] M13 I/O IPU
GPIO, BOOT
AXR0[11]/AXR2[0]/GP3[11] A5 I/O IPD McASP2, GPIO
AXR0[10]/GP3[10] D6 I/O IPD GPIO
AXR0[9]/GP3[9] C6 I/O IPD GPIO
McASP0 serialAXR0[8]/MDIO_D/GP3[8] B6 I/O IPU
MDIO, GPIO data.AXR0[7]/MDIO_CLK/GP3[7] A6 I/O IPD
AXR0[6]/RMII_RXER/ACLKR2/GP3[6] D7 I/O IPD
AXR0[5]/RMII_RXD[1]/AFSX2/GP3[5] C7 I/O IPD
AXR0[4]/RMII_RXD[0]/AXR2[1]/GP3[4] B7 I/O IPD
EMAC,AXR0[3]/RMII_CRS_DV/AXR2[2]/GP3[3] A7 I/O IPD
McASP2, GPIOAXR0[2]/RMII_TXEN/AXR2[3]/GP3[2] D8 I/O IPD
AXR0[1]/RMII_TXD[1]/ACLKX2/GP3[1] C8 I/O IPD
AXR0[0]/RMII_TXD[0]/AFSR2/GP3[0] B8 I/O IPD
McASP2, USB, McASP1 transmitAHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] B5 I/O IPD
GPIO master clock.McASP0 transmitACLKX0/ECAP0/APWM0/GP2[12] C5 I/O IPD eCAP0, GPIO
bit clock.
McASP0 transmitAFSX0/GP2[13]/BOOT[10] D5 I/O IPD GPIO, BOOT
frame sync.EMAC, GPIO, McASP0 receiveAHCLKR0/RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I/O IPD
BOOT master clock.McASP0 receiveACLKR0/ECAP1/APWM1/GP2[15] B4 I/O IPD eCAP1, GPIO
bit clock.
McASP0 receiveAFSR0/GP3[12] C4 I/O IPD GPIO
frame sync.McASP0 muteAMUTE0/ RESETOUT L4 I/O IPD RESETOUT
output.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
32 Device Overview Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-18. Multichannel Audio Serial Ports (McASPs) Terminal Functions (continued)
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
McASP1
AXR1[11]/GP5[11] T4 I/O IPU
AXR1[10]/GP5[10] N3 I/O IPU GPIO
AXR1[9]/GP4[9] M1 I/O IPD
eHRPWM1 A,AXR1[8]/EPWM1A/GP4[8] M2 I/O IPD
GPIO
eHRPWM1 B,AXR1[7]/EPWM1B/GP4[7] M3 I/O IPD
GPIO
eHRPWM2 A,
McASP1 serialAXR1[6]/EPWM2A/GP4[6] M4 I/O IPD
GPIO
data.eHRPWM2 B,AXR1[5]/EPWM2B/GP4[5] N1 I/O IPD
GPIO
AXR1[4]/EQEP1B/GP4[4] N2 I/O IPD
eQEP1, GPIOAXR1[3]/EQEP1A/GP4[3] P1 I/O IPD
AXR1[2]/GP4[2] P2 I/O IPD
AXR1[1]/GP4[1] R2 I/O IPD GPIO
AXR1[0]/GP4[0] T3 I/O IPD
eHRPWM0, McASP1 transmitAHCLKX1/EPWM0B/GP3[14] K2 I/O IPD
GPIO master clock.eHRPWM0, McASP1 transmitACLKX1/EPWM0A/GP3[15] K3 I/O IPD
GPIO bit clock.eHRPWM0, McASP1 transmitAFSX1/EPWMSYNCI/EPWMSYNCO/GP4[10] K4 I/O IPD
GPIO frame sync.McASP1 receiveAHCLKR1/GP4[11] L1 I/O IPD GPIO
master clock.McASP1 receiveACLKR1/ECAP2/APWM2/GP4[12] L2 I/O IPD eCAP2, GPIO
bit clock.
McASP1 receiveAFSR1/GP4[13] L3 I/O IPD GPIO
frame sync.eHRPWM0,
eHRPWM1, McASP1 muteAMUTE1/EPWMTZ/GP4[14] D4 I/O IPD
GPIO, output.eHRPWM2
McASP2
AXR0[2]/RMII_TXEN/ AXR2[3]/GP3[2] D8 I/O IPD
McASP0,AXR0[3]/RMII_CRS_DV/ AXR2[2]/GP3[3] A7 I/O IPD
EMAC, GPIO
McASP2 serialAXR0[4]/RMII_RXD[0]/ AXR2[1]/GP3[4] B7 I/O IPD
data.UART1,UART1_TXD/ AXR2[0]AXR0[11]/GP3[11] A5 I/O IPD
McASP0, GPIO
McASP2 transmitAHCLKX0/ AHCLKX2/USB_REFCLKIN/GP2[11] B5 I/O IPD
master clock.McASP0, USB,GPIO
McASP2 transmitAXR0[1]/RMII_TXD[1]/ ACLKX2/GP3[1] C8 I/O IPD
bit clock.McASP0, McASP2 transmitAXR0[5]/RMII_RXD[1]/ AFSX2/GP3[5] C7 I/O IPD
EMAC, GPIO frame sync.McASP2 receiveEMA_CLK/OBSCLK/ AHCLKR2/GP1[15] R12 I/O IPU EMIFA, GPIO
master clock.McASP0, McASP2 receiveAXR0[6]/RMII_RXER/ ACLKR2/GP3[6] D7 I/O IPD
EMAC, GPIO bit clock.
McASP2 muteEMA_CS[3]/ AMUTE2/GP2[6] T7 I/O IPU EMIFA, GPIO
output.
Submit Documentation Feedback Device Overview 33
PRODUCT PREVIEW
3.7.16 Universal Serial Bus Modules (USB0, USB1)
3.7.17 Ethernet Media Access Controller (EMAC)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-19. Universal Serial Bus (USB) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
USB0 2.0 OTG (USB0)
USB0_DM G4 A NA USB0 PHY data minus
USB0_DP F4 A NA USB0 PHY data plus
USB0_VDDA33 H5 PWR NA USB0 PHY 3.3-V supply
USB0_VSSA33 H4 PWR NA USB0 PHY 3.3-V supply reference
USB0_VDDA18 E3 PWR NA USB0 PHY 1.8-V supply input
USB0_VDDA12 C3 PWR NA USB0 PHY 1.2-V LDO output for bypass cap
USB0_VSSA F3 PWR NA USB0 PHY 1.8-V and 1.2-V supply reference
USB0_ID D2 A NA USB0 PHY identification (mini-A or mini-B plug)
USB0_VBUS D3 A NA USB0 bus voltageUSB0 controller VBUS control output. MultiplexedUSB0_DRVVBUS/GP4[15] E4 0 IPD GPIO
with GPIO bank 4 pin 15.AHCLKX0/AHCLKX2/ USB_REFCLKIN/
B5 I IPD USB_REFCLKIN. Optional clock input.GP2[11]
USB1 1.1 OHCI (USB1)
USB1_DM B3 A NA USB1 PHY data minus
USB1_DP A3 A NA USB1 PHY data plus
USB1_VDDA33 C1 PWR NA USB1 PHY 3.3-V supply
USB1_VDDA18 C2 PWR NA USB1 PHY 1.8-V supplyAHCLKX0/AHCLKX2/ USB_REFCLKIN/
B5 I IPD NA USB_REFCLKIN. Optional clock input.GP2[11]
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
RMII
EMAC 50-MHzAHCLKR0/ RMII_MHZ_50_CLK/GP2[14]/BOOT[11] A4 I/O IPD McASP0, GPIO, BOOT clock input oroutput.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
34 Device Overview Submit Documentation Feedback
PRODUCT PREVIEW
3.7.18 Multimedia Card/Secure Digital (MMC/SD)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-20. Ethernet Media Access Controller (EMAC) Terminal Functions (continued)
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMAC RMII receiverAXR0[6]/ RMII_RXER/ACLKR2/GP3[6] D7 I IPD
error.AXR0[5]/ RMII_RXD[1]/AFSX2/GP3[5] C7 I IPD
EMAC RMII receivedata.AXR0[4]/ RMII_RXD[0]/AXR2[1]/GP3[4] B7 I IPD
EMAC RMII carrierAXR0[3]/ RMII_CRS_DV/AXR2[2]/GP3[3] A7 I IPD McASP0, McASP2, GPIO
sense data valid.EMAC RMII transmitAXR0[2]/ RMII_TXEN/AXR2[3]/GP3[2] D8 O IPD
enable.AXR0[1]/ RMII_TXD[1]/ACLKX2/GP3[1] C8 O IPD
EMAC RMII trasmitdata.AXR0[0]/ RMII_TXD[0]/AFSR2/GP3[0] B8 O IPD
MDIO
AXR0[8]/ MDIO_D/GP3[8] B6 I/O IPU MDIO serial data.McASP0, GPIOAXR0[7]/ MDIO_CLK/GP3[7] A6 O IPD MDIO clock
Table 3-21. Multimedia Card/Secure Digital (MMC/SD) Terminal Functions
PIN
NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMA_A[1]/ MMCSD_CLK/UHPI_HCNTL0/GP1[1] R9 O IPU MMCSD Clock.EMIFA, UHPI, GPIOEMA_A[2]/ MMCSD_CMD/UHPI_HCNTL1/GP1[2] P9 I/O IPU MMCSD Command.EMIFA, UHPI, GPIO,EMA_D[7]/ MMCSD_DAT[7]/UHPI_HD[7]/GP0[7]/BOOT[13] M15 I/O IPU
BOOTEMA_D[6]/ MMCSD_DAT[6]/UHPI_HD[6]/GP0[6] N13 I/O IPUEMA_D[5]/ MMCSD_DAT[5]/UHPI_HD[5]/GP0[5] N15 I/O IPUEMA_D[4]/ MMCSD_DAT[4]/UHPI_HD[4]/GP0[4] P13 I/O IPU
EMIFA, UHPI, GPIO MMC/SD data.EMA_D[3]/ MMCSD_DAT[3]/UHPI_HD[3]/GP0[3] P15 I/O IPUEMA_D[2]/ MMCSD_DAT[2]/UHPI_HD[2]/GP0[2] R13 I/O IPUEMA_D[1]/ MMCSD_DAT[1]/UHPI_HD[1]/GP0[1] R15 I/O IPU
EMIFA, UHPI, GPIO,EMA_D[0]/ MMCSD_DAT[0]/UHPI_HD[0]/GP0[0]/BOOT[12] T13 I/O IPU
BOOT
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Submit Documentation Feedback Device Overview 35
PRODUCT PREVIEW
3.7.19 Liquid Crystal Display Controller(LCD)
3.7.20 Reserved
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 3-22. Liquid Crystal Display Controller (LCD) Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
PULL
(2)
MUXED DESCRIPTIONZKB
EMA_D[15]/UHPI_HD[15] /LCD_D[15]/GP0[15] M16 I/O IPDEMA_D[14]/UHPI_HD[14]/ LCD_D[14]/GP0[14] N14 I/O IPDEMA_D[13]/UHPI_HD[13]/ LCD_D[13]/GP0[13] N16 I/O IPDEMA_D[12]/UHPI_HD[12]/ LCD_D[12]/GP0[12] P14 I/O IPD
EMIFA, UHPI,GPIOEMA_D[11]/UHPI_HD[11]/ LCD_D[11]/GP0[11] P16 I/O IPDEMA_D[10]/UHPI_HD[10]/ LCD_D[10]/GP0[10] R14 I/O IPD
LCD data bus.EMA_D[9]/UHPI_HD[9]/ LCD_D[9]/GP0[9] T14 I/O IPDEMA_D[8]/UHPI_HD[8]/ LCD_D[8]/GP0[8] N12 I/O IPDEMA_A[0]/ LCD_D[7]/GP1[0] T9 I/O IPD
EMIFA, GPIOEMA_A[3]/ LCD_D[6]/GP1[3] N9 I/O IPD
EMIFA, UHPI,EMA_BA[1]/ LCD_D[5]/UHPI_HHWIL/GP1[13] P8 I/O IPU
GPIOEMA_BA[0]/ LCD_D[4]/GP1[14] R8 I/O IPUEMA_A[4]/ LCD_D[3]/GP1[4] T10 I/O IPDEMA_A[5]/ LCD_D[2]/GP1[5] R10 I/O IPD LCD data bus.EMA_A[6]/ LCD_D[1]/GP1[6] P10 I/O IPDEMA_A[7]/ LCD_D[0]/GP1[7] N10 I/O IPD
EMIFA, GPIOEMA_A[8]/ LCD_PCLK/GP1[8] T11 O IPU LCD pixel clock.EMA_A[9]/ LCD_HSYNC/GP1[9] R11 O IPU LCD horizontal sync.EMA_A[10]/ LCD_VSYNC/GP1[10] N8 O IPU LCD vertical sync.LCD AC bias enableEMA_A[11]/ LCD_AC_ENB_CS/GP1[11] P11 O IPU
chip select.EMA_A[12]/ LCD_MCLK/GP1[12] N11 O IPU LCD memory clock.
(1) I = Input, O = Output, I/O = Bidirectional, Z = High impedance, PWR = Supply voltage, GND = Ground, A = Analog signal.Note: For multiplexed pins where functions have different types (ie., input versus output), the table reflects the pin function direction forthat particular peripheral.(2) IPD = Internal Pulldown resistor, IPU = Internal Pullup resistor
Table 3-23. Reserved Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
DESCRIPTIONZKB
RSV1 F7 PWR Reserved. (Leave unconnected, do not connect to power or ground.)Reserved. For proper device operation, this pin must be tied directly toRSV2 B1 PWR
CV
DD
.
(1) PWR = Supply voltage.
Device Overview36 Submit Documentation Feedback
PRODUCT PREVIEW
3.7.21 Supply and Ground
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 3-24. Supply and Ground Terminal Functions
PIN NOSIGNAL NAME TYPE
(1)
DESCRIPTIONZKB
F6,G6, G7,G10, G11,H6,
H7, H10, H11,CVDD (Core supply) H12,J6, J7, PWR 1.2-V core supply voltage pinsJ10, J11, J12,K6, K7, K10,K11,L6
B16, E5, E8,E9, E12, F5,F11, F12, G5,DVDD (I/O supply) G12, K5, K12, PWR 3.3-V I/O supply voltage pins.L5, L11, L12,M5, M8, M9,M12, R1, R16A1, A2, A15,A16,
B2,
E6, E7, E10,E11,
F8, F9, F10,G8, G9,H8, H9,VSS (Ground) GND Ground pins.J8, J9,K8, K9,L7, L8, L9,L10,
M6, M7, M10,M11,
T1, T2, T15,T16
(1) PWR = Supply voltage, GND - Ground.
Submit Documentation Feedback Device Overview 37
PRODUCT PREVIEW
4 Device Configuration
4.1 SYSCFG Module
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The following system level features of the chip are controlled by the SYSCFG peripheral:Readable Device, Die, and Chip Revision IDControl of Pin MultiplexingPriority of bus accesses different bus masters in the systemCapture at power on reset the chip BOOT[15:0] pin values and make them available to softwareSpecial case settings for peripherals: Locking of PLL controller settings Default burst sizes for EDMA3 TC0 and TC1 Selection of the source for the eCAP module input capture (including on chip sources) McASP AMUTEIN selection and clearing of AMUTE status for the three McASP peripherals Control of the reference clock source and other side-band signals for both of the integrated USBPHYs
Clock source selection for EMIFA and EMIFBSource of emulation suspend signal (from either ARM or DSP) of peripherals supporting this functionControl of on-chip inter-processor interrupts for signaling between ARM and DSP
Since the SYSCFG peripheral controls global operation of the device, its registers are protected againsterroneous accesses by several mechanisms:A special key sequence must be written to KICK0, KICK1 registers before any other registers arewriteable.
Unlock sequence: write 0x83e70b13 to KICK0, then write 0x95A4F1E0 to KICK1 SYSCFG remains unlocked after the unlock sequence until locked again. Any number of accesses may be performed while the module is unlocked Locking the module is accomplished by writing any other value to either KICK0 or KICK1Additionally, many registers are accessible only by a host ( ARM or DSP) when it is operating in itsprivileged mode. (ex. from the kernel, but not from user space code).
Table 4-1. System Configuration (SYSCFG) Module Register Access
Offset Acronym Register Description Access
0x01C1 4000 REVID Revision Identification Register 0x01C14008 DIEIDR0-DIEDR3 Device Identification Register 0 - 3 0x01C1 40140x01C1 4020 BOOTCFG Boot Configuration Register Privileged mode0x01C1 4038 KICK0R Kick 0 Register Privileged mode0x01C1 403C KICK1R Kick 1 Register Privileged mode0x01C1 4040 HOST0CFG Host 0 Configuration Register 0x01C1 4044 HOST1CFG Host 1 Configuration Register 0x01C1 40E0 IRAWSTAT Interrupt Raw Status/Set Register Privileged mode0x01C1 40E4 IENSTAT Interrupt Enable Status/Clear Register Privileged mode0x01C1 40E8 IENSET Interrupt Enable Register Privileged mode0x01C1 40EC IENCLR Interrupt Enable Clear Register Privileged mode0x01C1 40F0 EOI End of Interrupt Register Privileged mode0x01C1 40F4 FLTADDRR Fault Address Register Privileged mode0x01C1 40F8 FLTSTAT Fault Status Register 0x01C1 MSTPRI0-MSTPRI2 Master Priority 0-2 Registers Privileged mode4110-0x01C1 4118
Device Configuration38 Submit Documentation Feedback
PRODUCT PREVIEW
4.2 Pin Multiplexing Control Registers
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 4-1. System Configuration (SYSCFG) Module Register Access (continued)
Offset Acronym Register Description Access
0x01C1 PINMUX0-PINMUX19 Pin Multiplexing Control 0-19 Registers Privileged mode4120-0x01C1 416C0x01C1 4170 SUSPSRC Suspend Source Register Privileged mode0x01C1 4174 CHIPSIG Chip Signal Register 0x01C1 4178 CHIPSIG_CLR Chip Signal Clear Register 0x01C1 CFGCHIP0-CFGCHIP4 Chip Configuration 0-4 Registers Privileged mode417C-0x01C1
418C
Device level pin multiplexing is controlled by registers PINMUX0 - PINMUX19 in the SYSCFG module.
For the OMAP-L13x device family, pin multiplexing can be controlled on a pin-by-pin basis. Each pin thatis multiplexed with several different functions has a corresponding 4-bit field in one of the PINMUXregisters.
Pin multiplexing selects which of several peripheral pin functions controls the pin's IO buffer output dataand output enable values only. The default pin multiplexing control for almost every pin is to select 'none'of the peripheral functions in which case the pin's IO buffer is held tri-stated.
Note that the input from each pin is always routed to all of the peripherals that share the pin; the PINMUXregisters have no effect on input from a pin. This feature allows a pin such asAHCLKX0/AHCLKX2/USB_REFCLKIN/GP2[11] to be used as both the McASP0 AHCLKX0 (output) pin,and the McASP2 AHCLKX2 master clock (output) pin simultaneously.
Section 4.2.1 through Section 4.2.20 contain the specific bit field definitions for the PINMUX registers onthe OMAP-L137 devices.
Submit Documentation Feedback Device Configuration 39
PRODUCT PREVIEW
4.2.1 PINMUX0 Register Definition (Address 0x01C1 4120 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX0[31:28] PINMUX0[27:24] PINMUX0[23:20] PINMUX0[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX0[15:12] PINMUX0[11:8] PINMUX0[7:4] PINMUX0[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-1. PINMUX0 Register Bit Layout
Table 4-2. Field Descriptions for PINMUX0
Bits Field ZKB Description
Ball
31:28 PINMUX0[31:28] K15 EMB_WE Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_WE 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX0[27:24] A8 EMB_RAS Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_RAS 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX0[23:20] L13 EMB_CAS Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_CAS 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX0[19:16] D9 EMB_CS[0] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_CS[0] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX0[15:12] C14 EMB_CLK Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Reserved - Behavior is Undefined 1000 = Reserved - Behavior is Undefined0010 = Selects Output Function EMB_CLK other = Reserved - Behavior is Undefined.11:8 PINMUX0[11:8] C13 EMB_SDCKE Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_SDCKE 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX0[7:4] J5 EMU[0] / GP7[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function GP7[15] 1000 = Selects Output Function EMU[0]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX0[3:0] K1 RTCK / GP7[14] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function GP7[14] 1000 = Selects Output Function RTCK0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Device Configuration40 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.2 PINMUX1 Register Definition (Address 0x01C1 4124 )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX1[31:28] PINMUX1[27:24] PINMUX1[23:20] PINMUX1[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX1[15:12] PINMUX1[11:8] PINMUX1[7:4] PINMUX1[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-2. PINMUX1 Register Bit Layout
Table 4-3. Field Descriptions for PINMUX1
Bits Field ZKB Description
Ball
31:28 PINMUX1[31:28] C11 EMB_A[5] / GP7[7] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[5] 1000 = Selects Output Function GP7[7]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX1[27:24] D11 EMB_A[4] / GP7[6] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[4] 1000 = Selects Output Function GP7[6]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX1[23:20] A10 EMB_A[3] / GP7[5] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[3] 1000 = Selects Output Function GP7[5]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX1[19:16] B10 EMB_A[2] / GP7[4] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[2] 1000 = Selects Output Function GP7[4]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX1[15:12] C10 EMB_A[1] / GP7[3] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[1] 1000 = Selects Output Function GP7[3]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.11:8 PINMUX1[11:8] D10 EMB_A[0] / GP7[2] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[0] 1000 = Selects Output Function GP7[2]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX1[7:4] C9 EMB_BA[0] / GP7[1] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_BA[0] 1000 = Selects Output Function GP7[1]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX1[3:0] B9 EMB_BA[1] / GP7[0] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_BA[1] 1000 = Selects Output Function GP7[0]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 41
PRODUCT PREVIEW
4.2.3 PINMUX2 Register Definition (Address 0x01C1 4128 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX2[31:28] PINMUX2[27:24] PINMUX2[23:20] PINMUX2[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX2[15:12] PINMUX2[11:8] PINMUX2[7:4] PINMUX2[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-3. PINMUX2 Register Bit Layout
Table 4-4. Field Descriptions for PINMUX2
Bits Field ZKB Description
Ball
31:28 PINMUX2[31:28] G14 EMB_D[31] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[31] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX2[27:24] B15 EMB_A[12] / GP3[13] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[12] 1000 = Selects Output Function GP3[13]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX2[23:20] B12 EMB_A[11] / GP7[13] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[11] 1000 = Selects Output Function GP7[13]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX2[19:16] A9 EMB_A[10]/GP7[12] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[10] 1000 = Selects Output Function GP7[12]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX2[15:12] C12 EMB_A[9] / GP7[11] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[9] 1000 = Selects Output Function GP7[11]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.11:8 PINMUX2[11:8] D12 EMB_A[8] / GP7[10] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[8] 1000 = Selects Output Function GP7[10]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX2[7:4] A11 EMB_A[7] / GP7[9] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[7] 1000 = Selects Output Function GP7[9]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX2[3:0] B11 EMB_A[6] / GP7[8] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_A[6] 1000 = Selects Output Function GP7[8]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Device Configuration42 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.4 PINMUX3 Register Definition (Address 0x01C1 412C )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX3[31:28] PINMUX3[27:24] PINMUX3[23:20] PINMUX3[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX3[15:12] PINMUX3[11:8] PINMUX3[7:4] PINMUX3[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-4. PINMUX3 Register Bit Layout
Table 4-5. Field Descriptions for PINMUX3
Bits Field ZKB Description
Ball
31:28 PINMUX3[31:28] L15 EMB_D[23] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[23] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX3[27:24] A13 EMB_D[24] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[24] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX3[23:20] B14 EMB_D[25] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[25] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX3[19:16] A14 EMB_D[26] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[26] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX3[15:12] E14 EMB_D[27] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[27] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.11:8 PINMUX3[11:8] E15 EMB_D[28] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[28] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX3[7:4] F14 EMB_D[29] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[29] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX3[3:0] F15 EMB_D[30] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[30] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 43
PRODUCT PREVIEW
4.2.5 PINMUX4 Register Definition (Address 0x01C1 4130 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX4[31:28] PINMUX4[27:24] PINMUX4[23:20] PINMUX4[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX4[15:12] PINMUX4[11:8] PINMUX4[7:4] PINMUX4[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-5. PINMUX4 Register Bit Layout
Table 4-6. Field Descriptions for PINMUX4
Bits Field ZKB Description
Ball
31:28 PINMUX4[31:28] A12 EMB_WE_DQM[3] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function 1000 = Reserved - Behavior is UndefinedEMB_WE_DQM[3] other = Reserved - Behavior is Undefined.0010 = Reserved - Behavior is Undefined27:24 PINMUX4[27:24] G15 EMB_D[16] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[16] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX4[23:20] H14 EMB_D[17] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[17] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX4[19:16] H15 EMB_D[18] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[18] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX4[15:12] J14 EMB_D[19] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[19] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.11:8 PINMUX4[11:8] K13 EMB_D[20] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[20] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX4[7:4] K16 EMB_D[21] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[21] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX4[3:0] L14 EMB_D[22] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[22] 1000 = Reserved - Behavior is Undefined0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Device Configuration44 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.6 PINMUX5 Register Definition (Address 0x01C1 4134 )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX5[31:28] PINMUX5[27:24] PINMUX5[23:20] PINMUX5[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX5[15:12] PINMUX5[11:8] PINMUX5[7:4] PINMUX5[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-6. PINMUX5 Register Bit Layout
Table 4-7. Field Descriptions for PINMUX5
Bits Field ZKB Description
Ball
31:28 PINMUX5[31:28] J15 EMB_D[6] / GP6[6] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[6] 1000 = Selects Output Function GP6[6]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX5[27:24] J13 EMB_D[5] / GP6[5] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[5] 1000 = Selects Output Function GP6[5]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX5[23:20] H16 EMB_D[4] / GP6[4] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[4] 1000 = Selects Output Function GP6[4]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX5[19:16] H13 EMB_D[3] / GP6[3] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[3] 1000 = Selects Output Function GP6[3]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX5[15:12] G16 EMB_D[2] / GP6[2] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[2] 1000 = Selects Output Function GP6[2]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.11:8 PINMUX5[11:8] G13 EMB_D[1] / GP6[1] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[1] 1000 = Selects Output Function GP6[1]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX5[7:4] F16 EMB_D[0] / GP6[0] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[0] 1000 = Selects Output Function GP6[0]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX5[3:0] B13 EMB_WE_DQM[2] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function 1000 = Reserved - Behavior is UndefinedEMB_WE_DQM[2] other = Reserved - Behavior is Undefined.0010 = Reserved - Behavior is Undefined
Submit Documentation Feedback Device Configuration 45
PRODUCT PREVIEW
4.2.7 PINMUX6 Register Definition (Address 0x01C1 4138 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX6[31:28] PINMUX6[27:24] PINMUX6[23:20] PINMUX6[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX6[15:12] PINMUX6[11:8] PINMUX6[7:4] PINMUX6[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-7. PINMUX6 Register Bit Layout
Table 4-8. Field Descriptions for PINMUX6
Bits Field ZKB Description
Ball
31:28 PINMUX6[31:28] E16 EMB_D[14] / GP6[14] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[14] 1000 = Selects Output Function GP6[14]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX6[27:24] E13 EMB_D[13] / GP6[13] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[13] 1000 = Selects Output Function GP6[13]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX6[23:20] D16 EMB_D[12] / GP6[12] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[12] 1000 = Selects Output Function GP6[12]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX6[19:16] D15 EMB_D[11] / GP6[11] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[11] 1000 = Selects Output Function GP6[11]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX6[15:12] D14 EMB_D[10] / GP6[10] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[10] 1000 = Selects Output Function GP6[10]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.11:8 PINMUX6[11:8] D13 EMB_D[9] / GP6[9] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[9] 1000 = Selects Output Function GP6[9]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX6[7:4] C16 EMB_D[8] / GP6[8] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[8] 1000 = Selects Output Function GP6[8]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX6[3:0] J16 EMB_D[7] / GP6[7] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[7] 1000 = Selects Output Function GP6[7]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Device Configuration46 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.8 PINMUX7 Register Definition (Address 0x01C1 413C )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX7[31:28] PINMUX7[27:24] PINMUX7[23:20] PINMUX7[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX7[15:12] PINMUX7[11:8] PINMUX7[7:4] PINMUX7[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-8. PINMUX7 Register Bit Layout
Table 4-9. Field Descriptions for PINMUX7
Bits Field ZKB Description
Ball
31:28 PINMUX7[31:28] N4 SPI0_SCS[0] / UART0_RTS / EQEP0B / GP5[4] / BOOT[4] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function EQEP0B0001 = Selects Output Function SPI0_SCS[0] 1000 = Selects Output Function GP5[4]0010 = Selects Output Function UART0_RTS other = Reserved - Behavior is Undefined.27:24 PINMUX7[27:24] R5 SPI0_ENA / UART0_CTS / EQEP0A / GP5[3] / BOOT[3] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function EQEP0A0001 = Selects Output Function SPI0_ENA 1000 = Selects Output Function GP5[3]0010 = Selects Output Function UART0_CTS other = Reserved - Behavior is Undefined.23:20 PINMUX7[23:20] T5 SPI0_CLK / EQEP1I / GP5[2] / BOOT[2] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI0_CLK 1000 = Selects Output Function GP5[2]0010 = Selects Output Function EQEP1I other = Reserved - Behavior is Undefined.19:16 PINMUX7[19:16] P6 SPIO_SOMI[0] / EQEP0S / GP5[1] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined.0001 = Selects Output Function SPIO_SOMI[0] 1000 = Selects Output Function GP5[1]0010 = Selects Output Function EQEP0S other = Reserved - Behavior is Undefined.15:12 PINMUX7[15:12] R6 SPI0_SOMI[0] / EQEP0I / GP5[0] / BOOT[0] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI0_SOMI[0] 1000 = Selects Output Function GP5[0]0010 = Selects Output Function EQEP0I other = Reserved - Behavior is Undefined.11:8 PINMUX7[11:8] K14 EMB_WE_DQM[0] / GP5[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function 1000 = Selects Output Function GP5[15]EMB_WE_DQM[0] other = Reserved - Behavior is Undefined.0010 = Reserved - Behavior is Undefined7:4 PINMUX7[7:4] C15 EMB_WE_DQM[1] / GP5[14] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function 1000 = Selects Output Function GP5[14]EMB_WE_DQM[1] other = Reserved - Behavior is Undefined.0010 = Reserved - Behavior is Undefined3:0 PINMUX7[3:0] F13 EMB_D[15] / GP6[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMB_D[15] 1000 = Selects Output Function GP6[15]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 47
PRODUCT PREVIEW
4.2.9 PINMUX8 Register Definition (Address 0x01C1 4140 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX8[31:28] PINMUX8[27:24] PINMUX8[23:20] PINMUX8[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX8[15:12] PINMUX8[11:8] PINMUX8[7:4] PINMUX8[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-9. PINMUX8 Register Bit Layout
Table 4-10. Field Descriptions for PINMUX8
Bits Field ZKB Description
Ball
31:28 PINMUX8[31:28] R4 SPI1_ENA / UART2_RXD / GP5[12] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI1_ENA 1000 = Selects Output Function GP5[12]0010 = Selects Output Function UART2_RXD other = Reserved - Behavior is Undefined.27:24 PINMUX8[27:24] T4 AXR1[11] / GP5[11] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[11] 1000 = Selects Output Function GP5[11]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX8[23:20] N3 AXR1[10] / GP5[10] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[10] 1000 = Selects Output Function GP5[10]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX8[19:16] P3 UART0_TXD / I2C0_SCL / TM64P0_OUT12 / GP5[9] Control0000 = Pin is tri-stated. 0100 = Selects Output Function TM64P0_OUT120001 = Selects Output Function UART0_TXD 1000 = Selects Output Function GP5[9]0010 = Selects Output Function I2C0_SCL other = Reserved - Behavior is Undefined.15:12 PINMUX8[15:12] R3 UART0_RXD / I2C0_SDA / TM64P0_IN12 / GP5[8] / BOOT[8] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function TM64P0_IN120001 = Selects Output Function UART0_RXD 1000 = Selects Output Function GP5[8]0010 = Selects Output Function I2C0_SDA other = Reserved - Behavior is Undefined.11:8 PINMUX8[11:8] T6 SPI1_CLK / EQEP1S / GP5[7] / BOOT[7] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI1_CLK 1000 = Selects Output Function GP5[7]0010 = Selects Output Function EQEP1S other = Reserved - Behavior is Undefined.7:4 PINMUX8[7:4] N5 SPI1_SIMO[0] / I2C1_SDA / GP5[6] / BOOT[6] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI1_SIMO[0] 1000 = Selects Output Function GP5[6]0010 = Selects Output Function I2C1_SDA other = Reserved - Behavior is Undefined.3:0 PINMUX8[3:0] P5 SPI1_SOMI[0] / I2C1_SCL / GP5[5] / BOOT[5] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI1_SOMI[0] 1000 = Selects Output Function GP5[5]0010 = Selects Output Function I2C1_SCL other = Reserved - Behavior is Undefined.
Device Configuration48 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.10 PINMUX9 Register Definition (Address 0x01C1 4144 )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX9[31:28] PINMUX9[27:24] PINMUX9[23:20] PINMUX9[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX9[15:12] PINMUX9[11:8] PINMUX9[7:4] PINMUX9[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-10. PINMUX9 Register Bit Layout
Table 4-11. Field Descriptions for PINMUX9
Bits Field ZKB Description
Ball
31:28 PINMUX9[31:28] C4 AFSR0 / GP3[12] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AFSR0 1000 = Selects Output Function GP3[12]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.27:24 PINMUX9[27:24] B4 ACLKR0 / ECAP1 / APWM1 / GP2[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function ACLKR0 1000 = Selects Output Function GP2[15]0010 = Selects Output Function ECAP1 / APWM1 other = Reserved - Behavior is Undefined.23:20 PINMUX9[23:20] A4 AHCLKR0 / RMII_MHZ_50_CLK / GP2[14] / BOOT[11] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AHCLKR0 1000 = Selects Output Function GP2[14]0010 = Selects Output Function other = Reserved - Behavior is Undefined.RMII_MHZ_50_CLK19:16 PINMUX9[19:16] D5 AFSX0 / GP2[13] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AFSX0 1000 = Selects Output Function GP2[13]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX9[15:12] C5 ACLKX0 / ECAP0 / APWM0 / GP2[12] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function ACLKX0 1000 = Selects Output Function GP2[12]0010 = Selects Output Function ECAP0 / APWM0 other = Reserved - Behavior is Undefined.11:8 PINMUX9[11:8] B5 AHCLKX0 / AHCLKX2 / USB_REFCLKIN / GP2[11] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function USB_REFCLKIN0001 = Selects Output Function AHCLKX0 1000 = Selects Output Function GP2[11]0010 = Selects Output Function AHCLKX2 other = Reserved - Behavior is Undefined.7:4 PINMUX9[7:4] E4 USB0_DRVVBUS / GP4[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function USB0_DRVVBUS 1000 = Selects Output Function GP4[15]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.3:0 PINMUX9[3:0] P4 SPI1_SCS[0] / UART2_TXD / GP5[13] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function SPI1_SCS[0] 1000 = Selects Output Function GP5[13]0010 = Selects Output Function UART2_TXD other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 49
PRODUCT PREVIEW
4.2.11 PINMUX10 Register Definition (Address 0x01C1 4148 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX10[31:28] PINMUX10[27:24] PINMUX10[23:20] PINMUX10[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX10[15:12] PINMUX10[11:8] PINMUX10[7:4] PINMUX10[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-11. PINMUX10 Register Bit Layout
Table 4-12. Field Descriptions for PINMUX10
Bits Field ZKB Description
Ball
31:28 PINMUX10[31:28] D7 AXR0[6] / RMII_RXER / ACLKR2 / GP3[6] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function ACLKR20001 = Selects Output Function AXR0[6] 1000 = Selects Output Function GP3[6]0010 = Selects Output Function RMII_RXER other = Reserved - Behavior is Undefined.27:24 PINMUX10[27:24] C7 AXR0[5] / RMII_RXD[1] / AFSX2 / GP3[5] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AFSX20001 = Selects Output Function AXR0[5] 1000 = Selects Output Function GP3[5]0010 = Selects Output Function RMII_RXD[1] other = Reserved - Behavior is Undefined.23:20 PINMUX10[23:20] B7 AXR0[4] / RMII_RXD[0] / AXR2[1] / GP3[4] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AXR2[1]0001 = Selects Output Function AXR0[4] 1000 = Selects Output Function GP3[4]0010 = Selects Output Function RMII_RXD[0] other = Reserved - Behavior is Undefined.19:16 PINMUX10[19:16] A7 AXR0[3] / RMII_CRS_DV / AXR2[2] / GP3[3] Control0000 = Pin is tri-stated. 0100 = Selects Output Function AXR2[2]0001 = Selects Output Function AXR0[3] 1000 = Selects Output Function GP3[3]0010 = Selects Output Function RMII_CRS_DV other = Reserved - Behavior is Undefined.15:12 PINMUX10[15:12] D8 AXR0[2] / RMII_TXEN / AXR2[3] / GP3[2] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AXR2[3]0001 = Selects Output Function AXR0[2] 1000 = Selects Output Function GP3[2]0010 = Selects Output Function RMII_TXEN other = Reserved - Behavior is Undefined.11:8 PINMUX10[11:8] C8 AXR0[1] / RMII_TXD[1] / ACLKX2 / GP3[1] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function ACLKX20001 = Selects Output Function AXR0[1] 1000 = Selects Output Function GP3[1]0010 = Selects Output Function RMII_TXD[1] other = Reserved - Behavior is Undefined.7:4 PINMUX10[7:4] B8 AXR0[0] / RMII_TXD[0] / AFSR2 / GP3[0] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AFSR20001 = Selects Output Function AXR0[0] 1000 = Selects Output Function GP3[0]0010 = Selects Output Function RMII_TXD[0] other = Reserved - Behavior is Undefined.3:0 PINMUX10[3:0] L4 AMUTE0 / RESETOUT Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AMUTE0 1000 = Selects Output Function RESETOUT0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Device Configuration50 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.12 PINMUX11 Register Definition (Address 0x01C1 414C )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX11[31:28] PINMUX11[27:24] PINMUX11[23:20] PINMUX11[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX11[15:12] PINMUX11[11:8] PINMUX11[7:4] PINMUX11[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-12. PINMUX11 Register Bit Layout
Table 4-13. Field Descriptions for PINMUX11
Bits Field ZKB Description
Ball
31:28 PINMUX11[31:28] K4 AFSX1 / EPWMSYNCI / EPWMSYNC0 / GP4[10] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function EPWMSYNC00001 = Selects Output Function AFSX1 1000 = Selects Output Function GP4[10]0010 = Selects Output Function EPWMSYNCI other = Reserved - Behavior is Undefined.27:24 PINMUX11[27:24] K3 ACLKX1 / EPWM0A / GP3[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function ACLKX1 1000 = Selects Output Function GP3[15]0010 = Selects Output Function EPWM0A other = Reserved - Behavior is Undefined.23:20 PINMUX11[23:20] K2 AHCLKX1 / EPWM0B / GP3[14] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AHCLKX1 1000 = Selects Output Function GP3[14]0010 = Selects Output Function EPWM0B other = Reserved - Behavior is Undefined.19:16 PINMUX11[19:16] A5 AXR0[11] / AXR2[0] / GP3[11] Control0000 = Pin is tri-stated. 0100 = Selects Output Function AXR2[0]0001 = Selects Output Function AXR0[11] 1000 = Selects Output Function GP3[11]0010 = Reserved - Behavior is Undefined. other = Reserved - Behavior is Undefined.15:12 PINMUX11[15:12] D6 UART1_TXD / AXR0[10] / GP3[10] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function UART1_TXD 1000 = Selects Output Function GP3[10]0010 = Selects Output Function AXR0[10] other = Reserved - Behavior is Undefined.11:8 PINMUX11[11:8] C6 UART1_RXD / AXR0[9] / GP3[9] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function UART1_RXD 1000 = Selects Output Function GP3[9]0010 = Selects Output Function AXR0[9] other = Reserved - Behavior is Undefined.7:4 PINMUX11[7:4] B6 AXR0[8] / MDIO_D / GP3[8] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR0[8] 1000 = Selects Output Function GP3[8]0010 = Selects Output Function MDIO_D other = Reserved - Behavior is Undefined.3:0 PINMUX11[3:0] A6 AXR0[7] / MDIO_CLK / GP3[7] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR0[7] 1000 = Selects Output Function GP3[7]0010 = Selects Output Function MDIO_CLK other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 51
PRODUCT PREVIEW
4.2.13 PINMUX12 Register Definition (Address 0x01C1 4150 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX12[31:28] PINMUX12[27:24] PINMUX12[23:20] PINMUX12[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX12[15:12] PINMUX12[11:8] PINMUX12[7:4] PINMUX12[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-13. PINMUX12 Register Bit Layout
Table 4-14. Field Descriptions for PINMUX12
Bits Field ZKB Description
Ball
31:28 PINMUX12[31:28] P1 AXR1[3] / EQEP1A / GP4[3] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[3] 1000 = Selects Output Function GP4[3]0010 = Selects Output Function EQEP1A other = Reserved - Behavior is Undefined.27:24 PINMUX12[27:24] P2 AXR1[2] / GP4[2] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[2] 1000 = Selects Output Function GP4[2]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX12[23:20] R2 AXR1[1] / GP4[1] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[1] 1000 = Selects Output Function GP4[1]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX12[19:16] T3 AXR1[0] / GP4[0] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined.0001 = Selects Output Function AXR1[0] 1000 = Selects Output Function GP4[0]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.15:12 PINMUX12[15:12] D4 AMUTE1 / EHRPWMTZ / GP4[14] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AMUTE1 1000 = Selects Output Function GP4[14]0010 = Selects Output Function EHRPWMTZ other = Reserved - Behavior is Undefined.11:8 PINMUX12[11:8] L3 AFSR1 / GP4[13] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AFSR1 1000 = Selects Output Function GP4[13]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.7:4 PINMUX12[7:4] L2 ACLKR1 / ECAP2 / APWM2 / GP4[12] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function ACLKR1 1000 = Selects Output Function GP4[12]0010 = Selects Output Function ECAP2 / APWM2 other = Reserved - Behavior is Undefined.3:0 PINMUX12[3:0] L1 AHCLKR1 / GP4[11] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AHCLKR1 1000 = Selects Output Function GP4[11]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.
Device Configuration52 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.14 PINMUX13 Register Definition (Address 0x01C1 4154 )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX13[31:28] PINMUX13[27:24] PINMUX13[23:20] PINMUX13[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX13[15:12] PINMUX13[11:8] PINMUX13[7:4] PINMUX13[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-14. PINMUX13 Register Bit Layout
Table 4-15. Field Descriptions for PINMUX13
Bits Field ZKB Description
Ball
31:28 PINMUX13[31:28] R15 EMA_D[1] / MMCSD_DAT[1] / UHPI_HD[1] / GP0[1] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[1]0001 = Selects Output Function EMA_D[1] 1000 = Selects Output Function GP0[1]0010 = Selects Output Function MMCSD_DAT[1] other = Reserved - Behavior is Undefined.27:24 PINMUX13[27:24] T13 EMA_D[0] / MMCSD_DAT[0] / UHPI_HD[0] / GP0[0] / BOOT[12] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[0]0001 = Selects Output Function EMA_D[0] 1000 = Selects Output Function GP0[0]0010 = Selects Output Function MMCSD_DAT[0] other = Reserved - Behavior is Undefined.23:20 PINMUX13[23:20] M1 AXR1[9] / GP4[9] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[9] 1000 = Selects Output Function GP4[9]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.19:16 PINMUX13[19:16] M2 AXR1[8] / EPWM1A / GP4[8]0000 = Pin is tri-stated. 0100 = Selects Output Function EPWM1A0001 = Selects Output Function AXR1[8] 1000 = Selects Output Function GP4[8]0010 = Reserved - Behavior is Undefined. other = Reserved - Behavior is Undefined.15:12 PINMUX13[15:12] M3 AXR1[7] / EPWM1B / GP4[7] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[7] 1000 = Selects Output Function GP4[7]0010 = Selects Output Function EPWM1B other = Reserved - Behavior is Undefined.11:8 PINMUX13[11:8] M4 AXR1[6] / EPWM2A / GP4[6] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[6] 1000 = Selects Output Function GP4[6]0010 = Selects Output Function EPWM2A other = Reserved - Behavior is Undefined.7:4 PINMUX13[7:4] N1 AXR1[5] / EPWM2B / GP4[5] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[5] 1000 = Selects Output Function GP4[5]0010 = Selects Output Function EPWM2B other = Reserved - Behavior is Undefined.3:0 PINMUX13[3:0] N2 AXR1[4] / EQEP1B / GP4[4] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function AXR1[4] 1000 = Selects Output Function GP4[4]0010 = Selects Output Function EQEP1B other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 53
PRODUCT PREVIEW
4.2.15 PINMUX14 Register Definition (Address 0x01C1 4158 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX14[31:28] PINMUX14[27:24] PINMUX14[23:20] PINMUX14[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX14[15:12] PINMUX14[11:8] PINMUX14[7:4] PINMUX14[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-15. PINMUX14 Register Bit Layout
Table 4-16. Field Descriptions for PINMUX14
Bits Field ZKB Description
Ball
31:28 PINMUX14[31:28] T14 EMA_D[9] / UHPI_HD[9] / LCD_D[9] / GP0[9] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[9]0001 = Selects Output Function EMA_D[9] 1000 = Selects Output Function GP0[9]0010 = Selects Output Function UHPI_HD[9] other = Reserved - Behavior is Undefined.27:24 PINMUX14[27:24] N12 EMA_D[8] / UHPI_HD[8] / LCD_D[8] / GP0[8] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[8]0001 = Selects Output Function EMA_D[8] 1000 = Selects Output Function GP0[8]0010 = Selects Output Function UHPI_HD[8] other = Reserved - Behavior is Undefined.23:20 PINMUX14[23:20] M15 EMA_D[7] / MMCSD_DAT[7] / UHPI_HD[7] / GP0[7] / BOOT[13] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[7]0001 = Selects Output Function EMA_D[7] 1000 = Selects Output Function GP0[7]0010 = Selects Output Function MMCSD_DAT[7] other = Reserved - Behavior is Undefined.19:16 PINMUX14[19:16] N13 EMA_D[6] / MMCSD_DAT[6] / UHPI_HD[6] / GP0[6]0000 = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[6]0001 = Selects Output Function EMA_D[6] 1000 = Selects Output Function GP0[6]0010 = Selects Output Function MMCSD_DAT[6] other = Reserved - Behavior is Undefined.15:12 PINMUX14[15:12] N15 EMA_D[5] / MMCSD_DAT[5] / UHPI_HD[5] / GP0[5] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[5]0001 = Selects Output Function EMA_D[5] 1000 = Selects Output Function GP0[5]0010 = Selects Output Function MMCSD_DAT[5] other = Reserved - Behavior is Undefined.11:8 PINMUX14[11:8] P13 EMA_D[4] / MMCSD_DAT[4] / UHPI_HD[4] / GP0[4] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[4]0001 = Selects Output Function EMA_D[4] 1000 = Selects Output Function GP0[4]0010 = Selects Output Function MMCSD_DAT[4] other = Reserved - Behavior is Undefined.7:4 PINMUX14[7:4] P15 EMA_D[3] / MMCSD_DAT[3] / UHPI_HD[3] / GP0[3] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[3]0001 = Selects Output Function EMA_D[3] 1000 = Selects Output Function GP0[3]0010 = Selects Output Function MMCSD_DAT[3] other = Reserved - Behavior is Undefined.3:0 PINMUX14[3:0] R13 EMA_D[2] / MMCSD_DAT[2] / UHPI_HD[2] / GP0[2] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HD[2]0001 = Selects Output Function EMA_D[2] 1000 = Selects Output Function GP0[2]0010 = Selects Output Function MMCSD_DAT[2] other = Reserved - Behavior is Undefined.
Device Configuration54 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.16 PINMUX15 Register Definition (Address 0x01C1 415C )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX15[31:28] PINMUX15[27:24] PINMUX15[23:20] PINMUX15[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX15[15:12] PINMUX15[11:8] PINMUX15[7:4] PINMUX15[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-16. PINMUX15 Register Bit Layout
Table 4-17. Field Descriptions for PINMUX15
Bits Field ZKB Description
Ball
31:28 PINMUX15[31:28] R9 EMA_A[1] / MMCSD_CLK / UHPI_HCNTL0 / GP1[1] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HCNTL00001 = Selects Output Function EMA_A[1] 1000 = Selects Output Function GP1[1]0010 = Selects Output Function MMCSD_CLK other = Reserved - Behavior is Undefined.27:24 PINMUX15[27:24] T9 EMA_A[0] / LCD_D[7] / GP1[0] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[0] 1000 = Selects Output Function GP1[0]0010 = Selects Output Function LCD_D[7] other = Reserved - Behavior is Undefined.23:20 PINMUX15[23:20] M16 EMA_D[15] / UHPI_HD[15] / LCD_D[15] / GP0[15] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[15]0001 = Selects Output Function EMA_D[15] 1000 = Selects Output Function GP0[15]0010 = Selects Output Function UHPI_HD[15] other = Reserved - Behavior is Undefined.19:16 PINMUX15[19:16] N14 EMA_D[14] / UHPI_HD[14] / LCD_D[14] / GP0[14] Control0000 = Pin is tri-stated. 0100 = Selects Output Function LCD_D[14]0001 = Selects Output Function EMA_D[14] 1000 = Selects Output Function GP0[14]0010 = Selects Output Function UHPI_HD[14] other = Reserved - Behavior is Undefined.15:12 PINMUX15[15:12] N16 EMA_D[13] / UHPI_HD[13] / LCD_D[13] / GP0[13] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[13]0001 = Selects Output Function EMA_D[13] 1000 = Selects Output Function GP0[13]0010 = Selects Output Function UHPI_HD[13] other = Reserved - Behavior is Undefined.11:8 PINMUX15[11:8] P14 EMA_D[12] / UHPI_HD[12] / LCD_D[12] / GP0[12] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[12]0001 = Selects Output Function EMA_D[12] 1000 = Selects Output Function GP0[12]0010 = Selects Output Function UHPI_HD[12] other = Reserved - Behavior is Undefined.7:4 PINMUX15[7:4] P16 EMA_D[11] / UHPI_HD[11] / LCD_D[11] / GP0[11] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[11]0001 = Selects Output Function EMA_D[11] 1000 = Selects Output Function GP0[11]0010 = Selects Output Function UHPI_HD[11] other = Reserved - Behavior is Undefined.3:0 PINMUX15[3:0] R14 EMA_D[10] / UHPI_HD[10] / LCD_D[10] / GP0[10] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function LCD_D[10]0001 = Selects Output Function EMA_D[10] 1000 = Selects Output Function GP0[10]0010 = Selects Output Function UHPI_HD[10] other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 55
PRODUCT PREVIEW
4.2.17 PINMUX16 Register Definition (Address 0x01C1 4160 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX16[31:28] PINMUX16[27:24] PINMUX16[23:20] PINMUX16[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX16[15:12] PINMUX16[11:8] PINMUX16[7:4] PINMUX16[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-17. PINMUX16 Register Bit Layout
Table 4-18. Field Descriptions for PINMUX16
Bits Field ZKB Description
Ball
31:28 PINMUX16[31:28] R11 EMA_A[9] / LCD_HSYNC / GP1[9] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[9] 1000 = Selects Output Function GP1[9]0010 = Selects Output Function LCD_HSYNC other = Reserved - Behavior is Undefined.27:24 PINMUX16[27:24] T11 EMA_A[8] / LCD_PCLK / GP1[8] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[8] 1000 = Selects Output Function GP1[8]0010 = Selects Output Function LCD_PCLK other = Reserved - Behavior is Undefined.23:20 PINMUX16[23:20] N10 EMA_A[7] / LCD_D[0] / GP1[7] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[7] 1000 = Selects Output Function GP1[7]0010 = Selects Output Function LCD_D[0] other = Reserved - Behavior is Undefined.19:16 PINMUX16[19:16] P10 EMA_A[6] / LCD_D[1] / GP1[6] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[6] 1000 = Selects Output Function GP1[6]0010 = Selects Output Function LCD_D[1] other = Reserved - Behavior is Undefined.15:12 PINMUX16[15:12] R10 EMA_A[5] / LCD_D[2] / GP1[5] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[5] 1000 = Selects Output Function GP1[5]0010 = Selects Output Function LCD_D[2] other = Reserved - Behavior is Undefined.11:8 PINMUX16[11:8] T10 EMA_A[4] / LCD_D[3] / GP1[4] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[4] 1000 = Selects Output Function GP1[4]0010 = Selects Output Function LCD_D[3] other = Reserved - Behavior is Undefined.7:4 PINMUX16[7:4] N9 EMA_A[3] / LCD_D[6] / GP1[3] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[3] 1000 = Selects Output Function GP1[3]0010 = Selects Output Function LCD_D[6] other = Reserved - Behavior is Undefined.3:0 PINMUX16[3:0] P9 EMA_A[2] / MMCSD_CMD / UHPI_HCNTL1 / GP1[2] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HCNTL10001 = Selects Output Function EMA_A[2] 1000 = Selects Output Function GP1[2]0010 = Selects Output Function MMCSD_CMD other = Reserved - Behavior is Undefined.
Device Configuration56 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.18 PINMUX17 Register Definition (Address 0x01C1 4164 )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX17[31:28] PINMUX17[27:24] PINMUX17[23:20] PINMUX17[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX17[15:12] PINMUX17[11:8] PINMUX17[7:4] PINMUX17[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-18. PINMUX17 Register Bit Layout
Table 4-19. Field Descriptions for PINMUX17
Bits Field ZKB Description
Ball
31:28 PINMUX17[31:28] L16 EMA_CAS / EMA_CS[4] / GP2[1] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_CAS 1000 = Selects Output Function GP2[1]0010 = Selects Output Function EMA_CS[4] other = Reserved - Behavior is Undefined.27:24 PINMUX17[27:24] T12 EMA_SDCKE / GP2[0] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_SDCKE 1000 = Selects Output Function GP2[0]0010 = Reserved - Behavior is Undefined other = Reserved - Behavior is Undefined.23:20 PINMUX17[23:20] R12 EMA_CLK / OBSCLK / AHCLKR2 / GP1[15] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AHCLKR20001 = Selects Output Function EMA_CLK 1000 = Selects Output Function GP1[15]0010 = Selects Output Function OBSCLK other = Reserved - Behavior is Undefined.19:16 PINMUX17[19:16] R8 EMA_BA[0] / LCD_D[4] / GP1[14] Control0000 = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_BA[0] 1000 = Selects Output Function GP1[14]0010 = Selects Output Functio LCD_D[4] other = Reserved - Behavior is Undefined.15:12 PINMUX17[15:12] P8 EMA_BA[1] / LCD_D[5] / UHPI_HHWIL / GP1[13] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function UHPI_HHWIL0001 = Selects Output Function EMA_BA[1] 1000 = Selects Output Function GP1[13]0010 = Selects Output Function LCD_D[5] other = Reserved - Behavior is Undefined.11:8 PINMUX17[11:8] N11 EMA_A[12] / LCD_MCLK / GP1[12] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[12] 1000 = Selects Output Function GP1[12]0010 = Selects Output Function LCD_MCLK other = Reserved - Behavior is Undefined.7:4 PINMUX17[7:4] P11 EMA_A[11] / LCD_AC_ENB_CS / GP1[11] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[11] 1000 = Selects Output Function GP1[11]0010 = Selects Output Function other = Reserved - Behavior is Undefined.LCD_AC_ENB_CS3:0 PINMUX17[3:0] N8 EMA_A[10] / LCD_VSYNC / GP1[10] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_A[10] 1000 = Selects Output Function GP1[10]0010 = Selects Output Function LCD_VSYNC other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 57
PRODUCT PREVIEW
4.2.19 PINMUX18 Register Definition (Address 0x01C1 4168 )
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16PINMUX18[31:28] PINMUX18[27:24] PINMUX18[23:20] PINMUX18[19:16]R/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
PINMUX18[15:12] PINMUX18[11:8] PINMUX18[7:4] PINMUX18[3:0]R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-19. PINMUX18 Register Bit Layout
Table 4-20. Field Descriptions for PINMUX18
Bits Field ZKB Description
Ball
31:28 PINMUX18[31:28] M14 EMA_WE_DQM[0] / UHPI_HINT / AXR0[15] / GP2[9] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AXR0[15]0001 = Selects Output Function 1000 = Selects Output Function GP2[9]EMA_WE_DQM[0] other = Reserved - Behavior is Undefined.0010 = Selects Output Function UHPI_HINT27:24 PINMUX18[27:24] P12 EMA_WE_DQM[1] / UHPI_HDS2 / AXR0[14] / GP2[8] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AXR0[14]0001 = Selects Output Function 1000 = Selects Output Function GP2[8]EMA_WE_DQM[1] other = Reserved - Behavior is Undefined.0010 = Selects Output Function UHPI_HDS223:20 PINMUX18[23:20] R7 EMA_OE / UHPI_HDS1 / AXR0[13] / GP2[7] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AXR0[13]0001 = Selects Output Function EMA_OE 1000 = Selects Output Function GP2[7]0010 = Selects Output Function UHPI_HDS1 other = Reserved - Behavior is Undefined.19:16 PINMUX18[19:16] T7 EMA_CS[3] / AMUTE2 / GP2[6]0000 = Pin is tri-stated. 0100 = Selects Output Function AMUTE20001 = Selects Output Function EMA_CS[3] 1000 = Selects Output Function GP2[6]0010 = Reserved - Behavior is Undefined. other = Reserved - Behavior is Undefined.15:12 PINMUX18[15:12] P7 EMA_CS[2] / UHPI_HCS / GP2[5] / BOOT[15] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_CS[2] 1000 = Selects Output Function GP2[5]0010 = Selects Output Function UHPI_HCS other = Reserved - Behavior is Undefined.11:8 PINMUX18[11:8] T8 EMA_CS[0] / UHPI_HAS / GP2[4] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_CS[0] 1000 = Selects Output Function GP2[4]0010 = Selects Output Function UHPI_HAS other = Reserved - Behavior is Undefined.7:4 PINMUX18[7:4] M13 EMA_WE / UHPI_HR W / AXR0[12] / GP2[3] / BOOT[14] Control0000 [Default] = Pin is tri-stated. 0100 = Selects Output Function AXR0[12]0001 = Selects Output Function EMA_WE 1000 = Selects Output Function GP2[3]0010 = Selects Output Function UHPI_HR W other = Reserved - Behavior is Undefined.3:0 PINMUX18[3:0] N7 EMA_RAS / EMA_CS[5] / GP2[2] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_RAS 1000 = Selects Output Function GP2[2]0010 = Selects Output Function EMA_CS[5] other = Reserved - Behavior is Undefined.
Device Configuration58 Submit Documentation Feedback
PRODUCT PREVIEW
4.2.20 PINMUX19 Register Definition (Address 0x01C1 416C )
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Reserved
R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved PINMUX19[3:0]R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-20. PINMUX19 Register Bit Layout
Table 4-21. Field Descriptions for PINMUX19
Bits Field ZKB Description
Ball
31:4 Reserved Reserved - Write '0' to this register field when modifying this register.3:0 PINMUX19[3:0] N6 EMA_WAIT[0] / UHPI_HRDY / GP2[10] Control0000 [Default] = Pin is tri-stated. 0100 = Reserved - Behavior is Undefined0001 = Selects Output Function EMA_WAIT[0] 1000 = Selects Output Function GP2[10]0010 = Selects Output Function UHPI_HRDY other = Reserved - Behavior is Undefined.
Submit Documentation Feedback Device Configuration 59
PRODUCT PREVIEW
4.3 Bus Master Priority Configuration
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The on chip switch fabric performs priority based arbitration among the various bus masters on the SOC .The priority of each master is controlled by the MSTPRI0, MSTPRI1, and MSTPRI2 registers and may beadjusted as required to suite a particular application. Section 4.3.1 through Section 4.3.3 give provide adetailed description of these registers.
60 Device Configuration Submit Documentation Feedback
PRODUCT PREVIEW
4.3.1 MSTPRI0 Register Definition (0x01C1 4110)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16RSV RSV RSV RSV RSV RSV RSV RSVR/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSV DSP_CFG RSV DSP_MDMA RSV ARM_D RSV ARM_IR/W-0 R/W-010 R/W-0 R/W-010 R/W-0 R/W-010 R/W-0 R/W-010
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-21. MSTPRI0 Bit Description
Table 4-22. MSTPRI0 Field Descriptions
Bit Field Description
31 RSV Reserved - Write 0 to this Field when modifying this register.30:28 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)27 RSV Reserved - Write 0 to this Field when modifying this register.26:24 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)23 RSV Reserved - Write 0 to this Field when modifying this register.22:20 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)19 RSV Reserved - Write 0 to this Field when modifying this register.18:16 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)15 RSV Reserved - Write 0 to this Field when modifying this register.14:12 DSP_CFG Bus Priority for Bus Master DSP - Configuration Bus - Default Value is 010000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)11 RSV Reserved - Write 0 to this Field when modifying this register.10:8 DSP_MDMA Bus Priority for Bus Master DSP - DMA Bus - Default Value is 010000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)7 RSV Reserved - Write 0 to this Field when modifying this register.6:4 ARM_D Bus Priority for Bus Master ARM - Data Fetch - Default Value is 010000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)3 RSV Reserved - Write 0 to this Field whenmodifying this register.2:0 ARM_I Bus Priority for Bus Master ARM - Instruction Fetch - Default Value is 010000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)
Submit Documentation Feedback Device Configuration 61
PRODUCT PREVIEW
4.3.2 MSTPRI1 Register Definition (0x01C1 4114)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16RSV RSV RSV RSV RSV RSV RSV RSVR/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-100
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSV TC1 RSV TC0 RSV RSV RSV RSVR/W-0 R/W-000 R/W-0 R/W-000 R/W-0 R/W-000 R/W-0 R/W-000
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-22. MSTPRI1 Bit Description
Table 4-23. MSTPRI1 Field Descriptions
Bit Field Description
31 RSV Reserved - Write 0 to this Field when modifying this register.30:28 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)27 RSV Reserved - Write 0 to this Field when modifying this register.26:24 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)23 RSV Reserved - Write 0 to this Field when modifying this register.22:20 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)19 RSV Reserved - Write 0 to this Field when modifying this register.18:16 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)15 RSV Reserved - Write 0 to this Field when modifying this register.14:12 TC1 Bus Priority for Bus Master EDMA3 TC1 - Default Value is 000000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)11 RSV Reserved - Write 0 to this Field when modifying this register.10:8 TC0 Bus Priority for Bus Master EDMA3 TC0 - Default Value is 000000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)7:0 RSV Reserved - Write 0 to this Field when modifying this register.
Device Configuration62 Submit Documentation Feedback
PRODUCT PREVIEW
4.3.3 MSTPRI2 Register Definition (0x01C1 4118)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16RSV LCDC RSV USB1 RSV UHPI RSV RSVR/W-0 R/W-101 R/W-0 R/W-100 R/W-0 R/W-110 R/W-0 R/W-000
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
RSV USB0 RSV USB0 RSV RSV RSV EMACR/W-0 R/W-100 R/W-0 R/W-100 R/W-0 R/W-000 R/W-0 R/W-100
LEGEND: R = Read, W = Write, n = value at reset. In a loaded system, the LCDC default priority value of 5 might not be a good default andmay need to be changed.
Figure 4-23. MSTPRI2 Bit Description
Table 4-24. MSTPRI2 Field Descriptions
Bit Field Description
31 RSV Reserved - Write 0 to this Field when modifying this register.30:28 LCDC Bus Priority for Bus Master LCDC - Default Value is 101000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)27 RSV Reserved - Write 0 to this Field when modifying this register.26:24 USB1 Bus Priority for Bus Master USB1 - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)23 RSV Reserved - Write 0 to this Field when modifying this register.22:20 UHPI Bus Priority for Bus Master UHPI - Default Value is 110000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)19 RSV Reserved - Write 0 to this Field when modifying this register.18:16 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 000000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)15 RSV Reserved - Write 0 to this Field when modifying this register.14:12 USB0 Bus Priority for Bus Master USB0 - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)11 RSV Reserved - Write 0 to this Field when modifying this register.10:8 USB0 Bus Priority for Bus Master USB0 - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)7 RSV Reserved - Write 0 to this Field when modifying this register.6:4 RSV Reserved For Future Use - Write Default Value to Maintain Compatibility - Default Value is 000000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)3 RSV Reserved - Write 0 to this Field when modifying this register.2:0 EMAC Bus Priority for Bus Master EMAC - Default Value is 100000 = Priority 0 (Highest) 010 = Priority 2 100 = Priority 4 110 = Priority 6001 = Priority 1 011 = Priority 3 101 = Priority 5 111 = Priority 7 (lowest)
Submit Documentation Feedback Device Configuration 63
PRODUCT PREVIEW
4.4 Chip Configuration Registers (CFGCHIP and SUSPSRC)
4.4.1 CFGCHIP0
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
These registers control EDMA3 default transfer burst sizes, clock muxing, McASP AMUTE and eCAPsources, UHPI enable and configuration, and USB PHY settings
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Reserved
R-n/a
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Reserved PLLMASTERLOCK TC1DBS TC0DBSR-n/a R/W-1 R/W-000 R/W-0 R/W-00 R/W-00
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-24. CFGCHIP0 Register Bit Layout
Table 4-25. CFGCHIP0 Field Description
Bit Field Description
31:5 Reserved Reserved4 PLL_MASTER_LOCK This bit is used to lock the PLL MMRs0 = PLLCTRL MMR registers are freely accessible.1 = PLLCTRL MMR registers are locked.3:2 TC1DBS EDMA3 TC1 Default Burst Size00 = 16 byte01 = 32 byte10 = 64 byte11 = Reserved1:0 TC0DBS EDMA3 TC1 Default Burst Size00 = 16 byte01 = 32 byte10 = 64 byte11 = Reserved
Device Configuration64 Submit Documentation Feedback
PRODUCT PREVIEW
4.4.2 CFGCHIP1
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16CAP2SRC CAP1SRC CAP0SRC HPIBYTEADR/W-0 R/W-0 R/W-0 R/W-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
HPIENA Rsvd TBCLKSYNC AMUTESEL2 AMUTESEL1 AMUTESEL0R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-25. CFGCHIP1 Register Bit Layout
Table 4-26. CFGCHIP1 Field Description
Bit Field Description
31:27 CAP2SRC eCAP2 Module Event Input Select26:22 CAP1SRC eCAP1 Module Event Input Select21:17 CAP0SRC eCAP0 Module Event Input SelectFor each eCAPx (x=0,1,2):00000 = eCAPx Pin Input00001 = McASP0 TX DMA Event00010 = McASP0 RX DMA Event00011 = McASP1 TX DMA Event00100 = McASP1 RX DMA Event00101 = McASP2 TX DMA Event00110 = McASP2 RX DMA Event00111 = EMAC C0 RX Threshold Pulse Interrupt01000 = EMAC C0 RX Pulse Interrupt01001 = EMAC C0 TX Pulse Interrupt01010 = EMAC C0 Misc Interrupt01011 = EMAC C1 RX Threshold Pulse Interrupt01100 = EMAC C1 RX Pulse Interrupt01101 = EMAC C1 TX Pulse Interrupt01110 = EMAC C1 Misc Interrupt01111 = EMAC C2 RX Threshold Pulse Interrupt10000 = EMAC C2 RX Pulse Interrupt10001 = EMAC C2 TX Pulse Interrupt10010 = EMAC C2 Misc Interrupt10011 - 11111 = Reserved16 HPIBYTEAD HPI Module Byte / Word Address Mode0 = Host Address is a word address 1 = Host Address is a byte address15 HPIENA HPI Enable Bit0 = HPI Disabled 1 = HPI Enabled14:13 Reserved Reserved12 TBCLKSYNC eHRPWM Module Time Base Clock Sync0 (default) = The TBCLK (Time Base 1 = All enabled eHRPWM moduleClock) within each enabled clocks are started with the firsteHRPWM is stopped. rising edge of TBCLK aligned.11:8 AMUTESEL2 Selects the source of the McASP2 AMUTEIN signal7:4 AMUTESEL1 Selects the source of the McASP1 AMUTEIN signal3:0 AMUTESEL0 Selects the source of the McASP0 AMUTEIN signal
Submit Documentation Feedback Device Configuration 65
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 4-26. CFGCHIP1 Field Description (continued)
Bit Field Description
For each McASPx (x=0,1,2)0000 = Drive McASPx AMUTEIN Low0001 = McASPx AMUTEIN source is GPIO Interrupt from Bank 00010 = McASPx AMUTEIN source is GPIO Interrupt from Bank 10011 = McASPx AMUTEIN source is GPIO Interrupt from Bank 20100 = McASPx AMUTEIN source is GPIO Interrupt from Bank 30101 = McASPx AMUTEIN source is GPIO Interrupt from Bank 40110 = McASPx AMUTEIN source is GPIO Interrupt from Bank 50111 =McASPx AMUTEIN source is GPIO Interrupt from Bank 61000 = McASPx AMUTEIN source is GPIO Interrupt from Bank 71001 - 1111 are reserved
Device Configuration66 Submit Documentation Feedback
PRODUCT PREVIEW
4.4.3 CFGCHIP2
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24RESERVED
R-n/a
23 22 21 20 19 18 17 16
RESERVED USB0PHYCLKGD USB0VBUSSENSER-n/a
15 14 13 12 11 10 9 8
RESET USB0OTGMODE USB1PHYCLKMUX USB0PHYCLKMUX USB0PHYPWDN USB0OTGPWRDN USB0DATPO
LR/W-1 R/W-11 R/W-0 R/W-1 R/W-1 R/W-1 R/W-1
7 6 5 4 3 2 1 0
USB1SUSPENDM USB0PHY_PLLON USB0SESNDEN USB0VBDTCTEN USB0REF-FREQ[3:0]R/W-0 R/W-0 R/W-0 R/W-0 R/W-0000
LEGEND: R/W = Read/Write; R = Read only; - n= value after reset
Figure 4-26. CFGCHIP2 Register Bit Layout
Table 4-27. CFGCHIP2 Field Description
Bit Field Description
31:8 Reserved Reserved17 USB0PHYCLKGD Indicates clock is present, power is good and phy PLL is locked.16 USB0VBUSSENSE Indicates status of VBUS detection.15 Reset When '1' drives 'phy_reset' active to put the phy UTMI+ interface in reset.14:13 USB0OTGMODE OTGMODE = 00. Do not override phy values. Let PHY drive signals to controller basedon its comparators for the VBUS and ID pins.OTGMODE = 01. Override phy values to force USB Host Operation.Force VBUSVALID = 1, SESSVALID = 1, SESSEND = 0, IDDIG = 0OTGMODE = 10. Override phy values to force USB Device Operation.Force VBUSVALID = 1, SESSVALID = 1, SESSEND = 0, IDDIG = 1OTGMODE = 11. Override phy values to force USB Host Operation with VBUS low.Force VBUSVALID = 0, SESSVALID = 0, SESSEND = 1, IDDIG = 012 USB1PHYCLKMUX USB1 PHY Clock Source.1 = USB1 Phy Clock (48 MHz) is sourced by an external pin.0 = USB1 Phy Clock (48 MHz) is sourced by the 48 MHz output of the USB0 PHY.11 USB0PHYCLKMUX USB0 PHY Clock Source.1 = USB0 Phy reference clock internally generated.0 = USB0 Phy reference clock comes from pin.10 USB0PHYPWDN Phy Powerdown 0=Phy is powered up, 1=Phy is powered down.9 USB0OTGPWRDN OTG Analog Module Powerdown 0=OTG Analog Module is powered up, 1=OTG AnalogModule is powered down.8 USB0DATPOL USB0 Data Polarity, 0 = Reversed DP/DM polarity, 1 = Normal DP/DM polarity.7 USB1SUSPENDM USB1 Phy Suspend, Program to '0' if USB1 is not used, Program to '1' if USB1 is used.6 USB0PHY_PLLON USB0 Phy PLL On, 0 = Normal USB Behavior, 1 = Override USB SUSPEND behaviorand release PLL from SUSPEND state.5 USB0SESNDEN Turns on session end comparator.4 USB0VBDTCTEN Turns on all VBUS line comparators.
Submit Documentation Feedback Device Configuration 67
PRODUCT PREVIEW
4.4.4 CFGCHIP3
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 4-27. CFGCHIP2 Field Description (continued)
Bit Field Description
3:0 USB0REF-FREQ[3:0] USB0 Phy Clock Input Select.0000 = Reserved
0001 = 12 MHz0010 = 24 MHz0011 = 48 MHz0100 = 19.2 MHz0101 = 38.4 MHz0110 = 13 MHz0111 = 26 MHz1000 = 20 MHz1001 = 40 MHz1010 = Reserved
1011 = Reserved
1100 = Reserved
1101 = Reserved
1110 = Reserved
1111 = Reserved
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Reserved
R-n/a
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Reserved DIV4P5EN EMA_CL EMB_CA KSRC LKSRCR/W-1 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-27. CFGCHIP3 Register Bit Layout
Table 4-28. CFGCHIP3 Field Description
Bit Field Description
31:16 Reserved Reserved15:8 Reserved Reserved7:3 Reserved Reserved2 DIV4P5ENA Fixed 4.5 divider Enable.0 = Divide by 4.5 is Disabled. 1 = Divide by 4.5 is Enabled.1 EMA_CLKSRC EMIF A Memory Clock Source Select.0 = EMIFA clock domain is driven by the PLLCTRL SYSCLK3 output.1 = EMIFA clock domain is driven by the fixed / 4.5 PLL output.0 EMB_CLKSRC EMIF B Memory Clock Source Select.0 = EMIFB SDRAM clock domain is driven by the PLLCTRL SYSCLK5 output.1 = EMIFB SDRAM clock domain is driven by the fixed / 4.5 PLL output.
Device Configuration68 Submit Documentation Feedback
PRODUCT PREVIEW
4.4.5 CFGCHIP4
4.4.6 SUSPSRC
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Reserved
R-n/a
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Reserved Reserved AMUT AMUT AMUTECLR ECLR ECLR210R/W-1 R/W-0 R/W-0 R/W-0 R/W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-28. CFGCHIP4 Register Bit Layout
Table 4-29. CFGCHIP4 Field Description
Bit Field Description
31:16 Reserved Reserved15:8 Reserved Reserved7:3 Reserved Reserved2 AMUTECLR2 Write 1 causes a single pulse that clears the 'latched' GPIO interrupt for AMUTEIN of McASP2when '1'. Always reads back '0'.1 AMUTECLR1 Write 1 causes a single pulse that clears the 'latched' GPIO interrupt for AMUTEIN of McASP1when '1'. Always reads back '0'.0 AMUTECLR0 Write 1 causes a single pulse that clears the 'latched' GPIO interrupt for AMUTEIN of McASP1when '1'. Always reads back '0'.
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Reserved TIMER TIMER GPIOS ePWM ePWM ePWM SPI1 SPI0 UART UART UART I2C1 I2C064P1 64P0 RC 2SRC 1SRC 0SRC SRC SRC 2SRC 1 SRC 0SRC SRC SRCR/W-1
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
MMC / Reserved HPI RSV USB1 USB0 Reserved RSV EMAC eQEP eQEP eCAP2 eCAP1 eCAP0SD / SRC SRC SRC SRC 1 SRC 0 SRC SRC SRC SRCSRC
R/W-1
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-29. SUSPSRC Register Bit Layout
Table 4-30. SUSPSRC Field Descriptions
Bit Field Description
31: RSV Reserved29
28 TIMER64P1 TIMER64P1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend27 TIMER64P0 TIMER64P0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend26 GPIOSRC GPIO Module Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend
Submit Documentation Feedback Device Configuration 69
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 4-30. SUSPSRC Field Descriptions (continued)
Bit Field Description
25 ePWM2SRC ePWM2 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend24 ePWM1SRC ePWM1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend23 ePWM0SRC ePWM0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend22 SPI1 SRC SPI1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend21 SPI0 SRC SPI0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend20 UART2 SRC UART2 SRC Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend19 UART1 SRC UART1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend18 UART0 SRC UART0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend17 I2C1 SRC I2C1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend16 I2C0 SRC I2C0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend15 MMC/SD SRC MMC /SD Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend14: Reserved Reserved13
12 HPI SRC HPI Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend11 Reserved Reserved10 USB1 SRC USB1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend9 USB0 SRC USB0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend8:6 Reserved Reserved5 EMACSRC EMAC Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend4 eQEP1SRC eQEP1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend3 eQEP0SRC eQEP0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend2 eCAP2SRC eCAP2 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend1 eCAP1SRC eCAP1 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend0 eCAP0SRC eCAP0 Suspend Source0 = ARM emulation suspend, 1 = DSP emulation suspend
Device Configuration70 Submit Documentation Feedback
PRODUCT PREVIEW
4.5 ARM/DSP Communication Registers
4.5.1 CHIPSIG
4.5.2 CHIPSIG_CLR
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The CHIPSIG register provides a signaling mechanism between the ARM and DSP. Writing a '1' to a bitcauses the corresponding interrupt to be asserted. Writing a '0' has no effect. Reads return the value ofthe bit.31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Rsvd
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rsvd CHIPSIG[4:0]R-0 W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-30. CHIPSIG Register Bit Layout
Table 4-31. CHIPSIG Field Description
Bit Field Description
31:5 Reserved Reserved4 CHIPSIG[4] Asserts DSP NMI Interrupt.3 CHIPSIG[3] Asserts DSP Interrupt CHIPSIG[3].2 CHIPSIG[2] Asserts DSP Interrupt CHIPSIG[2].1 CHIPSIG[1] Asserts ARM Interrupt CHIPSIG[1].0 CHIPSIG[0] Asserts ARM Interrupt CHIPSIG[0].
The CHIPSIG_CLR register clears interrupts that have been initiated using the CHIPSIG register. Writinga '1' to a bit clears the corresponding interrupt. Writing a '0' has no effect. Reads return the value of thebit.31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16Rsvd
R-0
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Rsvd CHIPSIG[4:0]R-0 W-0
LEGEND: R = Read, W = Write, n = value at reset
Figure 4-31. CHIPSIG_CLR Register Bit Layout
Table 4-32. CHIPSIG_CLR Field Description
Bit Field Description
31:5 Reserved Reserved4 CHIPSIG[4] Clears DSP NMI Interrupt.3 CHIPSIG[3] Clears DSP Interrupt CHIPSIG[3].2 CHIPSIG[2] Clears DSP Interrupt CHIPSIG[2].1 CHIPSIG[1] Clears ARM Interrupt CHIPSIG[1].0 CHIPSIG[0] Clears ARM Interrupt CHIPSIG[0].
Submit Documentation Feedback Device Configuration 71
PRODUCT PREVIEW
4.6 Device Support
4.6.1 Development Support
4.6.2 Device and Development-Support Tool Nomenclature
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
TI offers an extensive line of development tools for the OMAP-L13x platform, including tools to evaluatethe performance of the processors, generate code, develop algorithm implementations, and fully integrateand debug software and hardware modules. The tool's support documentation is electronically availablewithin the Code Composer Studio™ Integrated Development Environment (IDE).
The following products support development of OMAP-L13x applications:
Software Development Tools:Code Composer Studio™ Integrated Development Environment (IDE): including EditorC/C++/Assembly Code Generation, and Debug plus additional development toolsScalable, Real-Time Foundation Software (DSP/BIOS™), which provides the basic run-time targetsoftware needed to support any application.
Hardware Development Tools:Extended Development System (XDS™) EmulatorFor a complete listing of development-support tools for OMAP-L13x, visit the Texas Instruments website on the Worldwide Web at http://www.ti.com uniform resource locator (URL). For information onpricing and availability, contact the nearest TI field sales office or authorized distributor.
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of allDSP devices and support tools. Each DSP commercial family member has one of three prefixes: TMX,TMP, or TMS (e.g., TMS320C6745). Texas Instruments recommends two of three possible prefixdesignators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages ofproduct development from engineering prototypes (TMX/TMDX) through fully qualified productiondevices/tools (TMS/TMDS).
Device development evolutionary flow:
XExperimental device that is not necessarily representative of the final device's electricalspecifications.
PFinal silicon die that conforms to the device's electrical specifications but has not completedquality and reliability verification.
NULL Fully-qualified production device.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internalqualification testing.
TMDS Fully qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the followingdisclaimer:
"Developmental product is intended for internal evaluation purposes."
TMS devices and TMDS development-support tools have been characterized fully, and the quality andreliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (TMX or TMP) have a greater failure rate than the standardproduction devices. Texas Instruments recommends that these devices not be used in any productionsystem because their expected end-use failure rate still is undefined. Only qualified production devices areto be used.
Device Configuration72 Submit Documentation Feedback
PRODUCT PREVIEW
X OMAPL137/L127 () ZKB () 3
PREFIX
X=ExperimentalDevice
P =PrototypeDevice
Blank=ProductionDevice
DEVICE
SILICONREVISION
Blank=SiliconRevision1.0
3=300MHz
2=200MHz
=0°Cto85°C(CommercialGrade)
T = –40°Cto105°C(AutomotiveGrade)
Blank
PACKAGETYPE
256PinPlasticBGA,withPb-free
SolderedBalls[Green]
ZKB=
4.7 Documentation Support
4.7.1 Related Documentation From Texas Instruments
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
TI device nomenclature also includes a suffix with the device family name. This suffix indicates thepackage type (for example, ZWT), the temperature range (for example, "Blank" is the commercialtemperature range), and the device speed range in megahertz (for example, "Blank" is the default).
Figure 4-32 provides a legend for reading the complete device name for any TMS320C674x member.
A. BGA = Ball Grid ArrayB. The device speed range symbolization indicates the maximum CPU frequency when the core voltage CV
DD
is set to1.2 V.
Figure 4-32. Device Nomenclature
The following documents describe the OMAP-L13x Low-power Applications Processor. Copies of thesedocuments are available on the Internet at www.ti.com .Tip: Enter the literature number in the search boxprovided at www.ti.com.
C64x+ Reference GuidesSPRU186 TMS320C6000 Assembly Language Tools v 6.1 User's Guide. Describes the assemblylanguage tools (assembler, linker, and other tools used to develop assembly language code),assembler directives, macros, common object file format, and symbolic debugging directivesfor the TMS320C6000 platform of devices (including the C64x+ and C67x+ generations).
SPRU187 TMS320C6000 Optimizing Compiler v 6.1 User's Guide. Describes the TMS320C6000 Ccompiler and the assembly optimizer. This C compiler accepts ANSI standard C source codeand produces assembly language source code for the TMS320C6000 platform of devices(including the C64x+ and C67x+ generations). The assembly optimizer helps you optimizeyour assembly code.
SPRU198 TMS320C6000 Programmer's Guide. Reference for programming the TMS320C6000 digitalsignal processors (DSPs). Before you use this manual, you should install your codegeneration and debugging tools. Includes a brief description of the C6000 DSP architectureand code development flow, includes C code examples and discusses optimization methodsfor the C code, describes the structure of assembly code and includes examples anddiscusses optimizations for the assembly code, and describes programming considerationsfor the C64x DSP.
SPRU862 TMS320C64x+ DSP Cache User's Guide. Explains the fundamentals of memory cachesand describes how the two-level cache-based internal memory architecture in theTMS320C64x+ digital signal processor (DSP) of the TMS320C6000 DSP family can beefficiently used in DSP applications. Shows how to maintain coherence with externalmemory, how to use DMA to reduce memory latencies, and how to optimize your code toimprove cache efficiency. The internal memory architecture in the C64x+ DSP is organizedin a two-level hierarchy consisting of a dedicated program cache (L1P) and a dedicated datacache (L1D) on the first level. Accesses by the CPU to the these first level caches can
Submit Documentation Feedback Device Configuration 73
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
complete without CPU pipeline stalls. If the data requested by the CPU is not contained incache, it is fetched from the next lower memory level, L2 or external memory.
SPRU871 TMS320C64x+ DSP Megamodule Reference Guide. Describes the TMS320C64x+ digitalsignal processor (DSP) megamodule. Included is a discussion on the internal direct memoryaccess (IDMA) controller, the interrupt controller, the power-down controller, memoryprotection, bandwidth management, and the memory and cache.
Primus DSP Reference GuidesSPRUG82 TMS320C674x DSP Cache User's Guide. Explains the fundamentals of memory cachesand describes how the two-level cache-based internal memory architecture in theTMS320C674x digital signal processor (DSP) can be efficiently used in DSP applications.Shows how to maintain coherence with external memory, how to use DMA to reducememory latencies, and how to optimize your code to improve cache efficiency. The internalmemory architecture in the C674x DSP is organized in a two-level hierarchy consisting of adedicated program cache (L1P) and a dedicated data cache (L1D) on the first level.Accesses by the CPU to the these first level caches can complete without CPU pipelinestalls. If the data requested by the CPU is not contained in cache, it is fetched from the nextlower memory level, L2 or external memory.
SPRUFE8 TMS320C674x DSP CPU and Instruction Set Reference Guide. Describes the CPUarchitecture, pipeline, instruction set, and interrupts for the TMS320C674x digital signalprocessors (DSPs). The C674x DSP is an enhancement of the C64x+ and C67x+ DSPs withadded functionality and an expanded instruction set.
SPRUG84 OMAP-L137 Applications Processor System Reference Guide. Describes theSystem-on-Chip (SoC) including the ARM subsystem, DSP subsystem, system memory,device clocking, phase-locked loop controller (PLLC), power and sleep controller (PSC),power management, ARM interrupt controller (AINTC), and system configuration module.
SPRUFK5 TMS320C674x DSP Megamodule Reference Guide. Describes the TMS320C674x digitalsignal processor (DSP) megamodule. Included is a discussion on the internal direct memoryaccess (IDMA) controller, the interrupt controller, the power-down controller, memoryprotection, bandwidth management, and the memory and cache.
SPRUGA6 OMAP-L137 Applications Processor Peripherals Overview Reference Guide. Providesan overview and briefly describes the peripherals available on the OMAP-L137 ApplicationsProcessor.
Device Configuration74 Submit Documentation Feedback
PRODUCT PREVIEW
5 Device Operating Conditions
5.1 Absolute Maximum Ratings Over Operating Case Temperature Range
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
(Unless Otherwise Noted)
(1)
Core -0.5 V to 1.4 V(CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12
(2)
, )
(3)
I/O, 1.8V -0.5 V to 2 VSupply voltage ranges
(USB0_VDDA18, USB1_VDDA18)
(3)
I/O, 3.3V -0.5 V to 3.8V(DVDD, USB0_VDDA33, USB1_VDDA33)
(3)
V
I
I/O, 1.2V -0.3 V to CVDD + 0.3V(OSCIN, RTC_XI)V
I
I/O, 3.3V -0.3V to DVDD + 0.3V(Steady State)V
I
I/O, 3.3V DVDD + 20%Input voltage ranges
(Transient) up to 20% of Signal
PeriodV
I
I/O, USB 5V Tolerant Pins: 5.25V
(4)
(USB0_DM, USB0_DP, USB0_ID, USB1_DM, USB1_DP)V
I
I/O, USB0 VBUS 5.50V
(4)
V
O
I/O, 3.3V -0.5 V to DVDD + 0.3V(Steady State)Output voltage ranges
V
O
I/O, 3.3V DVDD + 20%(Transient) up to 20% of Signal
PeriodInput or Output Voltages 0.3V above or below their respective power ±20mAClamp Current rails. Limit clamp current that flows through the I/O's internal diodeprotection cells.(default) 0 °C to 105 °COperating Junction Temperature ranges,T
J
(T version) -40 °C to 125 °CStorage temperature range, T
stg
(default) -55 °C to 150 °C
(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratingsonly, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operatingconditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2) This pin is an internal LDO output and connected via 0.22 µF capacitor to USB0_VDDA12.(3) All voltage values are with respect to VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS, RTC_VSS(4) Up to a max of 24 hours.
Submit Documentation Feedback Device Operating Conditions 75
PRODUCT PREVIEW
5.2 Recommended Operating Conditions
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
MIN NOM MAX UNIT
Supply voltage, CoreCVDD 1.14 1.2 or 1.26 1.32 V(CVDD, RTC_CVDD, PLL0_VDDA , USB0_VDDA12
(1)
)
(2)
Supply voltage, I/O, 1.8V
1.71 1.8 1.89 V(USB0_VDDA18, USB1_VDDA18)DVDD
Supply voltage, I/O, 3.3V
3.15 3.3 3.45 V(DVDD, USB0_VDDA33, USB1_VDDA33)
Supply groundVSS (VSS, USB0_VSSA33, USB0_VSSA, PLL0_VSSA, OSCVSS
(3)
, 0 0 0 VRTC_VSS
(3)
)
High-level input voltage, I/O, 3.3V 2 VV
IH
High-level input voltage, OSCIN, RTC_XI TBD V
Low-level input voltage, I/O, 3.3V 0.8 VV
IL
Low-level input voltage, OSCIN, RTC_XI TBD V
t
t
Transition time, 10%-90%, All Inputs 10 ns
Default 0 70 °CT
A
Operating ambient temperature range
Automotive (T
-40 105 °Csuffix)
Default 0 300 MHzDSP and ARM Operating FrequencyF
SYSCLK1,6
Automotive (T(SYSCLK1,6)
0 300 MHzsuffix)
(1) This pin is an internal LDO output and connected via 0.22 µF capacitor to USB0_VDDA12.(2) Future variants of TI SOC devices may operate at voltages ranging from 1.0 V to 1.32 V to provide a range of system power/performance options. TI highly recommends that users design-in a supply that can handle multiple voltages within this range (i.e., 1.0 V,1.1 V, 1.2, 1.26 V with ±5% tolerances) by implementing simple board changes such as reference resistor values or input pinconfiguration modifications. Not incorporating a flexible supply may limit the system's ability to easily adapt to future versions of TI SOCdevices.
(3) Oscillator (OSC_VSS, RTC_VSS) ground must be kept separate from other grounds and connected directly to the crystal load capacitorground. These pins are shorted to VSS on the device itself and should not be connected to VSS on the circuit board.
Device Operating Conditions76 Submit Documentation Feedback
PRODUCT PREVIEW
5.3 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Case Temperature (Unless Otherwise Noted)PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Low/full speed:
2.8 USB0_VDDA33 VUSB0_DM and USB0_DP
High speed:
360 440 mVUSB_DM and USB_DPV
OH
Low/full speed:
2.8 USB1_VDDA33 VUSB1_DM and USB1_DP
DVDD = 3.15V, I
OH
= -4 mA 2.4 VHigh-level output voltage (3.3V I/O)
DVDD = 3.15V, I
OH
= -100 µA 2.95 V
Low/full speed:
0.0 0.3 VUSB_DM and USB_DP
High speed:
-10 10 mVV
OL
USB_DM and USB_DP
DVDD = 3.15V, I
OL
= 4mA 0.4 VLow-level output voltage (3.3V I/O)
DVDD = 3.15V, I
OL
= -100 µA 0.2 V
V
I
= VSS to DVDD without opposing
±35 µAinternal resistor
V
I
= VSS to DVDD with opposingI
I
(1)
Input current 30 200 µAinternal pullup resistor
(2)
V
I
= VSS to DVDD with opposing
-50 -250 µAinternal pulldown resistor
(2)
I
OH
High-level output current All peripherals -4 mA
I
OL
Low-level output current All peripherals 4 mA
(1) I
I
applies to input-only pins and bi-directional pins. For input-only pins, I
I
indicates the input leakage current. For bi-directional pins, I
Iindicates the input leakage current and off-state (Hi-Z) output leakage current.(2) Applies only to pins with an internal pullup (IPU) or pulldown (IPD) resistor.
Submit Documentation Feedback Device Operating Conditions 77
PRODUCT PREVIEW
6 Peripheral Information and Electrical Specifications
6.1 Parameter Information
6.1.1 Parameter Information Device-Specific Information
6.1.1.1 Signal Transition Levels
Vref
Vref =VIL MAX(orVOL MAX)
Vref =VIH MIN(orVOH MIN)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
A. The data sheet provides timing at the device pin. For output timing analysis, the tester pin electronics and itstransmission line effects must be taken into account. A transmission line with a delay of 2 ns or longer can be used toproduce the desired transmission line effect. The transmission line is intended as a load only. It is not necessary toadd or subtract the transmission line delay (2 ns or longer) from the data sheet timings.Input requirements in this data sheet are tested with an input slew rate of < 4 Volts per nanosecond (4 V/ns) at thedevice pin.
Figure 6-1. Test Load Circuit for AC Timing Measurements
The load capacitance value stated is only for characterization and measurement of AC timing signals. Thisload capacitance value does not indicate the maximum load the device is capable of driving.
All input and output timing parameters are referenced to V
ref
for both "0" and "1" logic levels. For 3.3 V I/O,V
ref
= 1.65 V. For 1.8 V I/O, V
ref
= 0.9 V.
Figure 6-2. Input and Output Voltage Reference Levels for AC Timing Measurements
All rise and fall transition timing parameters are referenced to V
IL
MAX and V
IH
MIN for input clocks,V
OL
MAX and V
OH
MIN for output clocks.
Figure 6-3. Rise and Fall Transition Time Voltage Reference Levels
78 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
6.2 Recommended Clock and Control Signal Transition Behavior
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
All clocks and control signals must transition between V
IH
and V
IL
(or between V
IL
and V
IH
) in a monotonicmanner.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 79
PRODUCT PREVIEW
6.3 Power Supplies
6.3.1 Power-on Sequence
DVDD
CVDD
RESETTRST,
(1)
(2)
(3)
USB0_DM,USB0_DP
USB1_DM,USB1_DP 200mV
900mV
1.65V
VIL
6.4 Reset
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
OMAP-L13x devices include on chip logic that ensures I/O pins are tri-stated during the power on ramp,as long as the RESET\ pin is asserted. This is true even if the core voltage (CVDD) has not yet ramped.
Normally, the only requirement during the power on ramp is that both the RESET\ and TRST\ pins remainasserted (low) until after the power supply rails have fully ramped.
However, if the on chip USB modules are used; then to limit any noise on the USB0_DM, USB0_DP,USB1_DM, and USB1_DP pins to less than 200mV during the power on ramp, the sequence illustrated inFigure 6-4 must be followed. The requirement is that the core supply (CVDD) must ramp to at least 0.9V(1) before the IO supply (DVDD) reaches the 1.65V point in its ramp (2). And as is always the case,RESET\ and TRST\ must remain asserted during the power on ramp and released only after CVDD andDVDD are within their specified ranges.
Figure 6-4. Power Sequence
TBD
80 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
6.5 Crystal Oscillator or External Clock Input
C2
C1
X1
OSCOUT
OSCIN
OSCVSS
ClockInput
toPLL
OSCOUT
OSCIN
OSCVSS
Clock
Input
toPLL
NC
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The OMAP-L137 device includes two choices to provide an external clock input, which is fed to theon-chip PLL to generate high-frequency system clocks. These options are illustrated in Figure 6-5 andFigure 6-6 .Figure 6-5 illustrates the option that uses on-chip 1.2V oscillator with external crystal circuit.Figure 6-6 illustrates the option that uses an external 1.2V clock input.
Figure 6-5. On-Chip 1.2V Oscillator
Figure 6-6. External 1.2V Clock Source
Table 6-1. CLKIN Timing Requirements
MIN MAX UNIT
f
osc
Oscillator frequency range (OSCIN/OSCOUT) 12 30 MHzf
PLL
Freuency range of PLL input , external clock source only 12 50 MHzt
c(CLKIN)
Cycle time, external clock driven on OSCIN 20 nst
w(CLKINH)
Pulse width high, external clock on OSCIN 0.4 nst
c(CLKIN)
t
w(CLKINL)
Pulse width low, external clock on OSCIN 0.4 nst
c(CLKIN)
t
t(CLKIN)
Transition time, CLKIN 5 ns
Submit Documentation Feedback Peripheral Information and Electrical Specifications 81
PRODUCT PREVIEW
6.6 Clock PLLs
6.6.1 PLL Device-Specific Information
0.1
µF
0.01
µF
50R
CVDD
50R
VSS
PLL0_VDDA
PLL0_VSSA
FerriteBead:MurataBLMG1P500SPTorEquivalent
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The OMAP-L137 has one PLL controller that provides clock to different parts of the system. PLL0 providesclocks (though various dividers) to most of the components of the device.
The PLL controller provides the following:Glitch-Free Transitions (on changing clock settings)Domain Clocks AlignmentClock GatingPLL power down
The various clock outputs given by the controller are as follows:Domain Clocks: SYSCLK [1:n]Auxiliary Clock from reference clock source: AUXCLK
Various dividers that can be used are as follows:Post-PLL Divider: POSTDIVSYSCLK Divider: D1, , Dn
Various other controls supported are as follows:PLL Multiplier Control: PLLMSoftware programmable PLL Bypass: PLLEN
The OMAP-L137 DSP generates the high-frequency internal clocks it requires through an on-chip PLL.
The PLL requires some external filtering components to reduce power supply noise as shown inFigure 6-7 .
Figure 6-7. PLL External Filtering Components
The input to the PLL is either from the on-chip oscillator (OSCIN pin) or from an external clock on theCLKIN pin. The PLL outputs nine clocks that have programmable divider options. Figure 6-8 illustrates thePLL Topology.
The PLL is disabled by default after a device reset. It must be configured by software according to theallowable operating conditions listed in Table 6-2 before enabling the DSP to run from the PLL by settingPLLEN = 1.
82 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
PREDIV
(/1to/32)
PLLREF PLLM
(x4tox32)
PLLOUT
1
0
PLLEN
(PLL_CSR[0])
PLLDIV1
(/1,1.5,/2,
/2.5.../32.5)
PLLDIV2
(/1,1.5,/2,
/2.5.../32.5)
PLLDIV3
(/1,1.5,/2,
/2.5.../32.5)
PLLDIV4
(/1,1.5,/2,
/2.5.../32.5)
PLLDIV9
(/1,1.5,/2,
/2.5.../32.5)
SYSCLK1
SYSCLK2
SYSCLK3
SYSCLK4
SYSCLK9
AUXCLK
ClockInput
fromCLKIN
orOSCIN
DIV4p5
(/4.5)
POSTDIV
(/2to/32)
2000 N
Max PLL Lock Time = m
where N = Pre-Divider Ratio
M = PLL Multiplier
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-8. PLL Topology
Table 6-2. Allowed PLL Operating Conditions
NO PARAMETER MIN MAX UNIT
1 PLLRST: Assertion time during initialization 125 N/A ns
Lock time: The time that the application has to wait for the2 PLL to acquire locks before setting PLLEN, after changing N/A nsPREDIV, PLLM, or OSCIN
PLL input frequency3 12 50 MHz( PLLREF after D0)4 PLL multiplier values (PLLM)
(1)
x4 x32PLL output frequency. ( PLLOUT before dividers D1, D2, D3,5 400 600
(2)
MHz....)
(1) The multiplier values must be chosen such that the PLL output frequency (at PLLOUT) is between 400 and 1000 MHz, but thefrequency going into the SYSCLK dividers (after the post divider) cannot exceed 410 MHz. If the PLLOUT exceeds 410 MHz the postdivider must be used to divide it down. The Post Divider and SYSCLK divider values must be chosen such that the CPU clocks do notexceed 300 MHz.(2) PLL post divider / 2 must be used. The /4.5 clock path can be used to generate an EMIF clock from the undivided (i.e. 600 MHz) PLLoutput clock.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 83
PRODUCT PREVIEW
6.6.2 Device Clock Generation
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
PLL0 is controlled by PLL Controller 0. The PLLC0 manages the clock ratios, alignment, and gating for thesystem clocks to the chip. The PLLC is responsible for controlling all modes of the PLL through software,in terms of pre-division of the clock inputs, multiply factor within the PLL, and post-division for each of thechip-level clocks from the PLL output. The PLLC also controls reset propagation through the chip, clockalignment, and test points.
PLLC0 generates several clocks from the PLL0 output clock for use by the various processors andmodules. These are summarized in Table 6-3 . The clock ratios between SYSCLK1, SYSCLK2, SYSCLK4and SYSCLK6 must always be maintained as shown in the table.
Table 6-3. System PLLC0 Output Clocks
Output Used by Default Ratio (relative to NotesClock SYSCLK1)
SYSCLK1 DSP /1 No Required RatioSYSCLK2 ARM RAM, ARM ROM, EDMA, DSP ports, EMIFB (ports to switch /2 SYSCLK1 / 2fabric), ECAP 0/1/2, EPWM 0/1/2, EQEP 0/1, Shared RAM, LCDC,McASP/FIFO 0/1/2, SPI 1, UHPI, USB2.0 (logic), UART 1/2,HRPWM 0/1/2SYSCLK3 EMIFA /3 No Required RatioSYSCLK4 SYSCFG, Interrupt Controller, PLLC0, PSC 0, EMAC/MDIO, GPIO, /4 SYSCLK1 / 4I2C 1, PSC 1, USB1.1SYSCLK5 EMIFB /3 No Required RatioSYSCLK6 ARM Subsystem /1 SYSCLK1 / 1SYSCLK7 RMII clock to EMAC /6 No Required Ratio ;Should be set to 50 MHzAUXCLK McASP AuxClk,RTC,Timer64P0,Timer64P1 N/A No Required RatioUSB48 USB2.0 Phy, USB1.1 logic N/A No Required Ratio; Shouldbe set to 48 MHzUSB12 USB2.0 Phy, USB1.1 logic N/A No Required Ratio; 12MHz, generated by theUSB1 Module by dividingUSB48 by 4.DIV4p5 133MHz clock source for EMIFB PLL output/4.5 No Required Ratio
The divide values in the PLL Controller 0 for SYSCLK1/SYSCLK6, SYSCLK2 and SYSCLK4 are notfixed so that user can change the divide values for power saving reasons. But users are responsible toguarantee that the divide ratios between these clock domains must be fixed to 1:2:4.Although the PLL is capable of running at 600 MHz, the SYSCLK dividers in the PLLC0 are not(maximum 410 MHz). For this reason, the post-divider in the PLLC0 should be configured for /2 toprovide 300 MHz to each of the SYSCLK dividers.The DIV4p5 (/4.5) hardware clock divider is provided to generate 133 MHz from the 600 MHz PLLclock for use as clocks to the EMIFs.
84 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
6.7 Interrupts
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The OMAP-L137 devices have a large number of interrupts to service the needs of its many peripheralsand subsystems. Both the ARM and C674x CPUs are capable of servicing these interrupts equally. Theinterrupts can be selectively enabled or disabled in either of the controllers. Also, the ARM and DSP cancommunicate with each other through interrupts controlled by registers in the SYSCFG module.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 85
PRODUCT PREVIEW
6.7.1 ARM CPU Interrupts
6.7.1.1 ARM Interrupt Controller (AINTC) Interrupt Signal Hierarchy
6.7.1.2 AINTC Hardware Vector Generation
6.7.1.3 AINTC Hardware Interrupt Nesting Support
6.7.1.4 AINTC System Interrupt Assignments on OMAP-L137
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The ARM9 CPU core supports 2 direct interrupts: FIQ and IRQ. The ARM Interrupt Controller on theOMAP-L13x extends the number of interrupts to 100, and provides features like programmable masking,priority, hardware nesting support, and interrupt vector generation. The OMAP-L13x ARM Interruptcontroller is enhanced from previous devices like the DM6446 and DM355.
On OMAP-L13x, the ARM Interrupt controller organizes interrupts into the following hierarchy:Peripheral Interrupt Requests Individual Interrupt Sources from Peripherals100 System Interrupts One or more Peripheral Interrupt Requests are combined (fixed configuration) to generate aSystem Interrupt. After prioritization, the AINTC will provide an interrupt vector based unique to each System Interrupt32 Interrupt Channels Each System Interrupt is mapped to one of the 32 Interrupt Channels Channel Number determines the first level of prioritization, Channel 0 is highest priority and 31lowest.
If more than one system interrupt is mapped to a channel, priority within the channel is determinedby system interrupt number (0 highest priority)Host Interrupts (FIQ and IRQ) Interrupt Channels 0 and 1 generate the ARM FIQ interrupt Interrupt Channels 2 through 31 Generate the ARM IRQ interruptDebug Interrupts
Two Debug Interrupts are supported and can be used to trigger events in the debug subsystem Sources can be selected from any of the System Interrupts or Host Interrupts
The AINTC also generates an interrupt vector in hardware for both IRQ and FIQ host interrupts. This maybe used to accelerate interrupt dispatch. A unique vector is generated for each of the 100 systeminterrupts. The vector is computed in hardware as:VECTOR = BASE + (SYSTEM INTERRUPT NUMBER ×SIZE)
Where BASE and SIZE are programmable. The computed vector is a 32-bit address which maydispatched to using a single instruction of type LDR PC, [PC, #- < offset_12>] at the FIQ and IRQ vectorlocations (0xFFFF0018 and 0xFFFF001C respectively).
Interrupt nesting occurs when an interrupt service routine re-enables interrupts, to allow the CPU tointerrupt the ISR if a higher priority event occurs. The AINTC provides hardware support to facilitateinterrupt nesting. It supports both global and per host interrupt (FIQ and IRQ in this case) automaticnesting. If enabled, the AINTC will automatically update an internal nesting register that temporarily masksinterrupts at and below the priority of the current interrupt channel. Then if the ISR re-enables interrupts;only higher priority channels will be able to interrupt it. The nesting level is restored by the ISR by writingto the nesting level register on completion. Support for nesting can be enabled/disabled by software, withthe option of automatic nesting on a global or per host interrupt basis; or manual nesting.
System Interrupt assignments for the OMAP-L137 are listed in Table 6-4
Peripheral Information and Electrical Specifications86 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-4. AINTC System Interrupt Assignments
System Interrupt Interrupt Name Source
0 COMMTX ARM1 COMMRX ARM2 NINT ARM3 - Reserved4 - Reserved5 - Reserved6 - Reserved7 - Reserved8 - Reserved9 - Reserved10 - Reserved11 EDMA3_CC0_CCINT EDMA CC Region 012 EDMA3_CC0_CCERRINT EDMA CC13 EDMA3_TC0_TCERRINT EDMA TC014 EMIFA_INT EMIFA15 IIC0_INT I2C016 MMCSD_INT0 MMCSD17 MMCSD_INT1 MMCSD18 PSC0_ALLINT PSC019 RTC_IRQS[1:0] RTC20 SPI0_INT SPI021 T64P0_TINT12 Timer64P0 Interrupt 1222 T64P0_TINT34 Timer64P0 Interrupt 3423 T64P1_TINT12 Timer64P1 Interrupt 1224 T64P1_TINT34 Timer64P1 Interrupt 3425 UART0_INT UART026 - Reserved27 PROTERR SYSCFG Protection Shared Interrupt28 SYSCFG_CHIPINT0 SYSCFG CHIPSIG Register29 SYSCFG_CHIPINT1 SYSCFG CHIPSIG Register30 SYSCFG_CHIPINT2 SYSCFG CHIPSIG Register31 SYSCFG_CHIPINT3 SYSCFG CHIPSIG Register32 EDMA3_TC1_TCERRINT EDMA TC133 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt34 EMAC_C0RX EMAC - Core 0 Receive Interrupt35 EMAC_C0TX EMAC - Core 0 Transmit Interrupt36 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt37 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt38 EMAC_C1RX EMAC - Core 1 Receive Interrupt39 EMAC_C1TX EMAC - Core 1 Transmit Interrupt40 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt41 EMIF_MEMERR EMIFB42 GPIO_B0INT GPIO Bank 0 Interrupt43 GPIO_B1INT GPIO Bank 1 Interrupt44 GPIO_B2INT GPIO Bank 2 Interrupt45 GPIO_B3INT GPIO Bank 3 Interrupt46 GPIO_B4INT GPIO Bank 4 Interrupt
Submit Documentation Feedback Peripheral Information and Electrical Specifications 87
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-4. AINTC System Interrupt Assignments (continued)
System Interrupt Interrupt Name Source
47 GPIO_B5INT GPIO Bank 5 Interrupt48 GPIO_B6INT GPIO Bank 6 Interrupt49 GPIO_B7INT GPIO Bank 7 Interrupt50 - Reserved51 IIC1_INT I2C152 LCDC_INT LCD Controller53 UART_INT1 UART154 MCASP_INT McASP0, 1, 2 Combined RX / TX Interrupts55 PSC1_ALLINT PSC156 SPI1_INT SPI157 UHPI_ARMINT HPI Arm Interrupt58 USB0_INT USB0 Interrupt59 USB1_HCINT USB1 OHCI Host Controller Interrupt60 USB1_RWAKEUP USB1 Remote Wakeup Interrupt61 UART2_INT UART262 - Reserved63 EHRPWM0 HiResTimer / PWM0 Interrupt64 EHRPWM0TZ HiResTimer / PWM0 Trip Zone Interrupt65 EHRPWM1 HiResTimer / PWM1 Interrupt66 EHRPWM1TZ HiResTimer / PWM1 Trip Zone Interrupt67 EHRPWM2 HiResTimer / PWM2 Interrupt68 EHRPWM2TZ HiResTimer / PWM2 Trip Zone Interrupt69 ECAP0 ECAP070 ECAP1 ECAP171 ECAP2 ECAP272 EQEP0 EQEP073 EQEP1 EQEP174 T64P0_CMPINT0 Timer64P0 - Compare 075 T64P0_CMPINT1 Timer64P0 - Compare 176 T64P0_CMPINT2 Timer64P0 - Compare 277 T64P0_CMPINT3 Timer64P0 - Compare 378 T64P0_CMPINT4 Timer64P0 - Compare 479 T64P0_CMPINT5 Timer64P0 - Compare 580 T64P0_CMPINT6 Timer64P0 - Compare 681 T64P0_CMPINT7 Timer64P0 - Compare 782 T64P1_CMPINT0 Timer64P1 - Compare 083 T64P1_CMPINT1 Timer64P1 - Compare 184 T64P1_CMPINT2 Timer64P1 - Compare 285 T64P1_CMPINT3 Timer64P1 - Compare 386 T64P1_CMPINT4 Timer64P1 - Compare 487 T64P1_CMPINT5 Timer64P1 - Compare 588 T64P1_CMPINT6 Timer64P1 - Compare 689 T64P1_CMPINT7 Timer64P1 - Compare 790 ARMCLKSTOPREQ PSC091 - Reserved92 - Reserved93 - Reserved
Peripheral Information and Electrical Specifications88 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-4. AINTC System Interrupt Assignments (continued)
System Interrupt Interrupt Name Source
94 - Reserved95 - Reserved96 - Reserved97 - Reserved98 - Reserved99 - Reserved100 - Reserved
Submit Documentation Feedback Peripheral Information and Electrical Specifications 89
PRODUCT PREVIEW
6.7.1.5 AINTC Memory Map
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-5. AINTC Memory Map
BYTE ADDRESS REGISTER NAME DESCRIPTION
0xFFFE E000 REV Revision Register0xFFFE E004 CR Control Register0xFFFE E008 - 0xFFFE E00F - Reserved0xFFFE E010 GER Global Enable Register0xFFFE E014 - 0xFFFE E01B - Reserved0xFFFE E01C GNLR Global Nesting Level Register0xFFFE E020 SISR System Interrupt Status Indexed Set Register0xFFFE E024 SICR System Interrupt Status Indexed Clear Register0xFFFE E028 EISR System Interrupt Enable Indexed Set Register0xFFFE E02C EICR System Interrupt Enable Indexed Clear Register0xFFFE E030 - Reserved0xFFFE E034 HIEISR Host Interrupt Enable Indexed Set Register0xFFFE E038 HIDISR Host Interrupt Enable Indexed Clear Register0xFFFE E03C - 0xFFFE E04F - Reserved0xFFFE E050 VBR Vector Base Register0xFFFE E054 VSR Vector Size Register0xFFFE E058 VNR Vector Null Register0xFFFE E05C - 0xFFFE E07F - Reserved0xFFFE E080 GPIR Global Prioritized Index Register0xFFFE E084 GPVR Global Prioritized Vector Register0xFFFE E088 - 0xFFFE E1FF - Reserved0xFFFE E200 - 0xFFFE E20F SRSR[0] - SRSR[3] System Interrupt Status Raw / Set Registers0xFFFE E210- 0xFFFE E27F - Reserved0xFFFE E280 - 0xFFFE E28B SECR[0] - SECR[3] System Interrupt Status Enabled / Clear Registers0xFFFE E28C - 0xFFFE E2FF - Reserved0xFFFE E300 - 0xFFFE E30F ESR[0] - ESR[3] System Interrupt Enable Set Registers0xFFFE E310 - 0xFFFE E37F - Reserved0xFFFE E380 - 0xFFFE E38B ECR[0] - ECR[3] System Interrupt Enable Clear Registers0xFFFE E38C - 0xFFFE E3FF - Reserved0xFFFE E400 - 0xFFFE E45B CMR[0] - CMR[31] Channel Map Registers (Byte Wide Registers)0xFFFE E45C - 0xFFFE E8FF - Reserved0xFFFE E800 - 0xFFFE E81F - Reserved0xFFFE E820 - 0xFFFE E8FF - Reserved0xFFFE E900 - 0xFFFE E904 HIPIR[0] - HIPIR[1] Host Interrupt Prioritized Index Registers0xFFFE E908 - 0xFFFE EEFF - Reserved0xFFFE EF00 - 0xFFFE EF04 DSR[0] - DSR[1] Debug Select Registers0xFFFE EF08 - 0xFFFE F0FF - Reserved0xFFFE F100 - 0xFFFE F104 HINLR[0] - HINLR[1] Host Interrupt Nesting Level Registers0xFFFE F108 - 0xFFFE F4FF - Reserved0xFFFE F500 HIER[0] Host Interrupt Enable Register0xFFFE F504 - 0xFFFE F5FF - Reserved0xFFFE F600 HIPVR[0] - HIPVR[1] Host Interrupt Prioritized Vector Registers0xFFFE F608 - 0xFFFE FFFF - Reserved
Peripheral Information and Electrical Specifications90 Submit Documentation Feedback
PRODUCT PREVIEW
6.7.2 DSP Interrupts
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The C674x DSP interrupt controller combines device events into 12 prioritized interrupts. The source foreach of the 12 CPU interrupts is user programmable and is listed in Table 6-6 . Also, the interruptcontroller controls the generation of the CPU exception, NMI, and emulation interrupts. Table 6-7summarizes the C674x interrupt controller registers and memory locations.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 91
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-6. OMAP-L137 DSP Interrupts
EVT# Interrupt Name Source
0 EVT0 C674x Int Ctl 01 EVT1 C674x Int Ctl 12 EVT2 C674x Int Ctl 23 EVT3 C674x Int Ctl 34 T64P0_TINT12 Timer64P0 - TINT125 SYSCFG_CHIPINT2 SYSCFG_CHIPSIG Register6 - Reserved7 EHRPWM0 HiResTimer/PWM0 Interrupt8 TPCC0_INT1 TPCC0 Region 1 Interrupt9 EMU-DTDMA C674x-ECM10 EHRPWM0TZ HiResTimer/PWM0 Trip Zone Interrupt11 EMU-RTDXRX C674x-RTDX12 EMU-RTDXTX C674x-RTDX13 IDMAINT0 C674x-EMC14 IDMAINT1 C674x-EMC15 MMCSD_INT0 MMCSD MMC/SD Interrupt16 MMCSD_INT1 MMCSD SDIO Interrupt17 - Reserved18 EHRPWM1 HiResTimer/PWM1 Interrupt19 USB0_INT USB0 Interrupt20 USB1_HCINT USB1 OHCI Host Controller Interrupt21 USB1_RWAKEUP USB1 Remote Wakeup Interrupt22 - Reserved23 EHRPWM1TZ HiResTimer/PWM1 Trip Zone Interrupt24 EHRPWM2 HiResTimer/PWM2 Interrupt25 EHRPWM2TZ HiResTimer/PWM2 Trip Zone Interrupt26 EMAC_C0RXTHRESH EMAC - Core 0 Receive Threshold Interrupt27 EMAC_C0RX EMAC - Core 0 Receive Interrupt28 EMAC_C0TX EMAC - Core 0 Transmit Interrupt29 EMAC_C0MISC EMAC - Core 0 Miscellaneous Interrupt30 EMAC_C1RXTHRESH EMAC - Core 1 Receive Threshold Interrupt31 EMAC_C1RX EMAC - Core 1 Receive Interrupt32 EMAC_C1TX EMAC - Core 1 Transmit Interrupt33 EMAC_C1MISC EMAC - Core 1 Miscellaneous Interrupt34 UHPI_DSPINT UHPI DSP Interrupt35 - Reserved36 IIC0_INT I2C037 SP0_INT SPI038 UART0_INT UART039 - Reserved40 T64P1_TINT12 Timer64P1 Interrupt 1241 GPIO_B1INT GPIO Bank 1 Interrupt42 IIC1_INT I2C143 SPI1_INT SPI144 - Reserved45 ECAP0 ECAP046 UART_INT1 UART1
Peripheral Information and Electrical Specifications92 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-6. OMAP-L137 DSP Interrupts (continued)
EVT# Interrupt Name Source
47 ECAP1 ECAP148 T64P1_TINT34 Timer64P1 Interrupt 3449 GPIO_B2INT GPIO Bank 2 Interrupt50 - Reserved51 ECAP2 ECAP252 GPIO_B3INT GPIO Bank 3 Interrupt53 EQEP1 EQEP154 GPIO_B4INT GPIO Bank 4 Interrupt55 EMIFA_INT EMIFA56 EDMA3_CC0_ERRINT EDMA3 Channel Controller 057 EDMA3_TC0_ERRINT EDMA3 Transfer Controller 058 EDMA3_TC1_ERRINT EDMA3 Transfer Controller 159 GPIO_B5INT GPIO Bank 5 Interrupt60 EMIFB_INT EMIFB Memory Error Interrupt61 MCASP_INT McASP0,1,2 Combined RX/TX Interrupts62 GPIO_B6INT GPIO Bank 6 Interrupt63 RTC_IRQS RTC Combined64 T64P0_TINT34 Timer64P0 Interrupt 3465 GPIO_B0INT GPIO Bank 0 Interrupt66 - Reserved67 SYSCFG_CHIPINT3 SYSCFG_CHIPSIG Register68 EQEP0 EQEP069 UART2_INT UART270 PSC0_ALLINT PSC071 PSC1_ALLINT PSC172 GPIO_B7INT GPIO Bank 7 Interrupt73 LCDC_INT LDC Controller74 PROTERR SYSCFG Protection Shared Interrupt75 - Reserved76 - Reserved77 - Reserved78 T64P0_CMPINT0 Timer64P0 - Compare 079 T64P0_CMPINT1 Timer64P0 - Compare 180 T64P0_CMPINT2 Timer64P0 - Compare 281 T64P0_CMPINT3 Timer64P0 - Compare 382 T64P0_CMPINT4 Timer64P0 - Compare 483 T64P0_CMPINT5 Timer64P0 - Compare 584 T64P0_CMPINT6 Timer64P0 - Compare 685 T64P0_CMPINT7 Timer64P0 - Compare 786 T64P1_CMPINT0 Timer64P1 - Compare 087 T64P1_CMPINT1 Timer64P1 - Compare 188 T64P1_CMPINT2 Timer64P1 - Compare 289 T64P1_CMPINT3 Timer64P1 - Compare 390 T64P1_CMPINT4 Timer64P1 - Compare 491 T64P1_CMPINT5 Timer64P1 - Compare 592 T64P1_CMPINT6 Timer64P1 - Compare 693 T64P1_CMPINT7 Timer64P1 - Compare 7
Submit Documentation Feedback Peripheral Information and Electrical Specifications 93
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-6. OMAP-L137 DSP Interrupts (continued)
EVT# Interrupt Name Source
94 - Reserved95 - Reserved96 INTERR C674x-Int Ctl97 EMC_IDMAERR C674x-EMC98 - Reserved99 - Reserved100 - Reserved101 - Reserved102 - Reserved103 - Reserved104 - Reserved105 - Reserved106 - Reserved107 - Reserved108 - Reserved109 - Reserved110 - Reserved111 - Reserved112 - Reserved113 PMC_ED C674x-PMC114 - Reserved115 - Reserved116 UMC_ED1 C674x-UMC117 UMC_ED2 C674x-UMC118 PDC_INT C674x-PDC119 SYS_CMPA C674x-SYS120 PMC_CMPA C674x-PMC121 PMC_CMPA C674x-PMC122 DMC_CMPA C674x-DMC123 DMC_CMPA C674x-DMC124 UMC_CMPA C674x-UMC125 UMC_CMPA C674x-UMC126 EMC_CMPA C674x-EMC127 EMC_BUSERR C674x-EMC
Peripheral Information and Electrical Specifications94 Submit Documentation Feedback
PRODUCT PREVIEW
6.7.3 ARM/DSP Communications Interrupts
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-7. C674x DSP Interrupt Controller Registers
BYTE ADDRESS REGISTER NAME DESCRIPTION
0x0180 0000 EVTFLAG0 Event flag register 00x0180 0004 EVTFLAG1 Event flag register 10x0180 0008 EVTFLAG2 Event flag register 20x0180 000C EVTFLAG3 Event flag register 30x0180 0020 EVTSET0 Event set register 00x0180 0024 EVTSET1 Event set register 10x0180 0028 EVTSET2 Event set register 20x0180 002C EVTSET3 Event set register 30x0180 0040 EVTCLR0 Event clear register 00x0180 0044 EVTCLR1 Event clear register 10x0180 0048 EVTCLR2 Event clear register 20x0180 004C EVTCLR3 Event clear register 30x0180 0080 EVTMASK0 Event mask register 00x0180 0084 EVTMASK1 Event mask register 10x0180 0088 EVTMASK2 Event mask register 20x0180 008C EVTMASK3 Event mask register 30x0180 00A0 MEVTFLAG0 Masked event flag register 00x0180 00A4 MEVTFLAG1 Masked event flag register 10x0180 00A8 MEVTFLAG2 Masked event flag register 20x0180 00AC MEVTFLAG3 Masked event flag register 30x0180 00C0 EXPMASK0 Exception mask register 00x0180 00C4 EXPMASK1 Exception mask register 10x0180 00C8 EXPMASK2 Exception mask register 20x0180 00CC EXPMASK3 Exception mask register 30x0180 00E0 MEXPFLAG0 Masked exception flag register 00x0180 00E4 MEXPFLAG1 Masked exception flag register 10x0180 00E8 MEXPFLAG2 Masked exception flag register 20x0180 00EC MEXPFLAG3 Masked exception flag register 30x0180 0104 INTMUX1 Interrupt mux register 10x0180 0108 INTMUX2 Interrupt mux register 20x0180 010C INTMUX3 Interrupt mux register 30x0180 0140 - 0x0180 0144 - Reserved0x0180 0180 INTXSTAT Interrupt exception status0x0180 0184 INTXCLR Interrupt exception clear0x0180 0188 INTDMASK Dropped interrupt mask register0x0180 01C0 EVTASRT Event assert register
Communications Interrupts between the ARM and DSP are part of the SYSCFG module on theOMAP-L13x family of devices.( Section 4.5.1 CHIPSIG, Section 4.5.2 CHIPSIG_CLR)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 95
PRODUCT PREVIEW
6.8 General-Purpose Input/Output (GPIO)
6.8.1 GPIO Register Description(s)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The GPIO peripheral provides general-purpose pins that can be configured as either inputs or outputs.When configured as an output, a write to an internal register can control the state driven on the output pin.When configured as an input, the state of the input is detectable by reading the state of an internalregister. In addition, the GPIO peripheral can produce CPU interrupts and EDMA events in differentinterrupt/event generation modes. The GPIO peripheral provides generic connections to external devices.The GPIO pins are grouped into banks of 16 pins per bank (i.e., bank 0 consists of GPIO [0:15]).
The OMAP-L137 GPIO peripheral supports the following:Up to 128 Pins on ZKB package configurable as GPIOExternal Interrupt and DMA request Capability Every GPIO pin may be configured to generate an interrupt request on detection of rising and/orfalling edges on the pin. The interrupt requests within each bank are combined (logical or) to create eight unique bank levelinterrupt requests. The bank level interrupt service routine may poll the INTSTATx register for its bank to determinewhich pin(s) have triggered the interrupt. GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to ARM INTC Interrupt Requests 42, 43,44, 45, 46, 47, 48, and 49 respectively GPIO Banks 0, 1, 2, 3, 4, 5, 6, and 7 Interrupts assigned to DSP Events 65, 41, 49, 52, 54, 59, 62and 72 respectively
Additionally, GPIO Banks 0, 1, 2, 3, 4, and 5 Interrupts assigned to EDMA events 6, 7, 22, 23, 28,and 29 respectively.Set/clear functionality: Firmware writes 1 to corresponding bit position(s) to set or to clear GPIOsignal(s). This allows multiple firmware processes to toggle GPIO output signals without critical sectionprotection (disable interrupts, program GPIO, re-enable interrupts, to prevent context switching toanther process during GPIO programming).Separate Input/Output registersOutput register in addition to set/clear so that, if preferred by firmware, some GPIO output signals canbe toggled by direct write to the output register(s).Output register, when read, reflects output drive status. This, in addition to the input register reflectingpin status and open-drain I/O cell, allows wired logic be implemented.
The memory map for the GPIO registers is shown in Table 6-8 . See the OMAP-L137 ApplicationsProcessor DSP Peripherals Overview Reference Guide. Literature Number SPRUGA6 for more details.
Table 6-8. GPIO Registers
GPIO Acronym Register DescriptionBYTE ADDRESS
0x01E2 6000 REV Peripheral Revision Register0x01E2 6004 RESERVED Reserved0x01E2 6008 BINTEN GPIO Interrupt Per-Bank Enable Register
GPIO Banks 0 and 1
0x01E2 6010 DIR01 GPIO Banks 0 and 1 Direction Register0x01E2 6014 OUT_DATA01 GPIO Banks 0 and 1 Output Data Register0x01E2 6018 SET_DATA01 GPIO Banks 0 and 1 Set Data Register0x01E2 601C CLR_DATA01 GPIO Banks 0 and 1 Clear Data Register0x01E2 6020 IN_DATA01 GPIO Banks 0 and 1 Input Data Register0x01E2 6024 SET_RIS_TRIG01 GPIO Banks 0 and 1 Set Rising Edge Interrupt Register
Peripheral Information and Electrical Specifications96 Submit Documentation Feedback
PRODUCT PREVIEW
6.8.2 GPIO Peripheral Input/Output Electrical Data/Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-8. GPIO Registers (continued)
GPIO Acronym Register DescriptionBYTE ADDRESS
0x01E2 6028 CLR_RIS_TRIG01 GPIO Banks 0 and 1 Clear Rising Edge Interrupt Register0x01E2 602C SET_FAL_TRIG01 GPIO Banks 0 and 1 Set Falling Edge Interrupt Register0x01E2 6030 CLR_FAL_TRIG01 GPIO Banks 0 and 1 Clear Falling Edge Interrupt Register0x01E2 6034 INTSTAT01 GPIO Banks 0 and 1 Interrupt Status Register
GPIO Banks 2 and 3
0x01E2 6038 DIR23 GPIO Banks 2 and 3 Direction Register0x01E2 603C OUT_DATA23 GPIO Banks 2 and 3 Output Data Register0x01E2 6040 SET_DATA23 GPIO Banks 2 and 3 Set Data Register0x01E2 6044 CLR_DATA23 GPIO Banks 2 and 3 Clear Data Register0x01E2 6048 IN_DATA23 GPIO Banks 2 and 3 Input Data Register0x01E2 604C SET_RIS_TRIG23 GPIO Banks 2 and 3 Set Rising Edge Interrupt Register0x01E2 6050 CLR_RIS_TRIG23 GPIO Banks 2 and 3 Clear Rising Edge Interrupt Register0x01E2 6054 SET_FAL_TRIG23 GPIO Banks 2 and 3 Set Falling Edge Interrupt Register0x01E2 6058 CLR_FAL_TRIG23 GPIO Banks 2 and 3 Clear Falling Edge Interrupt Register0x01E2 605C INTSTAT23 GPIO Banks 2 and 3 Interrupt Status Register
GPIO Banks 4 and 5
0x01E2 6060 DIR45 GPIO Banks 4 and 5 Direction Register0x01E2 6064 OUT_DATA45 GPIO Banks 4 and 5 Output Data Register0x01E2 6068 SET_DATA45 GPIO Banks 4 and 5 Set Data Register0x01E2 606C CLR_DATA45 GPIO Banks 4 and 5 Clear Data Register0x01E2 6070 IN_DATA45 GPIO Banks 4 and 5 Input Data Register0x01E2 6074 SET_RIS_TRIG45 GPIO Banks 4 and 5 Set Rising Edge Interrupt Register0x01E2 6078 CLR_RIS_TRIG45 GPIO Banks 4 and 5 Clear Rising Edge Interrupt Register0x01E2 607C SET_FAL_TRIG45 GPIO Banks 4 and 5 Set Falling Edge Interrupt Register0x01E2 6080 CLR_FAL_TRIG45 GPIO Banks 4 and 5 Clear Falling Edge Interrupt Register0x01E2 6084 INTSTAT45 GPIO Banks 4 and 5 Interrupt Status Register
GPIO Banks 6 and 7
0x01E2 6088 DIR67 GPIO Banks 6 and 7 Direction Register0x01E2 608C OUT_DATA67 GPIO Banks 6 and 7 Output Data Register0x01E2 6090 SET_DATA67 GPIO Banks 6 and 7 Set Data Register0x01E2 6094 CLR_DATA67 GPIO Banks 6 and 7 Clear Data Register0x01E2 6098 IN_DATA67 GPIO Banks 6 and 7 Input Data Register0x01E2 609C SET_RIS_TRIG67 GPIO Banks 6 and 7 Set Rising Edge Interrupt Register0x01E2 60A0 CLR_RIS_TRIG67 GPIO Banks 6 and 7 Clear Rising Edge Interrupt Register0x01E2 60A4 SET_FAL_TRIG67 GPIO Banks 6 and 7 Set Falling Edge Interrupt Register0x01E2 60A8 CLR_FAL_TRIG67 GPIO Banks 6 and 7 Clear Falling Edge Interrupt Register0x01E2 60AC INTSTAT67 GPIO Banks 6 and 7 Interrupt Status Register
Table 6-9. Timing Requirements for GPIO Inputs
(1)
(see Figure 6-9 )
NO. UNITMIN MAX
1 t
w(GPIH)
Pulse duration, GPIx high 2C
(1) (2)
ns
(1) The pulse width given is sufficient to generate a CPU interrupt or an EDMA event. However, if a user wants to have OMAP-L137recognize the GPIx changes through software polling of the GPIO register, the GPIx duration must be extended to allow OMAP-L137enough time to access the GPIO register through the internal bus.(2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns
Submit Documentation Feedback Peripheral Information and Electrical Specifications 97
PRODUCT PREVIEW
GPIx
GPOx
4
3
2
1
6.8.3 GPIO Peripheral External Interrupts Electrical Data/Timing
EXT_INTx
2
1
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-9. Timing Requirements for GPIO Inputs (see Figure 6-9 ) (continued)
NO. UNITMIN MAX
2 t
w(GPIL)
Pulse duration, GPIx low 2C
(1) (2)
ns
Table 6-10. Switching Characteristics Over Recommended Operating Conditions for GPIO Outputs(see Figure 6-9 )
NO. PARAMETER UNITMIN MAX
3 t
w(GPOH)
Pulse duration, GPOx high 2C
(1) (2)
ns4 t
w(GPOL)
Pulse duration, GPOx low 2C
(1) (2)
ns
(1) This parameter value should not be used as a maximum performance specification. Actual performance of back-to-back accesses of theGPIO is dependent upon internal bus activity.(2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns
Figure 6-9. GPIO Port Timing
Table 6-11. Timing Requirements for External Interrupts
(1)
(see Figure 6-10 )
NO. UNITMIN MAX
1 t
w(ILOW)
Width of the external interrupt pulse low 2C
(1) (2)
ns2 t
w(IHIGH)
Width of the external interrupt pulse high 2C
(1) (2)
ns
(1) The pulse width given is sufficient to generate an interrupt or an EDMA event. However, if a user wants to have OMAP-L137 recognizethe GPIO changes through software polling of the GPIO register, the GPIO duration must be extended to allow OMAP-L137 enoughtime to access the GPIO register through the internal bus.(2) C=SYSCLK4 period in ns. For example, when running parts at 300 MHz, C=13.33 ns
Figure 6-10. GPIO External Interrupt Timing
98 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
6.9 EDMA
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-12 is the list of EDMA3 Channel Contoller Registers and Table 6-13 is the list of EDMA3 TransferController registers.
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers
BYTE ADDRESS Acronym Register Description
0x01C0 0000 PID Peripheral Identification Register0x01C0 0004 CCCFG EDMA3CC Configuration Register
Global Registers
0x01C0 0200 QCHMAP0 QDMA Channel 0 Mapping Register0x01C0 0204 QCHMAP1 QDMA Channel 1 Mapping Register0x01C0 0208 QCHMAP2 QDMA Channel 2 Mapping Register0x01C0 020C QCHMAP3 QDMA Channel 3 Mapping Register0x01C0 0210 QCHMAP4 QDMA Channel 4 Mapping Register0x01C0 0214 QCHMAP5 QDMA Channel 5 Mapping Register0x01C0 0218 QCHMAP6 QDMA Channel 6 Mapping Register0x01C0 021C QCHMAP7 QDMA Channel 7 Mapping Register0x01C0 0240 DMAQNUM0 DMA Channel Queue Number Register 00x01C0 0244 DMAQNUM1 DMA Channel Queue Number Register 10x01C0 0248 DMAQNUM2 DMA Channel Queue Number Register 20x01C0 024C DMAQNUM3 DMA Channel Queue Number Register 30x01C0 0260 QDMAQNUM QDMA Channel Queue Number Register0x01C0 0284 QUEPRI Queue Priority Register
(1)
0x01C0 0300 EMR Event Missed Register0x01C0 0308 EMCR Event Missed Clear Register0x01C0 0310 QEMR QDMA Event Missed Register0x01C0 0314 QEMCR QDMA Event Missed Clear Register0x01C0 0318 CCERR EDMA3CC Error Register0x01C0 031C CCERRCLR EDMA3CC Error Clear Register0x01C0 0320 EEVAL Error Evaluate Register0x01C0 0340 DRAE0 DMA Region Access Enable Register for Region 00x01C0 0348 DRAE1 DMA Region Access Enable Register for Region 10x01C0 0350 DRAE2 DMA Region Access Enable Register for Region 20x01C0 0358 DRAE3 DMA Region Access Enable Register for Region 30x01C0 0380 QRAE0 QDMA Region Access Enable Register for Region 00x01C0 0384 QRAE1 QDMA Region Access Enable Register for Region 10x01C0 0388 QRAE2 QDMA Region Access Enable Register for Region 20x01C0 038C QRAE3 QDMA Region Access Enable Register for Region 30x01C0 0400 - 0x01C0 043C Q0E0-Q0E15 Event Queue Entry Registers Q0E0-Q0E150x01C0 0440 - 0x01C0 047C Q1E0-Q1E15 Event Queue Entry Registers Q1E0-Q1E150x01C0 0600 QSTAT0 Queue 0 Status Register0x01C0 0604 QSTAT1 Queue 1 Status Register0x01C0 0620 QWMTHRA Queue Watermark Threshold A Register0x01C0 0640 CCSTAT EDMA3CC Status Register
Global Channel Registers
0x01C0 1000 ER Event Register0x01C0 1008 ECR Event Clear Register
(1) On previous architectures, the EDMA3TC priority was controlled by the queue priority register (QUEPRI) in the EDMA3CCmemory-map. However for this device, the priority control for the transfer controllers is controlled by the chip-level registers in theSystem Configuration Module. You should use the chip-level registers and not QUEPRI to configure the TC priority.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 99
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01C0 1010 ESR Event Set Register0x01C0 1018 CER Chained Event Register0x01C0 1020 EER Event Enable Register0x01C0 1028 EECR Event Enable Clear Register0x01C0 1030 EESR Event Enable Set Register0x01C0 1038 SER Secondary Event Register0x01C0 1040 SECR Secondary Event Clear Register0x01C0 1050 IER Interrupt Enable Register0x01C0 1058 IECR Interrupt Enable Clear Register0x01C0 1060 IESR Interrupt Enable Set Register0x01C0 1068 IPR Interrupt Pending Register0x01C0 1070 ICR Interrupt Clear Register0x01C0 1078 IEVAL Interrupt Evaluate Register0x01C0 1080 QER QDMA Event Register0x01C0 1084 QEER QDMA Event Enable Register0x01C0 1088 QEECR QDMA Event Enable Clear Register0x01C0 108C QEESR QDMA Event Enable Set Register0x01C0 1090 QSER QDMA Secondary Event Register0x01C0 1094 QSECR QDMA Secondary Event Clear Register
Shadow Region 0 Channel Registers
0x01C0 2000 ER Event Register0x01C0 2008 ECR Event Clear Register0x01C0 2010 ESR Event Set Register0x01C0 2018 CER Chained Event Register0x01C0 2020 EER Event Enable Register0x01C0 2028 EECR Event Enable Clear Register0x01C0 2030 EESR Event Enable Set Register0x01C0 2038 SER Secondary Event Register0x01C0 2040 SECR Secondary Event Clear Register0x01C0 2050 IER Interrupt Enable Register0x01C0 2058 IECR Interrupt Enable Clear Register0x01C0 2060 IESR Interrupt Enable Set Register0x01C0 2068 IPR Interrupt Pending Register0x01C0 2070 ICR Interrupt Clear Register0x01C0 2078 IEVAL Interrupt Evaluate Register0x01C0 2080 QER QDMA Event Register0x01C0 2084 QEER QDMA Event Enable Register0x01C0 2088 QEECR QDMA Event Enable Clear Register0x01C0 208C QEESR QDMA Event Enable Set Register0x01C0 2090 QSER QDMA Secondary Event Register0x01C0 2094 QSECR QDMA Secondary Event Clear Register
Shadow Region 1 Channel Registers
0x01C0 2200 ER Event Register0x01C0 2208 ECR Event Clear Register0x01C0 2210 ESR Event Set Register0x01C0 2218 CER Chained Event Register0x01C0 2220 EER Event Enable Register
Peripheral Information and Electrical Specifications100 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-12. EDMA3 Channel Controller (EDMA3CC) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01C0 2228 EECR Event Enable Clear Register0x01C0 2230 EESR Event Enable Set Register0x01C0 2238 SER Secondary Event Register0x01C0 2240 SECR Secondary Event Clear Register0x01C0 2250 IER Interrupt Enable Register0x01C0 2258 IECR Interrupt Enable Clear Register0x01C0 2260 IESR Interrupt Enable Set Register0x01C0 2268 IPR Interrupt Pending Register0x01C0 2270 ICR Interrupt Clear Register0x01C0 2278 IEVAL Interrupt Evaluate Register0x01C0 2280 QER QDMA Event Register0x01C0 2284 QEER QDMA Event Enable Register0x01C0 2288 QEECR QDMA Event Enable Clear Register0x01C0 228C QEESR QDMA Event Enable Set Register0x01C0 2290 QSER QDMA Secondary Event Register0x01C0 2294 QSECR QDMA Secondary Event Clear Register0x01C0 4000 - 0x01C0 4FFF Parameter RAM (PaRAM)
Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers
Offset Transfer Controller Transfer Controller Acronym Register Description0 1BYTE ADDRESS BYTE ADDRESS
0h 0x01C0 8000 0x01C0 8400 PID Peripheral Identification Register4h 0x01C0 8004 0x01C0 8404 TCCFG EDMA3TC Configuration Register100h 0x01C0 8100 0x01C0 8500 TCSTAT EDMA3TC Channel Status Register120h 0x01C0 8120 0x01C0 8520 ERRSTAT Error Status Register124h 0x01C0 8124 0x01C0 8524 ERREN Error Enable Register128h 0x01C0 8128 0x01C0 8528 ERRCLR Error Clear Register12Ch 0x01C0 812C 0x01C0 852C ERRDET Error Details Register130h 0x01C0 8130 0x01C0 8530 ERRCMD Error Interrupt Command Register140h 0x01C0 8140 0x01C0 8540 RDRATE Read Command Rate Register240h 0x01C0 8240 0x01C0 8640 SAOPT Source Active Options Register244h 0x01C0 8244 0x01C0 8644 SASRC Source Active Source Address Register248h 0x01C0 8248 0x01C0 8648 SACNT Source Active Count Register24Ch 0x01C0 824C 0x01C0 864C SADST Source Active Destination Address Register250h 0x01C0 8250 0x01C0 8650 SABIDX Source Active B-Index Register254h 0x01C0 8254 0x01C0 8654 SAMPPRXY Source Active Memory Protection Proxy Register258h 0x01C0 8258 0x01C0 8658 SACNTRLD Source Active Count Reload Register25Ch 0x01C0 825C 0x01C0 865C SASRCBREF Source Active Source Address B-Reference Register260h 0x01C0 8260 0x01C0 8660 SADSTBREF Source Active Destination Address B-Reference Register280h 0x01C0 8280 0x01C0 8680 DFCNTRLD Destination FIFO Set Count Reload Register284h 0x01C0 8284 0x01C0 8684 DFSRCBREF Destination FIFO Set Source Address B-Reference Register288h 0x01C0 8288 0x01C0 8688 DFDSTBREF Destination FIFO Set Destination Address B-ReferenceRegister300h 0x01C0 8300 0x01C0 8700 DFOPT0 Destination FIFO Options Register 0304h 0x01C0 8304 0x01C0 8704 DFSRC0 Destination FIFO Source Address Register 0308h 0x01C0 8308 0x01C0 8708 DFCNT0 Destination FIFO Count Register 030Ch 0x01C0 830C 0x01C0 870C DFDST0 Destination FIFO Destination Address Register 0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 101
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-13. EDMA3 Transfer Controller (EDMA3TC) Registers (continued)
Offset Transfer Controller Transfer Controller Acronym Register Description0 1BYTE ADDRESS BYTE ADDRESS
310h 0x01C0 8310 0x01C0 8710 DFBIDX0 Destination FIFO B-Index Register 0314h 0x01C0 8314 0x01C0 8714 DFMPPRXY0 Destination FIFO Memory Protection Proxy Register 0340h 0x01C0 8340 0x01C0 8740 DFOPT1 Destination FIFO Options Register 1344h 0x01C0 8344 0x01C0 8744 DFSRC1 Destination FIFO Source Address Register 1348h 0x01C0 8348 0x01C0 8748 DFCNT1 Destination FIFO Count Register 134Ch 0x01C0 834C 0x01C0 874C DFDST1 Destination FIFO Destination Address Register 1350h 0x01C0 8350 0x01C0 8750 DFBIDX1 Destination FIFO B-Index Register 1354h 0x01C0 8354 0x01C0 8754 DFMPPRXY1 Destination FIFO Memory Protection Proxy Register 1380h 0x01C0 8380 0x01C0 8780 DFOPT2 Destination FIFO Options Register 2384h 0x01C0 8384 0x01C0 8784 DFSRC2 Destination FIFO Source Address Register 2388h 0x01C0 8388 0x01C0 8788 DFCNT2 Destination FIFO Count Register 238Ch 0x01C0 838C 0x01C0 878C DFDST2 Destination FIFO Destination Address Register 2390h 0x01C0 8390 0x01C0 8790 DFBIDX2 Destination FIFO B-Index Register 2394h 0x01C0 8394 0x01C0 8794 DFMPPRXY2 Destination FIFO Memory Protection Proxy Register 23C0h 0x01C0 83C0 0x01C0 87C0 DFOPT3 Destination FIFO Options Register 33C4h 0x01C0 83C4 0x01C0 87C4 DFSRC3 Destination FIFO Source Address Register 33C8h 0x01C0 83C8 0x01C0 87C8 DFCNT3 Destination FIFO Count Register 33CCh 0x01C0 83CC 0x01C0 87CC DFDST3 Destination FIFO Destination Address Register 33D0h 0x01C0 83D0 0x01C0 87D0 DFBIDX3 Destination FIFO B-Index Register 33D4h 0x01C0 83D4 0x01C0 87D4 DFMPPRXY3 Destination FIFO Memory Protection Proxy Register 3
Table 6-14 shows an abbreviation of the set of registers which make up the parameter set for each of 128EDMA events. Each of the parameter register sets consist of 8 32-bit word entries. Table 6-15 shows theparameter set entry registers with relative memory address locations within each of the parameter sets.
Table 6-14. EDMA Parameter Set RAM
HEX ADDRESS RANGE DESCRIPTION
0x01C0 4000 - 0x01C0 401F Parameters Set 0 (8 32-bit words)0x01C0 4020 - 0x01C0 403F Parameters Set 1 (8 32-bit words)0x01C0 4040 - 0x01cC0 405F Parameters Set 2 (8 32-bit words)0x01C0 4060 - 0x01C0 407F Parameters Set 3 (8 32-bit words)0x01C0 4080 - 0x01C0 409F Parameters Set 4 (8 32-bit words)0x01C0 40A0 - 0x01C0 40BF Parameters Set 5 (8 32-bit words)... ...0x01C0 4FC0 - 0x01C0 4FDF Parameters Set 126 (8 32-bit words)0x01C0 4FE0 - 0x01C0 4FFF Parameters Set 127 (8 32-bit words)
Table 6-15. Parameter Set Entries
HEX OFFSET ADDRESS
ACRONYM PARAMETER ENTRYWITHIN THE PARAMETER SET
0x0000 OPT Option0x0004 SRC Source Address0x0008 A_B_CNT A Count, B Count0x000C DST Destination Address0x0010 SRC_DST_BIDX Source B Index, Destination B Index0x0014 LINK_BCNTRLD Link Address, B Count Reload
Peripheral Information and Electrical Specifications102 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-15. Parameter Set Entries (continued)
HEX OFFSET ADDRESS
ACRONYM PARAMETER ENTRYWITHIN THE PARAMETER SET
0x0018 SRC_DST_CIDX Source C Index, Destination C Index0x001C CCNT C Count
Table 6-16. EDMA Events
Event Event Name / Source Event Event Name / Source
0 McASP0 Receive 16 MMCSD Receive1 McASP0 Transmit 17 MMCSD Transmit2 McASP1 Receive 18 SPI1 Receive3 McASP1 Transmit 19 SPI1 Transmit4 McASP2 Receive 20 Reserved5 McASP2 Transmit 21 Reserved6 GPIO Bank 0 Interrupt 22 GPIO Bank 2 Interrupt7 GPIO Bank 1 Interrupt 23 GPIO Bank 3 Interrupt8 UART0 Receive 24 I2C0 Receive9 UART0 Transmit 25 I2C0 Transmit10 Timer64P0 Event Out 12 26 I2C1 Receive11 Timer64P0 Event Out 34 27 I2C1 Transmit12 UART1 Receive 28 GPIO Bank 4 Interrupt13 UART1 Transmit 29 GPIO Bank 5 Interrupt14 SPI0 Receive 30 UART2 Receive15 SPI0 Transmit 31 UART2 Transmit
Submit Documentation Feedback Peripheral Information and Electrical Specifications 103
PRODUCT PREVIEW
6.10 External Memory Interface A (EMIFA)
6.10.1 EMIFA Asynchronous Memory Support
6.10.2 EMIFA Synchronous DRAM Memory Support
6.10.3 EMIFA Connection Examples
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
EMIFA is one of two external memory interfaces supported on the OMAP-L137 . It is primarily intended tosupport asynchronous memory types, such as NAND and NOR flash and Asynchronous SRAM. Howeveron OMAP-L137 EMIFA also provides a secondary interface to SDRAM.
EMIFA supports asynchronous:SRAM memoriesNAND Flash memoriesNOR Flash memories
The EMIFA data bus width is up to 16-bits on the ZKB package . The device supports up to fifteen addresslines and an external wait/interrupt input. Up to four asynchronous chip selects are supported by EMIFA(EMA_CS[5:2]) . All four chip selects are available on the ZKB package.
Each chip select has the following individually programmable attributes:Data Bus WidthRead cycle timings: setup, hold, strobeWrite cycle timings: setup, hold, strobeBus turn around timeExtended Wait Option With Programmable TimeoutSelect Strobe OptionNAND flash controller supports 1-bit and 4-bit ECC calculation on blocks of 512 bytes.
The OMAP-L137 ZKB package supports 16-bit SDRAM in addition to the asynchronous memories listed inSection 6.10.1 . It has a single SDRAM chip select (EMA_CS[0]). SDRAM configurations that aresupported are:One, Two, and Four Bank SDRAM devicesDevices with Eight, Nine, Ten, and Eleven Column AddressCAS Latency of two or three clock cyclesSixteen Bit Data Bus Width3.3V LVCMOS Interface
Additionally, the SDRAM interface of EMIFA supports placing the SDRAM in Self Refresh and PowerdownModes. Self Refresh mode allows the SDRAM to be put into a low power state while still retaining memorycontents; since the SDRAM will continue to refresh itself even without clocks from the DSP. Powerdownmode achieves even lower power, except the DSP must periodically wake the SDRAM up and issuerefreshes if data retention is required.
Finally, note that the EMIFA does not support Mobile SDRAM devices.
Figure 6-11 illustrates an example of how SDRAM, NOR, and NAND flash devices might be connected toEMIFA of a OMAP-L137 device simultaneously. The SDRAM chip select must be EMA_CS[0]. Note thatthe NOR flash is connected to EMA_CS[2] and the NAND flash is connected to EMA_CS[3] in thisexample. Note that any type of asynchronous memory may be connected to EMA_CS[5:2].
The on-chip bootloader makes some assumptions on which chip select the contains the boot image, andthis depends on the boot mode. For NOR boot mode; the on-chip bootloader requires that the image bestored in NOR flash on EMA_CS[2]. For NAND boot mode, the bootloader requires that the boot image isstored in NAND flash on EMA_CS[3]. It is always possible to have the image span multiple chip selects,but this must be supported by second stage boot code stored in the external flash.
Peripheral Information and Electrical Specifications104 Submit Documentation Feedback
PRODUCT PREVIEW
EMA_CLK
EMA_BA[1:0]
EMA_CS[0]
EMA_CAS
EMA_RAS
EMA_WE
CLK
CE
WE
EMIFA
SDRAM
2Mx16x4
Bank
EMA_SDCKE
CAS
RAS
CKE
BA[1:0]
LDQM
UDQM
DQ[15:0]
A[11:0]EMA_A[12:0]
EMA_WE_DQM[0]
EMA_WE_DQM[1]
EMA_D[15:0]
EMA_CS[2]
EMA_CS[3]
EMA_WAIT
EMA_OE
GPIO
(6Pins)
RESET
A[0]
A[12:1]
DQ[15:0]
CE
WE
OE
RESET
A[18:13]
RY/ YB
NOR
FLASH
512Kx16
ALE
CLE
DQ[15:0]
CE
WE
RE
RB
NAND
FLASH
1Gbx16
EMA_BA[1]
EMA_A[1]
EMA_A[2]
...
DVDD
RESET
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
A likely use case with more than one EMIFA chip select used for NAND flash is illustrated in Figure 6-12 .This figure shows how two multiplane NAND flash devices with two chip selects each would connect to theEMIFA. In this case if NAND is the boot memory, then the boot image needs to be stored in the NANDarea selected by EMA_CS[3]. Part of the application image could spill over into the NAND regionsselected by other EMIFA chip selects; but would rely on the code stored in the EMA_CS[3] area tobootload it.
Figure 6-11. OMAP-L137 Connection Diagram: SDRAM, NOR, NAND
Submit Documentation Feedback Peripheral Information and Electrical Specifications 105
PRODUCT PREVIEW
EMA_A[1]
EMA_A[2]
EMA_D[7:0]
EMA_CS[2]
EMA_CS[3]
EMA_WE
EMA_OE
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/ 1B
R/ 2B
EMIFA
NAND
FLASH
x8,
MultiPlane
ALE
CLE
DQ[7:0]
CE1
CE2
WE
RE
R/ 1B
R/ 2B
NAND
FLASH
x8,
MultiPlane
DVDD
EMA_WAIT
EMA_CS[4]
EMA_CS[5]
6.10.4 External Memory Interface (EMIF)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-12. OMAP-L137 EMIFA Connection Diagram: Multiple NAND Flash Planes
Table 6-17 is a list of the EMIF registers. For more information about these registers, see the C674x DSPExternal Memory Interface (EMIF) User's Guide (literature number SPRU711).
Table 6-17. External Memory Interface (EMIFA) Registers
BYTE ADDRESS Register Name Register Description
0x6800 0000 MIDR Module ID Register0x6800 0004 AWCC Asynchronous Wait Cycle Configuration Register0x6800 0008 SDCR SDRAM Configuration Register0x6800 000C SDRCR SDRAM Refresh Control Register0x6800 0010 CE2CFG Asynchronous 1 Configuration Register0x6800 0014 CE3CFG Asynchronous 2 Configuration Register0x6800 0018 CE4CFG Asynchronous 3 Configuration Register0x6800 001C CE5CFG Asynchronous 4 Configuration Register0x6800 0020 SDTIMR SDRAM Timing Register0x6800 003C SDSRETR SDRAM Self Refresh Exit Timing Register0x6800 0040 INTRAW EMIFA Interrupt Raw Register0x6800 0044 INTMSK EMIFA Interrupt Mask Register0x6800 0048 INTMSKSET EMIFA Interrupt Mask Set Register0x6800 004C INTMSKCLR EMIFA Interrupt Mask Clear Register0x6800 0060 NANDFCR NAND Flash Control Register0x6800 0064 NANDFSR NAND Flash Status Register0x6800 0070 NANDF1ECC NAND Flash 1 ECC Register (CS2 Space)0x6800 0074 NANDF2ECC NAND Flash 2 ECC Register (CS3 Space)0x6800 0078 NANDF3ECC NAND Flash 3 ECC Register (CS4 Space)0x6800 007C NANDF4ECC NAND Flash 4 ECC Register (CS5 Space)0x6800 00BC NAND4BITECCLOAD NAND Flash 4-Bit ECC Load Register0x6800 00C0 NAND4BITECC1 NAND Flash 4-Bit ECC Register 10x6800 00C4 NAND4BITECC2 NAND Flash 4-Bit ECC Register 2
Peripheral Information and Electrical Specifications106 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-17. External Memory Interface (EMIFA) Registers (continued)
BYTE ADDRESS Register Name Register Description
0x6800 00C8 NAND4BITECC3 NAND Flash 4-Bit ECC Register 30x6800 00CC NAND4BITECC4 NAND Flash 4-Bit ECC Register 40x6800 00D0 NANDERRADD1 NAND Flash 4-Bit ECC Error Address Register 10x6800 00D4 NANDERRADD2 NAND Flash 4-Bit ECC Error Address Register 20x6800 00D8 NANDERRVAL1 NAND Flash 4-Bit ECC Error Value Register 10x6800 00DC NANDERRVAL2 NAND Flash 4-Bit ECC Error Value Register 2
Submit Documentation Feedback Peripheral Information and Electrical Specifications 107
PRODUCT PREVIEW
6.10.5 EMIFA Electrical Data/Timing
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-18 through Table 6-21 assume testing over recommended operating conditions.
Table 6-18. EMIFA SDRAM Interface Timing Requirements
NO. MIN MAX UNIT
Input setup time, read data valid on EMA_D[31:0] before EMA_CLK19 t
su(EMA_DV-EM_CLKH)
1 nsrising
Input hold time, read data valid on EMA_D[31:0] after EMA_CLK20 t
h(CLKH-DIV)
1.5 nsrising
Table 6-19. EMIFA SDRAM Interface Switching Characteristics
NO. PARAMETER MIN MAX UNIT
1 t
c(CLK)
Cycle time, EMIF clock EMA_CLK 10 ns2 t
w(CLK)
Pulse width, EMIF clock EMA_CLK high or low 3 ns3 t
d(CLKH-CSV)
Delay time, EMA_CLK rising to EMA_CS[0] valid 7 ns4 t
oh(CLKH-CSIV)
Output hold time, EMA_CLK rising to EMA_CS[0] invalid 1 ns5 t
d(CLKH-DQMV)
Delay time, EMA_CLK rising to EMA_ WE_DQM[1:0] valid 7 ns6 t
oh(CLKH-DQMIV)
Output hold time, EMA_CLK rising to EMA_ WE_DQM[1:0] invalid 1 nsDelay time, EMA_CLK rising to EMA_A[12:0] and EMA_BA[1:0]7 t
d(CLKH-AV)
7 nsvalid
Output hold time, EMA_CLK rising to EMA_A[12:0] and8 t
oh(CLKH-AIV)
1 nsEMA_BA[1:0] invalid9 t
d(CLKH-DV)
Delay time, EMA_CLK rising to EMA_D[15:0] valid 7 ns10 t
oh(CLKH-DIV)
Output hold time, EMA_CLK rising to EMA_D[15:0] invalid 1 ns11 t
d(CLKH-RASV)
Delay time, EMA_CLK rising to EMA_RAS valid 7 ns12 t
oh(CLKH-RASIV)
Output hold time, EMA_CLK rising to EMA_RAS invalid 1 ns13 t
d(CLKH-CASV)
Delay time, EMA_CLK rising to EMA_CAS valid 7 ns14 t
oh(CLKH-CASIV)
Output hold time, EMA_CLK rising to EMA_CAS invalid 1 ns15 t
d(CLKH-WEV)
Delay time, EMA_CLK rising to EMA_WE valid 7 ns16 t
oh(CLKH-WEIV)
Output hold time, EMA_CLK rising to EMA_WE invalid 1 ns17 t
dis(CLKH-DHZ)
Delay time, EMA_CLK rising to EMA_D[15:0] tri-stated 7 ns18 t
ena(CLKH-DLZ)
Output hold time, EMA_CLK rising to EMA_D[15:0] driving 1 ns
Table 6-20. EMIFA Asynchronous Memory Timing Requirements
(1)
OMAP-L137NO
UNIT.
MIN Nom MAX
READS and WRITES
Pulse duration, EM_WAIT assertion and2 t
w(EM_WAIT)
2E nsdeassertion
READS
12 t
su(EMDV-EMOEH)
Setup time, EM_D[15:0] valid before EM_OE high 3 ns13 t
h(EMOEH-EMDIV)
Hold time, EM_D[15:0] valid after EM_OE high 0.5 nst
su(EMOEL-
Setup Time, EM_WAIT asserted before end of14 4E+3 nsEMWAIT)
Strobe Phase
(2)
WRITES
(1) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, whenSYSCLK3 is selected and set to 100MHz, E=10ns.(2) Setup before end of STROBE phase (if no extended wait states are inserted) by which EM_WAIT must be asserted to add extendedwait states. Figure 6-17 and Figure 6-18 describe EMIF transactions that include extended wait states inserted during the STROBEphase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of wherethe HOLD phase would begin if there were no extended wait cycles.
Peripheral Information and Electrical Specifications108 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-20. EMIFA Asynchronous Memory Timing Requirements (continued)
OMAP-L137NO
UNIT.
MIN Nom MAX
t
su(EMWEL-
Setup Time, EM_WAIT asserted before end of28 4E+3 nsEMWAIT)
Strobe Phase
(2)
Table 6-21. EMIFA Asynchronous Memory Switching Characteristics
(1) (2) (3)
OMAP-L137NO
PARAMETER UNIT.
MIN Nom MAX
READS and WRITES
1 t
d(TURNAROUND)
Turn around time (TA)*E - 3 (TA)*E (TA)*E + 3 ns
READS
(RS+RST+RH)*E (RS+RST+RH)*EEMIF read cycle time (EW = 0) (RS+RST+RH)*E ns- 3 + 33 t
c(EMRCYCLE)
(RS+RST+RH+(E (RS+RST+RH+(EW (RS+RST+RH+(EEMIF read cycle time (EW = 1) nsWC*16))*E - 3 C*16))*E WC*16))*E + 3Output setup time, EMA_CE[5:2] low to
(RS)*E-3 (RS)*E (RS)*E+3 nsEMA_OE low (SS = 0)4 t
su(EMCEL-EMOEL)
Output setup time, EMA_CE[5:2] low to
-3 0 +3 nsEMA_OE low (SS = 1)Output hold time, EMA_OE high to
(RH)*E - 3 (RH)*E (RH)*E + 3 nsEMA_CE[5:2] high (SS = 0)5 t
h(EMOEH-EMCEH)
Output hold time, EMA_OE high to
-3 0 +3 nsEMA_CE[5:2] high (SS = 1)Output setup time, EMA_BA[1:0] valid to6 t
su(EMBAV-EMOEL)
(RS)*E-3 (RS)*E (RS)*E+3 nsEMA_OE lowOutput hold time, EMA_OE high to7 t
h(EMOEH-EMBAIV)
(RH)*E-3 (RH)*E (RH)*E+3 nsEMA_BA[1:0] invalidOutput setup time, EMA_A[13:0] valid to8 t
su(EMBAV-EMOEL)
(RS)*E-3 (RS)*E (RS)*E+3 nsEMA_OE lowOutput hold time, EMA_OE high to9 t
h(EMOEH-EMAIV)
(RH)*E-3 (RH)*E (RH)*E+3 nsEMA_A[13:0] invalidEMA_OE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns10 t
w(EMOEL)
(RST+(EWC*16)) (RST+(EWC*16))EMA_OE active low width (EW = 1) (RST+(EWC*16))*E ns*E-3 *E+3t
d(EMWAITH-
Delay time from EMA_WAIT deasserted to11 3E-3 4E 4E+3 nsEMOEH)
EMA_OE high
WRITES
(WS+WST+WH)* (WS+WST+WH)*EMIF write cycle time (EW = 0) (WS+WST+WH)*E nsE-3 E+315 t
c(EMWCYCLE)
(WS+WST+WH+( (WS+WST+WH+(E (WS+WST+WH+(EMIF write cycle time (EW = 1) nsEWC*16))*E - 3 WC*16))*E EWC*16))*E + 3Output setup time, EMA_CE[5:2] low to
(WS)*E - 3 (WS)*E (WS)*E + 3 nsEMA_WE low (SS = 0)16 t
su(EMCEL-EMWEL)
Output setup time, EMA_CE[5:2] low to
-3 0 +3 nsEMA_WE low (SS = 1)
(1) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold,MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait CycleConfiguration Registers. These support the following range of values: TA[4-1], RS[16-1], RST[64-1], RH[8-1], WS[16-1], WST[64-1],WH[8-1], and MEW[1-256]. See the OMAP-L137 Asynchronous External Memory Interface (EMIF) User's Guide (SPRUED1) for moreinformation.
(2) E = EMA_CLK period or in ns. EMA_CLK is selected either as SYSCLK3 or the PLL output clock divided by 4.5. As an example, whenSYSCLK3 is selected and set to 100MHz, E=10ns.(3) EWC = external wait cycles determined by EMA_WAIT input signal. EWC supports the following range of values EWC[256-1]. Note thatthe maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See theOMAP-L137 Asynchronous External Memory Interface (EMIF) User's Guide (SPRUED1) for more information.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 109
PRODUCT PREVIEW
EMA_CLK
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
1
2 2
4
6
8
8
12
10
16
3
5
7
7
11
13
15
9
BASIC SDRAM
WRITE OPERATION
EMA_CS[0]
EMA_WE_DQM[1:0]
EMA_RAS
EMA_CAS
EMA_WE
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-21. EMIFA Asynchronous Memory Switching Characteristics (continued)
OMAP-L137NO
PARAMETER UNIT.
MIN Nom MAX
Output hold time, EMA_WE high to
(WH)*E-3 (WH)*E (WH)*E+3 nsEMA_CE[5:2] high (SS = 0)17 t
h(EMWEH-EMCEH)
Output hold time, EMA_WE high to
-3 0 +3 nsEMA_CE[5:2] high (SS = 1)t
su(EMDQMV-
Output setup time, EMA_BA[1:0] valid to18 (WS)*E-3 (WS)*E (WS)*E+3 nsEMWEL)
EMA_WE lowt
h(EMWEH-
Output hold time, EMA_WE high to19 (WH)*E-3 (WH)*E (WH)*E+3 nsEMDQMIV)
EMA_BA[1:0] invalidOutput setup time, EMA_BA[1:0] valid to20 t
su(EMBAV-EMWEL)
(WS)*E-3 (WS)*E (WS)*E+3 nsEMA_WE lowOutput hold time, EMA_WE high to21 t
h(EMWEH-EMBAIV)
(WH)*E-3 (WH)*E (WH)*E+3 nsEMA_BA[1:0] invalidOutput setup time, EMA_A[13:0] valid to22 t
su(EMAV-EMWEL)
(WS)*E-3 (WS)*E (WS)*E+3 nsEMA_WE lowOutput hold time, EMA_WE high to23 t
h(EMWEH-EMAIV)
(WH)*E-3 (WH)*E (WH)*E+3 nsEMA_A[13:0] invalidEMA_WE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns24 t
w(EMWEL)
(WST+(EWC*16)) (WST+(EWC*16))EMA_WE active low width (EW = 1) (WST+(EWC*16))*E ns*E-3 *E+3t
d(EMWAITH-
Delay time from EMA_WAIT deasserted to25 3E-3 4E 4E+3 nsEMWEH)
EMA_WE highOutput setup time, EMA_D[15:0] valid to26 t
su(EMDV-EMWEL)
(WS)*E-3 (WS)*E (WS)*E+3 nsEMA_WE lowOutput hold time, EMA_WE high to27 t
h(EMWEH-EMDIV)
(WH)*E-3 (WH)*E (WH)*E+3 nsEMA_D[15:0] invalid
Figure 6-13. EMIFA Basic SDRAM Write Operation
Peripheral Information and Electrical Specifications110 Submit Documentation Feedback
PRODUCT PREVIEW
EMA_CLK
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
1
2 2
4
6
8
8
12
14
19
20
3
5
7
7
11
13
17 18
2 EM_CLK Delay
BASIC SDRAM
READ OPERATION
EMA_CS[0]
EMA_WE_DQM[1:0]
EMA_RAS
EMA_CAS
EMA_WE
EMA_CE[5:2]
EMA_BA[1:0]
13
12
EMA_A[12:0]
EMA_OE
EMA_D[15:0]
EMA_WE
10
5
9
7
4
8
6
3
1
EMA_ _DQM[1:0]WE
30
29
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-14. EMIFA Basic SDRAM Read Operation
Figure 6-15. Asynchronous Memory Read Timing for EMIFA
Submit Documentation Feedback Peripheral Information and Electrical Specifications 111
PRODUCT PREVIEW
EMA_CE[5:2]
EMA_BA[1:0]
EMA_A[12:0]
EMA_WE
EMA_D[15:0]
EMA_OE
15
1
16
18
20
22 24
17
19
21
23
26
27
EMA_ _DQM[1:0]WE
EMA_CE[5:2]
11
Asserted Deasserted
2
2
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
EMA_OE
EMA_WAIT
SETUP S ROBET ExtendedDuetoEMA_WAIT S ROBET HOLD
14
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-16. Asynchronous Memory Write Timing for EMIFA
Figure 6-17. EMA_WAIT Read Timing Requirements
112 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
EMA_CE[5:2]
25
Asserted Deasserted
2
2
EMA_BA[1:0]
EMA_A[12:0]
EMA_D[15:0]
EMA_WE
EMA_WAIT
SETUP STROBE ExtendedDuetoEMA_WAIT STROBE HOLD
28
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-18. EMA_WAIT Write Timing Requirements
Submit Documentation Feedback Peripheral Information and Electrical Specifications 113
PRODUCT PREVIEW
6.11 EMIFB Peripheral Registers Description(s)
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[x:0]
EMB_D[x:0]
EMB_WE_DQM[x:0]
SDRAM
Interface
Cmd/Write
FIFO
Registers
Read
FIFO
Crossbar
EMIFB
Master
Peripherals
(USB,UHPI...)
EDMA
CPU
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-19 , EMIFB Functional Block Diagram illustrates a high-level view of the EMIFB and itsconnections within the device. Multiple requesters have access to EMIFB through a switched centralresource (indicated as crossbar in the figure). The EMIFB implements a split transaction internal bus,allowing concurrence between reads and writes from the various requesters.
Figure 6-19. EMIFB Functional Block Diagram
114 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
6.11.1 Interfacing to SDRAM
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[0]
EMB_WE_DQM[1]
EMB_D[15:0]
EMIFB
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[11:0]
LDQM
UDQM
DQ[15:0]
SDRAM
2Mx16x4
Bank
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[11:0]
EMB_WE_DQM[3:0]
EMB_D[31:0]
EMIFB
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[11:0]
DQM[3:0]
DQ[31:0]
SDRAM
2Mx32x4
Bank
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The EMIFB supports a glueless interface to SDRAM devices with the following characteristics:Pre-charge bit is A[10]The number of column address bits is 8, 9, 10 or 11The number of row address bits is 13 (in case of mobile SDR, number of row address bits can be 9,10, 11, 12, or 13)The number of internal banks is 1, 2 or 4
Figure 6-20 shows an interface between the EMIFB and a 2M ×16 ×4 bank SDRAM device. In addition,Figure 6-21 shows an interface between the EMIFB and a 2M ×32 ×4 bank SDRAM device andFigure 6-22 shows an interface between the EMIFB and two 4M ×16 ×4 bank SDRAM devices. Refer toTable 6-22 , as an example that shows additional list of commonly-supported SDRAM devices and therequired connections for the address pins. Note that in Table 6-22 , page size/column size (not indicated inthe table) is varied to get the required addressability range.
Figure 6-20. EMIFB to 2M ×16 ×4 bank SDRAM Interface
Figure 6-21. EMIFB to 2M ×32 ×4 bank SDRAM Interface
Submit Documentation Feedback Peripheral Information and Electrical Specifications 115
PRODUCT PREVIEW
EMB_CS
EMB_CAS
EMB_RAS
EMB_WE
EMB_CLK
EMB_SDCKE
EMB_BA[1:0]
EMB_A[12:0]
EMB_WE_DQM[0]
EMB_D[15:0]
EMIFB
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[12:0]
LDQM
DQ[15:0]
SDRAM
4Mx16x4
Bank
EMB_WE_DQM[1] UDQM
EMB_WE_DQM[2]
EMB_D[31:16]
EMB_WE_DQM[3]
CE
CAS
RAS
WE
CLK
CKE
BA[1:0]
A[12:0]
LDQM
DQ[15:0]
SDRAM
4Mx16x4
Bank
UDQM
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-22. EMIFB to Dual 4M ×16 ×4 bank SDRAM Interface
Table 6-22. Example of 16/32-bit EMIFB Address Pin Connections
SDRAM Size Width Banks Address Pins
64M bits ×16 4 SDRAM A[11:0]EMIFB EMB_A[11:0]×32 4 SDRAM A[10:0]EMIFB EMB_A[10:0]128M bits ×16 4 SDRAM A[11:0]EMIFB EMB_A[11:0]×32 4 SDRAM A[11:0]EMIFB EMB_A[11:0]256M bits ×16 4 SDRAM A[12:0]EMIFB EMB_A[12:0]×32 4 SDRAM A[11:0]EMIFB EMB_A[11:0]512M bits ×16 4 SDRAM A[12:0]EMIFB EMB_A[12:0]×32 4 SDRAM A[12:0]EMIFB EMB_A[12:0]
Table 6-23 is a list of the EMIFB registers.
Peripheral Information and Electrical Specifications116 Submit Documentation Feedback
PRODUCT PREVIEW
6.11.2 EMIFB Electrical Data/Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-23. EMIFB Base Controller Registers
BYTE ADDRESS Acronym Register
0xB000 0000 MIDR Module ID Register0xB000 0008 SDCFG SDRAM Configuration Register0xB000 000C SDRFC SDRAM Refresh Control Register0xB000 0010 SDTIM1 SDRAM Timing Register 10xB000 0014 SDTIM2 SDRAM Timing Register 20xB000 001C SDCFG2 SDRAM Configuration 2 Register0xB000 0020 BPRIO Peripheral Bus Burst Priority Register0xB000 0040 PC1 Performance Counter 1 Register0xB000 0044 PC2 Performance Counter 2 Register0xB000 0048 PCC Performance Counter Configuration Register0xB000 004C PCMRS Performance Counter Master Region Select Register0xB000 0050 PCT Performance Counter Time Register0xB000 00C0 IRR Interrupt Raw Register0xB000 00C4 IMR Interrupt Mask Register0xB000 00C8 IMSR Interrupt Mask Set Register0xB000 00CC IMCR Interrupt Mask Clear Register
Table 6-24. EMIFB SDRAM Interface Timing Requirements
NO. MIN MAX UNIT
Input setup time, read data valid on EMB_D[31:0] before EMB_CLK19 t
su(EMA_DV-EM_CLKH)
0.5 nsrising
Input hold time, read data valid on EMB_D[31:0] after EMB_CLK20 t
h(CLKH-DIV)
1.5 nsrising
Table 6-25. EMIFB SDRAM Interface Switching Characteristics
NO. PARAMETER MIN MAX UNIT
1 t
c(CLK)
Cycle time, EMIF clock EMB_CLK 7.5 ns2 t
w(CLK)
Pulse width, EMIF clock EMB_CLK high or low 3 ns3 t
d(CLKH-CSV)
Delay time, EMB_CLK rising to EMB_CS[0] valid 5.1 ns4 t
oh(CLKH-CSIV)
Output hold time, EMB_CLK rising to EMB_CS[0] invalid 0.9 ns5 t
d(CLKH-DQMV)
Delay time, EMB_CLK rising to EMB_ WE_DQM[3:0] valid 5.1 ns6 t
oh(CLKH-DQMIV)
Output hold time, EMB_CLK rising to EMB_ WE_DQM[3:0] invalid 0.9 nsDelay time, EMB_CLK rising to EMB_A[12:0] and EMB_BA[1:0]7 t
d(CLKH-AV)
5.1 nsvalid
Output hold time, EMB_CLK rising to EMB_A[12:0] and8 t
oh(CLKH-AIV)
0.9 nsEMB_BA[1:0] invalid9 t
d(CLKH-DV)
Delay time, EMB_CLK rising to EMB_D[31:0] valid 5.1 ns10 t
oh(CLKH-DIV)
Output hold time, EMB_CLK rising to EMB_D[31:0] invalid 0.9 ns11 t
d(CLKH-RASV)
Delay time, EMB_CLK rising to EMB_RAS valid 5.1 ns12 t
oh(CLKH-RASIV)
Output hold time, EMB_CLK rising to EMB_RAS invalid 0.9 ns13 t
d(CLKH-CASV)
Delay time, EMB_CLK rising to EMB_CAS valid 5.1 ns14 t
oh(CLKH-CASIV)
Output hold time, EMB_CLK rising to EMB_CAS invalid 0.9 ns15 t
d(CLKH-WEV)
Delay time, EMB_CLK rising to EMB_WE valid 5.1 ns16 t
oh(CLKH-WEIV)
Output hold time, EMB_CLK rising to EMB_WE invalid 0.9 ns17 t
dis(CLKH-DHZ)
Delay time, EMB_CLK rising to EMB_D[31:0] tri-stated 5.1 ns18 t
ena(CLKH-DLZ)
Output hold time, EMB_CLK rising to EMB_D[31:0] driving 0.9 ns
Submit Documentation Feedback Peripheral Information and Electrical Specifications 117
PRODUCT PREVIEW
EMB_CLK
EMB_BA[1:0]
EMB_A[12:0]
EMB_D[31:0]
1
2 2
4
6
8
8
12
10
16
3
5
7
7
11
13
15
9
BASIC SDRAM
WRITE OPERATION
EMB_CS[0]
EMB_WE_DQM[3:0]
EMB_RAS
EMB_CAS
EMB_WE
EMB_CLK
EMB_BA[1:0]
EMB_A[12:0]
EMB_D[31:0]
1
2 2
4
6
8
8
12
14
19
20
3
5
7
7
11
13
17 18
2 EM_CLK Delay
BASIC SDRAM
READ OPERATION
EMB_CS[0]
EMB_WE_DQM[3:0]
EMB_RAS
EMB_CAS
EMB_WE
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-23. EMIFB Basic SDRAM Write Operation
Figure 6-24. EMIFB Basic SDRAM Read Operation
Peripheral Information and Electrical Specifications118 Submit Documentation Feedback
PRODUCT PREVIEW
6.12 MMC / SD / SDIO (MMCSD)
6.12.1 MMCSD Peripheral Description
6.12.2 MMCSD Peripheral Register Description(s)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The OMAP-L137 includes an MMCSD controller which is compliant with MMC V3.31, Secure Digital Part 1Physical Layer Specification V1.1 and Secure Digital Input Output (SDIO) V2.0 specifications.
The MMC/SD Controller has following features:MultiMediaCard (MMC).Secure Digital (SD) Memory Card.MMC/SD protocol support.SDIO protocol support.Programmable clock frequency.512 bit Read/Write FIFO to lower system overhead.Slave EDMA transfer capability.
The OMAP-L137 MMC/SD Controller does not support SPI mode.
Table 6-26. Multimedia Card/Secure Digital (MMC/SD) Card Controller Registers
Offset Acronym Register Description
0x01C4 0000 MMCCTL MMC Control Register0x01C4 0004 MMCCLK MMC Memory Clock Control Register0x01C4 0008 MMCST0 MMC Status Register 00x01C4 000C MMCST1 MMC Status Register 10x01C4 0010 MMCIM MMC Interrupt Mask Register0x01C4 0014 MMCTOR MMC Response Time-Out Register0x01C4 0018 MMCTOD MMC Data Read Time-Out Register0x01C4 001C MMCBLEN MMC Block Length Register0x01C4 0020 MMCNBLK MMC Number of Blocks Register0x01C4 0024 MMCNBLC MMC Number of Blocks Counter Register0x01C4 0028 MMCDRR MMC Data Receive Register0x01C4 002C MMCDXR MMC Data Transmit Register0x01C4 0030 MMCCMD MMC Command Register0x01C4 0034 MMCARGHL MMC Argument Register0x01C4 0038 MMCRSP01 MMC Response Register 0 and 10x01C4 003C MMCRSP23 MMC Response Register 2 and 30x01C4 0040 MMCRSP45 MMC Response Register 4 and 50x01C4 0044 MMCRSP67 MMC Response Register 6 and 70x01C4 0048 MMCDRSP MMC Data Response Register0x01C4 0050 MMCCIDX MMC Command Index Register0x01C4 0064 SDIOCTL SDIO Control Register0x01C4 0068 SDIOST0 SDIO Status Register 00x01C4 006C SDIOIEN SDIO Interrupt Enable Register0x01C4 0070 SDIOIST SDIO Interrupt Status Register0x01C4 0074 MMCFIFOCTL MMC FIFO Control Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 119
PRODUCT PREVIEW
6.12.3 MMC/SD Electrical Data/Timing
START XMIT Valid Valid Valid END
MMCSD_CLK
MMCSD_CMD
13
7
10
9
13 13 13
START XMIT Valid Valid Valid END
MMCSD_CLK
MMCSD_CMD
10
9
7
1
2
START D0 D1 Dx END
MMCSD_CLK
MMCSD_DATx
7
1414
10
9
14 14
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-27. Timing Requirements for MMC/SD Module(see Figure 6-26 and Figure 6-28 )
NO. MIN MAX UNIT
1 t
su(CMDV-CLKH)
Setup time, SD_CMD valid before SD_CLK high TBD ns2 t
h(CLKH-CMDV)
Hold time, SD_CMD valid after SD_CLK high TBD ns3 t
su(DATV-CLKH)
Setup time, SD_DATx valid before SD_CLK high TBD ns4 t
h(CLKH-DATV)
Hold time, SD_DATx valid after SD_CLK high TBD ns
Table 6-28. Switching Characteristics Over Recommended Operating Conditions for MMC/SD Module(see Figure 6-25 through Figure 6-28 )
NO. PARAMETER MIN MAX UNIT
7 f
(CLK)
Operating frequency, SD_CLK TBD TBD MHz8 f
(CLK_ID)
Identification mode frequency, SD_CLK TBD TBD KHz9 t
W(CLKL)
Pulse width, SD_CLK low TBD ns10 t
W(CLKH)
Pulse width, SD_CLK high TBD ns11 t
r(CLK)
Rise time, SD_CLK TBD ns12 t
f(CLK)
Fall time, SD_CLK TBD ns13 t
d(CLKL-CMD)
Delay time, SD_CLK low to SD_CMD transition TBD TBD ns14 t
d(CLKL-DAT)
Delay time, SD_CLK low to SD_DATx transition TBD TBD ns
Figure 6-25. MMC/SD Host Command Timing
Figure 6-26. MMC/SD Card Response Timing
Figure 6-27. MMC/SD Host Write Timing
Peripheral Information and Electrical Specifications120 Submit Documentation Feedback
PRODUCT PREVIEW
Start D0 D1 Dx End
7
MMCSD_CLK
MMCSD_DATx
9
10
4
3 3
4
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-28. MMC/SD Host Read and Card CRC Status Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 121
PRODUCT PREVIEW
6.13 Ethernet Media Access Controller (EMAC)
6.13.1 EMAC Peripheral Register Description(s)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The Ethernet Media Access Controller (EMAC) provides an efficient interface between OMAP-L137 andthe network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QOS) support.
The EMAC controls the flow of packet data from the OMAP-L137 device to the PHY. The MDIO modulecontrols PHY configuration and status monitoring.
Both the EMAC and the MDIO modules interface to the OMAP-L137 device through a custom interfacethat allows efficient data transmission and reception. This custom interface is referred to as the EMACcontrol module, and is considered integral to the EMAC/MDIO peripheral. The control module is also usedto multiplex and control interrupts.
Table 6-29. Ethernet Media Access Controller (EMAC) Registers
Offset BYTE ADDRESS REGISTER Register Description
0h 0x01E2 3000 TXREV Transmit Revision Register4h 0x01E2 3004 TXCONTROL Transmit Control Register8h 0x01E2 3008 TXTEARDOWN Transmit Teardown Register10h 0x01E2 3010 RXREV Receive Revision Register14h 0x01E2 3014 RXCONTROL Receive Control Register18h 0x01E2 3018 RXTEARDOWN Receive Teardown Register80h 0x01E2 3080 TXINTSTATRAW Transmit Interrupt Status (Unmasked) Register84h 0x01E2 3084 TXINTSTATMASKED Transmit Interrupt Status (Masked) Register88h 0x01E2 3088 TXINTMASKSET Transmit Interrupt Mask Set Register8Ch 0x01E2 308C TXINTMASKCLEAR Transmit Interrupt Clear Register90h 0x01E2 3090 MACINVECTOR MAC Input Vector Register94h 0x01E2 3094 MACEOIVECTOR MAC End Of Interrupt Vector RegisterA0h 0x01E2 30A0 RXINTSTATRAW Receive Interrupt Status (Unmasked) RegisterA4h 0x01E2 30A4 RXINTSTATMASKED Receive Interrupt Status (Masked) RegisterA8h 0x01E2 30A8 RXINTMASKSET Receive Interrupt Mask Set RegisterACh 0x01E2 30AC RXINTMASKCLEAR Receive Interrupt Mask Clear RegisterB0h 0x01E2 30B0 MACINTSTATRAW MAC Interrupt Status (Unmasked) RegisterB4h 0x01E2 30B4 MACINTSTATMASKED MAC Interrupt Status (Masked) RegisterB8h 0x01E2 30B8 MACINTMASKSET MAC Interrupt Mask Set RegisterBCh 0x01E2 30BC MACINTMASKCLEAR MAC Interrupt Mask Clear Register100h 0x01E2 3100 RXMBPENABLE Receive Multicast/Broadcast/Promiscuous Channel Enable Register104h 0x01E2 3104 RXUNICASTSET Receive Unicast Enable Set Register108h 0x01E2 3108 RXUNICASTCLEAR Receive Unicast Clear Register10Ch 0x01E2 310C RXMAXLEN Receive Maximum Length Register110h 0x01E2 3110 RXBUFFEROFFSET Receive Buffer Offset Register114h 0x01E2 3114 RXFILTERLOWTHRESH Receive Filter Low Priority Frame Threshold Register120h 0x01E2 3120 RX0FLOWTHRESH Receive Channel 0 Flow Control Threshold Register124h 0x01E2 3124 RX1FLOWTHRESH Receive Channel 1 Flow Control Threshold Register128h 0x01E2 3128 RX2FLOWTHRESH Receive Channel 2 Flow Control Threshold Register12Ch 0x01E2 312C RX3FLOWTHRESH Receive Channel 3 Flow Control Threshold Register130h 0x01E2 3130 RX4FLOWTHRESH Receive Channel 4 Flow Control Threshold Register134h 0x01E2 3134 RX5FLOWTHRESH Receive Channel 5 Flow Control Threshold Register138h 0x01E2 3138 RX6FLOWTHRESH Receive Channel 6 Flow Control Threshold Register13Ch 0x01E2 313C RX7FLOWTHRESH Receive Channel 7 Flow Control Threshold Register
Peripheral Information and Electrical Specifications122 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-29. Ethernet Media Access Controller (EMAC) Registers (continued)
Offset BYTE ADDRESS REGISTER Register Description
140h 0x01E2 3140 RX0FREEBUFFER Receive Channel 0 Free Buffer Count Register144h 0x01E2 3144 RX1FREEBUFFER Receive Channel 1 Free Buffer Count Register148h 0x01E2 3148 RX2FREEBUFFER Receive Channel 2 Free Buffer Count Register14Ch 0x01E2 314C RX3FREEBUFFER Receive Channel 3 Free Buffer Count Register150h 0x01E2 3150 RX4FREEBUFFER Receive Channel 4 Free Buffer Count Register154h 0x01E2 3154 RX5FREEBUFFER Receive Channel 5 Free Buffer Count Register158h 0x01E2 3158 RX6FREEBUFFER Receive Channel 6 Free Buffer Count Register15Ch 0x01E2 315C RX7FREEBUFFER Receive Channel 7 Free Buffer Count Register160h 0x01E2 3160 MACCONTROL MAC Control Register164h 0x01E2 3164 MACSTATUS MAC Status Register168h 0x01E2 3168 EMCONTROL Emulation Control Register16Ch 0x01E2 316C FIFOCONTROL FIFO Control Register170h 0x01E2 3170 MACCONFIG MAC Configuration Register174h 0x01E2 3174 SOFTRESET Soft Reset Register1D0h 0x01E2 31D0 MACSRCADDRLO MAC Source Address Low Bytes Register1D4h 0x01E2 31D4 MACSRCADDRHI MAC Source Address High Bytes Register1D8h 0x01E2 31D8 MACHASH1 MAC Hash Address Register 11DCh 0x01E2 31DC MACHASH2 MAC Hash Address Register 21E0h 0x01E2 31E0 BOFFTEST Back Off Test Register1E4h 0x01E2 31E4 TPACETEST Transmit Pacing Algorithm Test Register1E8h 0x01E2 31E8 RXPAUSE Receive Pause Timer Register1ECh 0x01E2 31EC TXPAUSE Transmit Pause Timer Register0x01E2 3200 - 0x01E2
(see Table 6-30 ) EMAC Statistics Registers32FC500h 0x01E2 3500 MACADDRLO MAC Address Low Bytes Register, Used in Receive Address Matching504h MACADDRHI MAC Address High Bytes Register, Used in Receive Address0x01E2 3504
Matching508h 0x01E2 3508 MACINDEX MAC Index Register600h 0x01E2 3600 TX0HDP Transmit Channel 0 DMA Head Descriptor Pointer Register604h 0x01E2 3604 TX1HDP Transmit Channel 1 DMA Head Descriptor Pointer Register608h 0x01E2 3608 TX2HDP Transmit Channel 2 DMA Head Descriptor Pointer Register60Ch 0x01E2 360C TX3HDP Transmit Channel 3 DMA Head Descriptor Pointer Register610h 0x01E2 3610 TX4HDP Transmit Channel 4 DMA Head Descriptor Pointer Register614h 0x01E2 3614 TX5HDP Transmit Channel 5 DMA Head Descriptor Pointer Register618h 0x01E2 3618 TX6HDP Transmit Channel 6 DMA Head Descriptor Pointer Register61Ch 0x01E2 361C TX7HDP Transmit Channel 7 DMA Head Descriptor Pointer Register620h 0x01E2 3620 RX0HDP Receive Channel 0 DMA Head Descriptor Pointer Register624h 0x01E2 3624 RX1HDP Receive Channel 1 DMA Head Descriptor Pointer Register628h 0x01E2 3628 RX2HDP Receive Channel 2 DMA Head Descriptor Pointer Register62Ch 0x01E2 362C RX3HDP Receive Channel 3 DMA Head Descriptor Pointer Register630h 0x01E2 3630 RX4HDP Receive Channel 4 DMA Head Descriptor Pointer Register634h 0x01E2 3634 RX5HDP Receive Channel 5 DMA Head Descriptor Pointer Register638h 0x01E2 3638 RX6HDP Receive Channel 6 DMA Head Descriptor Pointer Register63Ch 0x01E2 363C RX7HDP Receive Channel 7 DMA Head Descriptor Pointer Register640h 0x01E2 3640 TX0CP Transmit Channel 0 Completion Pointer Register644h 0x01E2 3644 TX1CP Transmit Channel 1 Completion Pointer Register648h 0x01E2 3648 TX2CP Transmit Channel 2 Completion Pointer Register64Ch 0x01E2 364C TX3CP Transmit Channel 3 Completion Pointer Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 123
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-29. Ethernet Media Access Controller (EMAC) Registers (continued)
Offset BYTE ADDRESS REGISTER Register Description
650h 0x01E2 3650 TX4CP Transmit Channel 4 Completion Pointer Register654h 0x01E2 3654 TX5CP Transmit Channel 5 Completion Pointer Register658h 0x01E2 3658 TX6CP Transmit Channel 6 Completion Pointer Register65Ch 0x01E2 365C TX7CP Transmit Channel 7 Completion Pointer Register660h 0x01E2 3660 RX0CP Receive Channel 0 Completion Pointer Register664h 0x01E2 3664 RX1CP Receive Channel 1 Completion Pointer Register668h 0x01E2 3668 RX2CP Receive Channel 2 Completion Pointer Register66Ch 0x01E2 366C RX3CP Receive Channel 3 Completion Pointer Register670h 0x01E2 3670 RX4CP Receive Channel 4 Completion Pointer Register674h 0x01E2 3674 RX5CP Receive Channel 5 Completion Pointer Register678h 0x01E2 3678 RX6CP Receive Channel 6 Completion Pointer Register67Ch 0x01E2 367C RX7CP Receive Channel 7 Completion Pointer Register
Table 6-30. EMAC Statistics Registers
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E2 3200 RXGOODFRAMES Good Receive Frames RegisterBroadcast Receive Frames Register0x01E2 3204 RXBCASTFRAMES
(Total number of good broadcast frames received)Multicast Receive Frames Register0x01E2 3208 RXMCASTFRAMES
(Total number of good multicast frames received)0x01E2 320C RXPAUSEFRAMES Pause Receive Frames RegisterReceive CRC Errors Register (Total number of frames received with0x01E2 3210 RXCRCERRORS
CRC errors)
Receive Alignment/Code Errors Register0x01E2 3214 RXALIGNCODEERRORS
(Total number of frames received with alignment/code errors)Receive Oversized Frames Register0x01E2 3218 RXOVERSIZED
(Total number of oversized frames received)Receive Jabber Frames Register0x01E2 321C RXJABBER
(Total number of jabber frames received)Receive Undersized Frames Register0x01E2 3220 RXUNDERSIZED
(Total number of undersized frames received)0x01E2 3224 RXFRAGMENTS Receive Frame Fragments Register0x01E2 3228 RXFILTERED Filtered Receive Frames Register0x01E2 322C RXQOSFILTERED Received QOS Filtered Frames RegisterReceive Octet Frames Register0x01E2 3230 RXOCTETS
(Total number of received bytes in good frames)Good Transmit Frames Register0x01E2 3234 TXGOODFRAMES
(Total number of good frames transmitted)0x01E2 3238 TXBCASTFRAMES Broadcast Transmit Frames Register0x01E2 323C TXMCASTFRAMES Multicast Transmit Frames Register0x01E2 3240 TXPAUSEFRAMES Pause Transmit Frames Register0x01E2 3244 TXDEFERRED Deferred Transmit Frames Register0x01E2 3248 TXCOLLISION Transmit Collision Frames Register0x01E2 324C TXSINGLECOLL Transmit Single Collision Frames Register0x01E2 3250 TXMULTICOLL Transmit Multiple Collision Frames Register0x01E2 3254 TXEXCESSIVECOLL Transmit Excessive Collision Frames Register0x01E2 3258 TXLATECOLL Transmit Late Collision Frames Register0x01E2 325C TXUNDERRUN Transmit Underrun Error Register0x01E2 3260 TXCARRIERSENSE Transmit Carrier Sense Errors Register0x01E2 3264 TXOCTETS Transmit Octet Frames Register
Peripheral Information and Electrical Specifications124 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-30. EMAC Statistics Registers (continued)
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E2 3268 FRAME64 Transmit and Receive 64 Octet Frames Register0x01E2 326C FRAME65T127 Transmit and Receive 65 to 127 Octet Frames Register0x01E2 3270 FRAME128T255 Transmit and Receive 128 to 255 Octet Frames Register0x01E2 3274 FRAME256T511 Transmit and Receive 256 to 511 Octet Frames Register0x01E2 3278 FRAME512T1023 Transmit and Receive 512 to 1023 Octet Frames Register0x01E2 327C FRAME1024TUP Transmit and Receive 1024 to 1518 Octet Frames Register0x01E2 3280 NETOCTETS Network Octet Frames Register0x01E2 3284 RXSOFOVERRUNS Receive FIFO or DMA Start of Frame Overruns Register0x01E2 3288 RXMOFOVERRUNS Receive FIFO or DMA Middle of Frame Overruns RegisterReceive DMA Start of Frame and Middle of Frame Overruns0x01E2 328C RXDMAOVERRUNS
Register
Table 6-31. EMAC Control Module Registers
BYTE ADDRESS Acronym Register Description
0x01E2 2000 REV EMAC Control Module Revision Register0x01E2 2004 SOFTRESET EMAC Control Module Software Reset Register0x01E2 200C INTCONTROL EMAC Control Module Interrupt Control Register0x01E2 2010 C0RXTHRESHEN EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt EnableRegister0x01E2 2014 C0RXEN EMAC Control Module Interrupt Core 0 Receive Interrupt Enable Register0x01E2 2018 C0TXEN EMAC Control Module Interrupt Core 0 Transmit Interrupt Enable Register0x01E2 201C C0MISCEN EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt EnableRegister0x01E2 2020 C1RXTHRESHEN EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt EnableRegister0x01E2 2024 C1RXEN EMAC Control Module Interrupt Core 1 Receive Interrupt Enable Register0x01E2 2028 C1TXEN EMAC Control Module Interrupt Core 1 Transmit Interrupt Enable Register0x01E2 202C C1MISCEN EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt EnableRegister0x01E2 2030 C2RXTHRESHEN EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt EnableRegister0x01E2 2034 C2RXEN EMAC Control Module Interrupt Core 2 Receive Interrupt Enable Register0x01E2 2038 C2TXEN EMAC Control Module Interrupt Core 2 Transmit Interrupt Enable Register0x01E2 203C C2MISCEN EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt EnableRegister0x01E2 2040 C0RXTHRESHSTAT EMAC Control Module Interrupt Core 0 Receive Threshold Interrupt StatusRegister0x01E2 2044 C0RXSTAT EMAC Control Module Interrupt Core 0 Receive Interrupt Status Register0x01E2 2048 C0TXSTAT EMAC Control Module Interrupt Core 0 Transmit Interrupt Status Register0x01E2 204C C0MISCSTAT EMAC Control Module Interrupt Core 0 Miscellaneous Interrupt StatusRegister0x01E2 2050 C1RXTHRESHSTAT EMAC Control Module Interrupt Core 1 Receive Threshold Interrupt StatusRegister0x01E2 2054 C1RXSTAT EMAC Control Module Interrupt Core 1 Receive Interrupt Status Register0x01E2 2058 C1TXSTAT EMAC Control Module Interrupt Core 1 Transmit Interrupt Status Register0x01E2 205C C1MISCSTAT EMAC Control Module Interrupt Core 1 Miscellaneous Interrupt StatusRegister0x01E2 2060 C2RXTHRESHSTAT EMAC Control Module Interrupt Core 2 Receive Threshold Interrupt StatusRegister0x01E2 2064 C2RXSTAT EMAC Control Module Interrupt Core 2 Receive Interrupt Status Register0x01E2 2068 C2TXSTAT EMAC Control Module Interrupt Core 2 Transmit Interrupt Status Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 125
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-31. EMAC Control Module Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01E2 206C C2MISCSTAT EMAC Control Module Interrupt Core 2 Miscellaneous Interrupt StatusRegister0x01E2 2070 C0RXIMAX EMAC Control Module Interrupt Core 0 Receive Interrupts Per MillisecondRegister0x01E2 2074 C0TXIMAX EMAC Control Module Interrupt Core 0 Transmit Interrupts Per MillisecondRegister0x01E2 2078 C1RXIMAX EMAC Control Module Interrupt Core 1 Receive Interrupts Per MillisecondRegister0x01E2 207C C1TXIMAX EMAC Control Module Interrupt Core 1 Transmit Interrupts Per MillisecondRegister0x01E2 2080 C2RXIMAX EMAC Control Module Interrupt Core 2 Receive Interrupts Per MillisecondRegister0x01E2 2084 C2TXIMAX EMAC Control Module Interrupt Core 2 Transmit Interrupts Per MillisecondRegister
Table 6-32. EMAC Control Module RAM
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E2 0000 - 0x01E2 1FFF EMAC Local Buffer Descriptor Memory
Table 6-33. RMII Timing Requirements
NO. PARAMETER MIN TYP MAX UNIT
1 tc(REFCLK) Cycle Time, REF_CLK 20 ns2 tw(REFCLKH) Pulse Width, REF_CLK High 7 13 ns3 tw(REFCLKL) Pulse Width, REF_CLK Low 7 13 ns6 tsu(RXD-REFCLK) Input Setup Time, RXD Valid before REF_CLK 4 nsHigh7 th(REFCLK-RXD) Input Hold Time, RXD Valid after REF_CLK High 2 ns8 tsu(CRSDV-REFCLK) Input Setup Time, CRSDV Valid before 4 nsREF_CLK High9 th(REFCLK-CRSDV) Input Hold Time, CRSDV Valid after REF_CLK 2 nsHigh10 tsu(RXER-REFCLK) Input Setup Time, RXER Valid before REF_CLK 4 nsHigh11 th(REFCLKR-RXER) Input Hold Time, RXER Valid after REF_CLK 2 nsHigh
Table 6-34. RMII Timing Requirements
NO. PARAMETER MIN TYP MAX UNIT
4 td(REFCLK-TXD) Output Delay Time, REF_CLK High to TXD Valid 2.5 13 ns5 td(REFCLK-TXEN) Output Delay Time, REF_CLK High to TXEN 2.5 13 nsValid
Peripheral Information and Electrical Specifications126 Submit Documentation Feedback
PRODUCT PREVIEW
RMII_MHz_50_CLK
RMII_TXEN
RMII_TXD[1:0]
RMII_RXD[1:0]
RMII_CRS_DV
RMII_RXER
1
2 3
5 5
4
6
7
8 9
10
11
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-29. RMII Timing Diagram
Submit Documentation Feedback Peripheral Information and Electrical Specifications 127
PRODUCT PREVIEW
6.14 Management Data Input/Output (MDIO)
6.14.1 MDIO Registers
6.14.2 Management Data Input/Output (MDIO) Electrical Data/Timing
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The Management Data Input/Output (MDIO) module continuously polls all 32 MDIO addresses in order toenumerate all PHY devices in the system.
The Management Data Input/Output (MDIO) module implements the 802.3 serial management interface tointerrogate and control Ethernet PHY(s) using a shared two-wire bus. Host software uses the MDIOmodule to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve thenegotiation results, and configure required parameters in the EMAC module for correct operation. Themodule is designed to allow almost transparent operation of the MDIO interface, with very littlemaintenance from the core processor. Only one PHY may be connected at any given time.
For more detailed information on the MDIO peripheral, see the OMAP-L137 Applications Processor DSPPeripherals Overview Reference Guide. Literature Number SPRUGA6 .
For a list of supported MDIO registers see Table 6-35 [MDIO Registers].
Table 6-35. MDIO Register Memory Map
HEX ADDRESS RANGE ACRONYM REGISTER NAME
0x01E2 4000 REV Revision Identification Register0x01E2 4004 CONTROL MDIO Control Register0x01E2 4008 ALIVE MDIO PHY Alive Status Register0x01E2 400C LINK MDIO PHY Link Status Register0x01E2 4010 LINKINTRAW MDIO Link Status Change Interrupt (Unmasked) Register0x01E2 4014 LINKINTMASKED MDIO Link Status Change Interrupt (Masked) Register0x01E2 4018 Reserved0x01E2 4020 USERINTRAW MDIO User Command Complete Interrupt (Unmasked) Register0x01E2 4024 USERINTMASKED MDIO User Command Complete Interrupt (Masked) Register0x01E2 4028 USERINTMASKSET MDIO User Command Complete Interrupt Mask Set Register0x01E2 402C USERINTMASKCLEAR MDIO User Command Complete Interrupt Mask Clear Register0x01E2 4030 - 0x01E2 407C Reserved0x01E2 4080 USERACCESS0 MDIO User Access Register 00x01E2 4084 USERPHYSEL0 MDIO User PHY Select Register 00x01E2 4088 USERACCESS1 MDIO User Access Register 10x01E2 408C USERPHYSEL1 MDIO User PHY Select Register 10x01E2 4090 - 0x01E2 47FF Reserved
Table 6-36. Timing Requirements for MDIO Input (see Figure 6-30 and Figure 6-31 )
NO. UNITMIN MAX
1 t
c(MDCLK)
Cycle time, MDCLK 400 ns2 t
w(MDCLK)
Pulse duration, MDCLK high/low 180 ns3 t
t(MDCLK)
Transition time, MDCLK 5 ns4 t
su(MDIO-MDCLKH)
Setup time, MDIO data input valid before MDCLK high 10 ns5 t
h(MDCLKH-MDIO)
Hold time, MDIO data input valid after MDCLK high 10 ns
Peripheral Information and Electrical Specifications128 Submit Documentation Feedback
PRODUCT PREVIEW
1
45
MDCLK
MDIO
(input)
33
1
7
MDCLK
MDIO
(output)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-30. MDIO Input Timing
Table 6-37. Switching Characteristics Over Recommended Operating Conditions for MDIO Output(see Figure 6-31 )
NO. UNITMIN MAX
7 t
d(MDCLKL-MDIO)
Delay time, MDCLK low to MDIO data output valid 0 100 ns
Figure 6-31. MDIO Output Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 129
PRODUCT PREVIEW
6.15 Multichannel Audio Serial Ports (McASP0, McASP1, and McASP2)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The McASP serial port is specifically designed for multichannel audio applications. Its key features are:Flexible clock and frame sync generation logic and on-chip dividersUp to sixteen transmit or receive data pins and serializersLarge number of serial data format options, including: TDM Frames with 2 to 32 time slots per frame (periodic) or 1 slot per frame (burst) Time slots of 8,12,16, 20, 24, 28, and 32 bits First bit delay 0, 1, or 2 clocks MSB or LSB first bit order Left- or right-aligned data words within time slotsDIT Mode (optional) with 384-bit Channel Status and 384-bit User Data registersExtensive error checking and mute generation logicAll unused pins GPIO-capable
Additionally, while the OMAP-L13x McASP modules are backward compatible with the McASP onprevious devices; the OMAP-L13x McASP includes the following new features:Transmit & Receive FIFO Buffers for each McASP. Allows the McASP to operate at a higher samplerate by making it more tolerant to DMA latency.Dynamic Adjustment of Clock Dividers Clock Divider Value may be changed without resetting the McASP A one-shot adjustment (+/-1 Input Clock) feature has been added to enable simple input/outputsample rate matching
The three McASPs on the OMAP-L137 are configured with the following options:
Table 6-38. OMAP-L137 McASP Configurations
(1)
Module Serializers AFIFO DIT OMAP-L137 Pins
64 Word RX AXR0[15:0], AHCLKR0, ACLKR0, AFSR0, AHCLKX0, ACLKX0,McASP0 16 N64 Word TX AFSX0, AMUTE064 Word RX AXR1[11:10], AXR1[8:0], AHCLKR1, ACLKR1, AFSR1, AHCLKX1,McASP1 12 N64 Word TX ACLKX1, AFSX1, AMUTE116 Word RX AXR2[3:0], AHCLKR2, ACLKR2, AFSR2, AHCLKX2, ACLKX2,McASP2 4 Y16 Word TX AFSX2, AMUTE2
(1) Pins available are the maximum number of pins that may be configured for a particular McASP; not including pin multiplexing.
Peripheral Information and Electrical Specifications130 Submit Documentation Feedback
PRODUCT PREVIEW
Receive Logic
Clock/Frame Generator
State Machine
Clock Check and
Serializer 0
Serializer 1
Serializer y
GIO
Control
DIT RAM
384 C
384 U
Optional
Transmit
Formatter
Receive
Formatter
Transmit Logic
Clock/Frame Generator
State Machine
McASPx (x = 0, 1, 2)
Peripheral
Configuration
Bus
McASP
DMA Bus
(Dedicated)
AHCLKRx
ACLKRx
AFSRx
AMUTEINx
AMUTEx
AFSXx
ACLKXx
AHCLKXx
AXRx[0]
AXRx[1]
AXRx[y]
Pins Function
Receive Master Clock
Receive Bit Clock
Receive Left/Right Clock or Frame Sync
Transmit Master Clock
Transmit Bit Clock
Transmit Left/Right Clock or Frame Sync
Transmit/Receive Serial Data Pin
Transmit/Receive Serial Data Pin
Transmit/Receive Serial Data Pin
Error Detection The McASPs DO NOT have
dedicated AMUTEINx pins.
6.15.1 McASP Peripheral Registers Description(s)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-32. McASP Block Diagram
Registers for the McASP are summarized in Table 6-39 . The registers are accessed through theperipheral configuration port. The receive buffer registers (RBUF) and transmit buffer registers (XBUF) canalso be accessed through the DMA port, as listed in Table 6-40
Registers for the McASP Audio FIFO (AFIFO) are summarized in Table 6-41 . Note that the AFIFO WriteFIFO (WFIFO) and Read FIFO (RFIFO) have independent control and status registers. The AFIFO controlregisters are accessed through the peripheral configuration port.
Table 6-39. McASP Registers Accessed Through Peripheral Configuration Port
Offset McASP0 McASP1 McASP2 Acronym Register DescriptionBYTE BYTE BYTEADDRESS ADDRESS ADDRESS
0h 0x01D0 0000 0x01D0 4000 0x01D0 8000 REV Revision identification register10h 0x01D0 0010 0x01D0 4010 0x01D0 8010 PFUNC Pin function register14h 0x01D0 0014 0x01D0 4014 0x01D0 8014 PDIR Pin direction register18h 0x01D0 0018 0x01D0 4018 0x01D0 8018 PDOUT Pin data output register1Ch 0x01D0 001C 0x01D0 401C 0x01D0 801C PDIN Read returns: Pin data input register1Ch 0x01D0 001C 0x01D0 401C 0x01D0 801C PDSET Writes affect: Pin data set register (alternate writeaddress: PDOUT)20h 0x01D0 0020 0x01D0 4020 0x01D0 8020 PDCLR Pin data clear register (alternate write address: PDOUT)44h 0x01D0 0044 0x01D0 4044 0x01D0 8044 GBLCTL Global control register48h 0x01D0 0048 0x01D0 4048 0x01D0 8048 AMUTE Audio mute control register4Ch 0x01D0 004C 0x01D0 404C 0x01D0 804C DLBCTL Digital loopback control register50h 0x01D0 0050 0x01D0 4050 0x01D0 8050 DITCTL DIT mode control register60h 0x01D0 0060 0x01D0 4060 0x01D0 8060 RGBLCTL Receiver global control register: Alias of GBLCTL, onlyreceive bits are affected - allows receiver to be resetindependently from transmitter64h 0x01D0 0064 0x01D0 4064 0x01D0 8064 RMASK Receive format unit bit mask register68h 0x01D0 0068 0x01D0 4068 0x01D0 8068 RFMT Receive bit stream format register6Ch 0x01D0 006C 0x01D0 406C 0x01D0 806C AFSRCTL Receive frame sync control register70h 0x01D0 0070 0x01D0 4070 0x01D0 8070 ACLKRCTL Receive clock control register74h 0x01D0 0074 0x01D0 4074 0x01D0 8074 AHCLKRCTL Receive high-frequency clock control register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 131
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-39. McASP Registers Accessed Through Peripheral Configuration Port (continued)
Offset McASP0 McASP1 McASP2 Acronym Register DescriptionBYTE BYTE BYTEADDRESS ADDRESS ADDRESS
78h 0x01D0 0078 0x01D0 4078 0x01D0 8078 RTDM Receive TDM time slot 0-31 register7Ch 0x01D0 007C 0x01D0 407C 0x01D0 807C RINTCTL Receiver interrupt control register80h 0x01D0 0080 0x01D0 4080 0x01D0 8080 RSTAT Receiver status register84h 0x01D0 0084 0x01D0 4084 0x01D0 8084 RSLOT Current receive TDM time slot register88h 0x01D0 0088 0x01D0 4088 0x01D0 8088 RCLKCHK Receive clock check control register8Ch 0x01D0 008C 0x01D0 408C 0x01D0 808C REVTCTL Receiver DMA event control registerACh 0x01D0 00A0 0x01D0 40A0 0x01D0 80A0 XGBLCTL Transmitter global control register. Alias of GBLCTL,only transmit bits are affected - allows transmitter to bereset independently from receiverA4h 0x01D0 00A4 0x01D0 40A4 0x01D0 80A4 XMASK Transmit format unit bit mask registerA8h 0x01D0 00A8 0x01D0 40A8 0x01D0 80A8 XFMT Transmit bit stream format registerACh 0x01D0 00AC 0x01D0 40AC 0x01D0 80AC AFSXCTL Transmit frame sync control registerB0h 0x01D0 00B0 0x01D0 40B0 0x01D0 80B0 ACLKXCTL Transmit clock control registerB4h 0x01D0 00B4 0x01D0 40B4 0x01D0 80B4 AHCLKXCTL Transmit high-frequency clock control registerB8h 0x01D0 00B8 0x01D0 40B8 0x01D0 80B8 XTDM Transmit TDM time slot 0-31 registerBCh 0x01D0 00BC 0x01D0 40BC 0x01D0 80BC XINTCTL Transmitter interrupt control registerC0h 0x01D0 00C0 0x01D0 40C0 0x01D0 80C0 XSTAT Transmitter status registerC4h 0x01D0 00C4 0x01D0 40C4 0x01D0 80C4 XSLOT Current transmit TDM time slot registerC8h 0x01D0 00C8 0x01D0 40C8 0x01D0 80C8 XCLKCHK Transmit clock check control registerCCh 0x01D0 00CC 0x01D0 40CC 0x01D0 80CC XEVTCTL Transmitter DMA event control register100h 0x01D0 0100 0x01D0 4100 0x01D0 8100 DITCSRA0 Left (even TDM time slot) channel status register (DITmode) 0104h 0x01D0 0104 0x01D0 4104 0x01D0 8104 DITCSRA1 Left (even TDM time slot) channel status register (DITmode) 1108h 0x01D0 0108 0x01D0 4108 0x01D0 8108 DITCSRA2 Left (even TDM time slot) channel status register (DITmode) 210Ch 0x01D0 010C 0x01D0 410C 0x01D0 810C DITCSRA3 Left (even TDM time slot) channel status register (DITmode) 3110h 0x01D0 0110 0x01D0 4110 0x01D0 8110 DITCSRA4 Left (even TDM time slot) channel status register (DITmode) 4114h 0x01D0 0114 0x01D0 4114 0x01D0 8114 DITCSRA5 Left (even TDM time slot) channel status register (DITmode) 5118h 0x01D0 0118 0x01D0 4118 0x01D0 8118 DITCSRB0 Right (odd TDM time slot) channel status register (DITmode) 011Ch 0x01D0 011C 0x01D0 411C 0x01D0 811C DITCSRB1 Right (odd TDM time slot) channel status register (DITmode) 1120h 0x01D0 0120 0x01D0 4120 0x01D0 8120 DITCSRB2 Right (odd TDM time slot) channel status register (DITmode) 2124h 0x01D0 0124 0x01D0 4124 0x01D0 8124 DITCSRB3 Right (odd TDM time slot) channel status register (DITmode) 3128h 0x01D0 0128 0x01D0 4128 0x01D0 8128 DITCSRB4 Right (odd TDM time slot) channel status register (DITmode) 412Ch 0x01D0 012C 0x01D0 412C 0x01D0 812C DITCSRB5 Right (odd TDM time slot) channel status register (DITmode) 5130h 0x01D0 0130 0x01D0 4130 0x01D0 8130 DITUDRA0 Left (even TDM time slot) channel user data register(DIT mode) 0134h 0x01D0 0134 0x01D0 4134 0x01D0 8134 DITUDRA1 Left (even TDM time slot) channel user data register(DIT mode) 1138h 0x01D0 0138 0x01D0 4138 0x01D0 8138 DITUDRA2 Left (even TDM time slot) channel user data register(DIT mode) 2
Peripheral Information and Electrical Specifications132 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-39. McASP Registers Accessed Through Peripheral Configuration Port (continued)
Offset McASP0 McASP1 McASP2 Acronym Register DescriptionBYTE BYTE BYTEADDRESS ADDRESS ADDRESS
13Ch 0x01D0 013C 0x01D0 413C 0x01D0 813C DITUDRA3 Left (even TDM time slot) channel user data register(DIT mode) 3140h 0x01D0 0140 0x01D0 4140 0x01D0 8140 DITUDRA4 Left (even TDM time slot) channel user data register(DIT mode) 4144h 0x01D0 0144 0x01D0 4144 0x01D0 8144 DITUDRA5 Left (even TDM time slot) channel user data register(DIT mode) 5148h 0x01D0 0148 0x01D0 4148 0x01D0 8148 DITUDRB0 Right (odd TDM time slot) channel user data register(DIT mode) 014Ch 0x01D0 014C 0x01D0 414C 0x01D0 814C DITUDRB1 Right (odd TDM time slot) channel user data register(DIT mode) 1150h 0x01D0 0150 0x01D0 4150 0x01D0 8150 DITUDRB2 Right (odd TDM time slot) channel user data register(DIT mode) 2154h 0x01D0 0154 0x01D0 4154 0x01D0 8154 DITUDRB3 Right (odd TDM time slot) channel user data register(DIT mode) 3158h 0x01D0 0158 0x01D0 4158 0x01D0 8158 DITUDRB4 Right (odd TDM time slot) channel user data register(DIT mode) 415Ch 0x01D0 015C 0x01D0 415C 0x01D0 815C DITUDRB5 Right (odd TDM time slot) channel user data register(DIT mode) 5180h 0x01D0 0180 0x01D0 4180 0x01D0 8180 SRCTL0 Serializer control register 0184h 0x01D0 0184 0x01D0 4184 0x01D0 8184 SRCTL1 Serializer control register 1188h 0x01D0 0188 0x01D0 4188 0x01D0 8188 SRCTL2 Serializer control register 218Ch 0x01D0 018C 0x01D0 418C 0x01D0 818C SRCTL3 Serializer control register 3190h 0x01D0 0190 0x01D0 4190 0x01D0 8190 SRCTL4 Serializer control register 4194h 0x01D0 0194 0x01D0 4194 0x01D0 8194 SRCTL5 Serializer control register 5198h 0x01D0 0198 0x01D0 4198 0x01D0 8198 SRCTL6 Serializer control register 619Ch 0x01D0 019C 0x01D0 419C 0x01D0 819C SRCTL7 Serializer control register 71A0h 0x01D0 01A0 0x01D0 41A0 0x01D0 81A0 SRCTL8 Serializer control register 81A4h 0x01D0 01A4 0x01D0 41A4 0x01D0 81A4 SRCTL9 Serializer control register 91A8h 0x01D0 01A8 0x01D0 41A8 0x01D0 81A8 SRCTL10 Serializer control register 101ACh 0x01D0 01AC 0x01D0 41AC 0x01D0 81AC SRCTL11 Serializer control register 111B0h 0x01D0 01B0 0x01D0 41B0 0x01D0 81B0 SRCTL12 Serializer control register 121B4h 0x01D0 01B4 0x01D0 41B4 0x01D0 81B4 SRCTL13 Serializer control register 131B8h 0x01D0 01B8 0x01D0 41B8 0x01D0 81B8 SRCTL14 Serializer control register 141BCh 0x01D0 01BC 0x01D0 41BC 0x01D0 81BC SRCTL15 Serializer control register 15200h 0x01D0 0200 0x01D0 4200 0x01D0 8200 XBUF0
(1)
Transmit buffer register for serializer 0204h 0x01D0 0204 0x01D0 4204 0x01D0 8204 XBUF1
(1)
Transmit buffer register for serializer 1208h 0x01D0 0208 0x01D0 4208 0x01D0 8208 XBUF2
(1)
Transmit buffer register for serializer 220Ch 0x01D0 020C 0x01D0 420C 0x01D0 820C XBUF3
(1)
Transmit buffer register for serializer 3210h 0x01D0 0210 0x01D0 4210 0x01D0 8210 XBUF4
(1)
Transmit buffer register for serializer 4214h 0x01D0 0214 0x01D0 4214 0x01D0 8214 XBUF5
(1)
Transmit buffer register for serializer 5218h 0x01D0 0218 0x01D0 4218 0x01D0 8218 XBUF6
(1)
Transmit buffer register for serializer 621Ch 0x01D0 021C 0x01D0 421C 0x01D0 821C XBUF7
(1)
Transmit buffer register for serializer 7220h 0x01D0 0220 0x01D0 4220 0x01D0 8220 XBUF8
(1)
Transmit buffer register for serializer 8224h 0x01D0 0224 0x01D0 4224 0x01D0 8224 XBUF9
(1)
Transmit buffer register for serializer 9228h 0x01D0 0228 0x01D0 4228 0x01D0 8228 XBUF10
(1)
Transmit buffer register for serializer 1022Ch 0x01D0 022C 0x01D0 422C 0x01D0 822C XBUF11
(1)
Transmit buffer register for serializer 11230h 0x01D0 0230 0x01D0 4230 0x01D0 8230 XBUF12
(1)
Transmit buffer register for serializer 12234h 0x01D0 0234 0x01D0 4234 0x01D0 8234 XBUF13
(1)
Transmit buffer register for serializer 13
(1) Writes to XRBUF originate from peripheral configuration port only when XBUSEL = 1 in XFMT.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 133
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-39. McASP Registers Accessed Through Peripheral Configuration Port (continued)
Offset McASP0 McASP1 McASP2 Acronym Register DescriptionBYTE BYTE BYTEADDRESS ADDRESS ADDRESS
238h 0x01D0 0238 0x01D0 4238 0x01D0 8238 XBUF14
(1)
Transmit buffer register for serializer 1423Ch 0x01D0 023C 0x01D0 423C 0x01D0 823C XBUF15
(1)
Transmit buffer register for serializer 15280h 0x01D0 0280 0x01D0 4280 0x01D0 8280 RBUF0
(2)
Receive buffer register for serializer 0284h 0x01D0 0284 0x01D0 4284 0x01D0 8284 RBUF1
(2)
Receive buffer register for serializer 1288h 0x01D0 0288 0x01D0 4288 0x01D0 8288 RBUF2
(2)
Receive buffer register for serializer 228Ch 0x01D0 028C 0x01D0 428C 0x01D0 828C RBUF3
(2)
Receive buffer register for serializer 3290h 0x01D0 0290 0x01D0 4290 0x01D0 8290 RBUF4
(2)
Receive buffer register for serializer 4294h 0x01D0 0294 0x01D0 4294 0x01D0 8294 RBUF5
(2)
Receive buffer register for serializer 5298h 0x01D0 0298 0x01D0 4298 0x01D0 8298 RBUF6
(2)
Receive buffer register for serializer 629Ch 0x01D0 029C 0x01D0 429C 0x01D0 829C RBUF7
(2)
Receive buffer register for serializer 72A0h 0x01D0 02A0 0x01D0 42A0 0x01D0 82A0 RBUF8
(2)
Receive buffer register for serializer 82A4h 0x01D0 02A4 0x01D0 42A4 0x01D0 82A4 RBUF9
(2)
Receive buffer register for serializer 92A8h 0x01D0 02A8 0x01D0 42A8 0x01D0 82A8 RBUF10
(2)
Receive buffer register for serializer 102ACh 0x01D0 02AC 0x01D0 42AC 0x01D0 82AC RBUF11
(2)
Receive buffer register for serializer 112B0h 0x01D0 02B0 0x01D0 42B0 0x01D0 82B0 RBUF12
(2)
Receive buffer register for serializer 122B4h 0x01D0 02B4 0x01D0 42B4 0x01D0 82B4 RBUF13
(2)
Receive buffer register for serializer 132B8h 0x01D0 02B8 0x01D0 42B8 0x01D0 82BB RBUF14
(2)
Receive buffer register for serializer 142BCh 0x01D0 02BC 0x01D0 42BC 0x01D0 82BC RBUF15
(2)
Receive buffer register for serializer 15
(2) Reads from XRBUF originate on peripheral configuration port only when RBUSEL = 1 in RFMT.
Table 6-40. McASP Registers Accessed Through DMA Port
Hex Address Register Name Register Description
Read Accesses RBUF Receive buffer DMA port address. Cycles through receive serializers, skipping over transmitserializers and inactive serializers. Starts at the lowest serializer at the beginning of each time slot.Reads from DMA port only if XBUSEL = 0 in XFMT.Write Accesses XBUF Transmit buffer DMA port address. Cycles through transmit serializers, skipping over receive andinactive serializers. Starts at the lowest serializer at the beginning of each time slot. Writes to DMAport only if RBUSEL = 0 in RFMT.
Table 6-41. McASP AFIFO Registers Accessed Through Peripheral Configuration Port
McASP0 McASP0 McASP0 Acronym Register DescriptionBYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01D0 1000 0x01D0 5000 0x01D0 9000 AFIFOREV AFIFO revision identification register0x01D0 1010 0x01D0 5010 0x01D0 9010 WFIFOCTL Write FIFO control register0x01D0 1014 0x01D0 5014 0x01D0 9014 WFIFOSTS Write FIFO status register0x01D0 1018 0x01D0 5018 0x01D0 9018 RFIFOCTL Read FIFO control register0x01D0 101C 0x01D0 501C 0x01D0 901C RFIFOSTS Read FIFO status register
Peripheral Information and Electrical Specifications134 Submit Documentation Feedback
PRODUCT PREVIEW
6.15.2 McASP Electrical Data/Timing
6.15.2.1 Multichannel Audio Serial Port 0 (McASP0) Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-42 and Table 6-43 assume testing over recommended operating conditions (see Figure 6-33 andFigure 6-34 ).
Table 6-42. McASP0 Timing Requirements
(1) (2)
NO. MIN MAX UNIT
Cycle time, AHCLKR0 external, AHCLKR0 input 201 t
c(AHCLKRX)
nsCycle time, AHCLKX0 external, AHCLKX0 input 20Pulse duration, AHCLKR0 external, AHCLKR0 input 102 t
w(AHCLKRX)
nsPulse duration, AHCLKX0 external, AHCLKX0 input 10Cycle time, ACLKR0 external, ACLKR0 input greater of 2P or 203 t
c(ACLKRX)
nsCycle time, ACLKX0 external, ACLKX0 input greater of 2P or 20Pulse duration, ACLKR0 external, ACLKR0 input 104 t
w(ACLKRX)
nsPulse duration, ACLKX0 external, ACLKX0 input 10Setup time, AFSR0 input to ACLKR0 internal
(3)
9.4Setup time, AFSR0 input to ACLKX0 internal
(4)
9.4Setup time, AFSX0 input to ACLKX0 internal 9.4Setup time, AFSR0 input to ACLKR0 external input
(3)
2.95 t
su(AFSRX-ACLKRX)
Setup time, AFSR0 input to ACLKX0 external input
(4)
2.9 nsSetup time, AFSX0 input to ACLKX0 external input 2.9Setup time, AFSR0 input to ACLKR0 external output
(3)
2.9Setup time, AFSR0 input to ACLKX0 external output
(4)
2.9Setup time, AFSX0 input to ACLKX0 external output 2.9Hold time, AFSR0 input after ACLKR0 internal
(3)
-2.1Hold time, AFSR0 input after ACLKX0 internal
(4)
-2.1Hold time, AFSX0 input after ACLKX0 internal -2.1Hold time, AFSR0 input after ACLKR0 external input
(3)
0.4Hold time, AFSR0 input after ACLKX0 external input
(4)
0.46 t
h(ACLKRX-AFSRX)
nsHold time, AFSX0 input after ACLKX0 external input 0.4Hold time, AFSR0 input after ACLKR0 external
0.4output
(3)
Hold time, AFSR0 input after ACLKX0 external
0.4output
(4)
Hold time, AFSX0 input after ACLKX0 external output 0.4Setup time, AXR0[n] input to ACLKR0 internal
(3)
9.4Setup time, AXR0[n] input to ACLKX0 internal
(4)
9.4Setup time, AXR0[n] input to ACLKR0 external input
(3)
2.9Setup time, AXR0[n] input to ACLKX0 external input
(4)
2.97 t
su(AXR-ACLKRX)
nsSetup time, AXR0[n] input to ACLKR0 external
2.9output
(3)
Setup time, AXR0[n] input to ACLKX0 external
2.9output
(4)
(1) ACLKX0 internal McASP0 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1ACLKX0 external input McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0ACLKX0 external output McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1ACLKR0 internal McASP0 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1ACLKR0 external input McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0ACLKR0 external output McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1(2) P = SYSCLK2 period(3) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0(4) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 135
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-42. McASP0 Timing Requirements (continued)
NO. MIN MAX UNIT
Hold time, AXR0[n] input after ACLKR0 internal
(3)
-2.1Hold time, AXR0[n] input after ACLKX0 internal
(4)
-2.1Hold time, AXR0[n] input after ACLKR0 external
0.4input
(3)
Hold time, AXR0[n] input after ACLKX0 external8 t
h(ACLKRX-AXR)
ns0.4input
(4)
Hold time, AXR0[n] input after ACLKR0 external
0.4output
(3)
Hold time, AXR0[n] input after ACLKX0 external
0.4output
(4)
Peripheral Information and Electrical Specifications136 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-43. McASP0 Switching Characteristics
(1)
NO. PARAMETER MIN MAX UNIT
Cycle time, AHCLKX0 internal, AHCLKR0 output 20Cycle time, AHCLKR0 external, AHCLKR0 output 209 t
c(AHCLKRX)
nsCycle time, AHCLKX0 internal, AHCLKX0 output 20Cycle time, AHCLKX0 external, AHCLKX0 output 20Pulse duration, AHCLKR0 internal, AHCLKR0
(AHR/2) 2.5
(2)output
Pulse duration, AHCLKR0 external, AHCLKR0
(AHR/2) 2.5
(2)output10 t
w(AHCLKRX)
nsPulse duration, AHCLKX0 internal, AHCLKX0
(AHX/2) 2.5
(3)output
Pulse duration, AHCLKX0 external, AHCLKX0
(AHX/2) 2.5
(3)output
Cycle time, ACLKR0 internal, ACLKR0 output greater of 2P or 20 ns
(4)
Cycle time, ACLKR0 external, ACLKR0 output greater of 2P or 20 ns
(4)11 t
c(ACLKRX)
nsCycle time, ACLKX0 internal, ACLKX0 output greater of 2P or 20 ns
(4)
Cycle time, ACLKX0 external, ACLKX0 output greater of 2P or 20 ns
(4)
Pulse duration, ACLKR0 internal, ACLKR0 output (AR/2) 2.5
(5)
Pulse duration, ACLKR0 external, ACLKR0 output (AR/2) 2.5
(5)12 t
w(ACLKRX)
nsPulse duration, ACLKX0 internal, ACLKX0 output (AX/2) 2.5
(6)
Pulse duration, ACLKX0 external, ACLKX0 output (AX/2) 2.5
(6)
Delay time, ACLKR0 internal, AFSR output
(7)
0 5.8Delay time, ACLKX0 internal, AFSR output
(8)
0 5.8Delay time, ACLKX0 internal, AFSX output 0 5.8Delay time, ACLKR0 external input, AFSR output
(7)
3 11.6Delay time, ACLKX0 external input, AFSR output
(8)
3 11.613 t
d(ACLKRX-AFSRX)
nsDelay time, ACLKX0 external input, AFSX output 3 11.6Delay time, ACLKR0 external output, AFSR
3 11.6output
(7)
Delay time, ACLKX0 external output, AFSR
3 11.6output
(8)
Delay time, ACLKX0 external output, AFSX output 3 11.6Delay time, ACLKX0 internal, AXR0[n] output 0 5.8Delay time, ACLKX0 external input, AXR0[n] output 3 11.614 t
d(ACLKX-AXRV)
nsDelay time, ACLKX0 external output, AXR0[n]
3 11.6output
Disable time, ACLKX0 internal, AXR0[n] output 0 5.8Disable time, ACLKX0 external input, AXR0[n]
3 11.615 t
dis(ACLKX-AXRHZ)
output nsDisable time, ACLKX0 external output, AXR0[n]
3 11.6output
(1) McASP0 ACLKX0 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1ACLKX0 external input McASP0 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0ACLKX0 external output McASP0ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1ACLKR0 internal McASP0 ACLKR0CTL.CLKRM = 1, PDIR.ACLKR =1ACLKR0 external input McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0ACLKR0 external output McASP0 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1(2) AHR - Cycle time, AHCLKR0.(3) AHX - Cycle time, AHCLKX0.(4) P = SYSCLK2 period(5) AR - ACLKR0 period.(6) AX - ACLKX0 period.(7) McASP0 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR0(8) McASP0 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX0
Submit Documentation Feedback Peripheral Information and Electrical Specifications 137
PRODUCT PREVIEW
6.15.2.2 Multichannel Audio Serial Port 1 (McASP1) Timing
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-44 and Table 6-45 assume testing over recommended operating conditions (see Figure 6-33 andFigure 6-34 ).
Table 6-44. McASP1 Timing Requirements
(1) (2)
NO. MIN MAX UNIT
Cycle time, AHCLKR1 external, AHCLKR1 input 201 t
c(AHCLKRX)
nsCycle time, AHCLKX1 external, AHCLKX1 input 20Pulse duration, AHCLKR1 external, AHCLKR1 input 102 t
w(AHCLKRX)
nsPulse duration, AHCLKX1 external, AHCLKX1 input 10Cycle time, ACLKR1 external, ACLKR1 input greater of 2P or 203 t
c(ACLKRX)
nsCycle time, ACLKX1 external, ACLKX1 input greater of 2P or 20Pulse duration, ACLKR1 external, ACLKR1 input 104 t
w(ACLKRX)
nsPulse duration, ACLKX1 external, ACLKX1 input 10Setup time, AFSR1 input to ACLKR1 internal
(3)
10.4Setup time, AFSR1 input to ACLKX1 internal
(4)
10.4Setup time, AFSX1 input to ACLKX1 internal 10.4Setup time, AFSR1 input to ACLKR1 external input
(3)
2.65 t
su(AFSRX-ACLKRX)
Setup time, AFSR1 input to ACLKX1 external input
(4)
2.6 nsSetup time, AFSX1 input to ACLKX1 external input 2.6Setup time, AFSR1 input to ACLKR1 external output
(3)
2.6Setup time, AFSR1 input to ACLKX1 external output
(4)
2.6Setup time, AFSX1 input to ACLKX1 external output 2.6Hold time, AFSR1 input after ACLKR1 internal
(3)
-2.6Hold time, AFSR1 input after ACLKX1 internal
(4)
-2.6Hold time, AFSX1 input after ACLKX1 internal -2.6Hold time, AFSR1 input after ACLKR1 external input
(3)
0.3Hold time, AFSR1 input after ACLKX1 external input
(4)
0.36 t
h(ACLKRX-AFSRX)
nsHold time, AFSX1 input after ACLKX1 external input 0.3Hold time, AFSR1 input after ACLKR1 external
0.3output
(3)
Hold time, AFSR1 input after ACLKX1 external
0.3output
(4)
Hold time, AFSX1 input after ACLKX1 external output 0.3Setup time, AXR1[n] input to ACLKR1 internal
(3)
10.4Setup time, AXR1[n] input to ACLKX1 internal
(4)
10.4Setup time, AXR1[n] input to ACLKR1 external input
(3)
2.6Setup time, AXR1[n] input to ACLKX1 external input
(4)
2.67 t
su(AXR-ACLKRX)
nsSetup time, AXR1[n] input to ACLKR1 external
2.6output
(3)
Setup time, AXR1[n] input to ACLKX1 external
2.6output
(4)
(1) ACLKX1 internal McASP1 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1ACLKX1 external input McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0ACLKX1 external output McASP1 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1ACLKR1 internal McASP1 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1ACLKR1 external input McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0ACLKR1 external output McASP1 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1(2) P = SYSCLK2 period(3) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1(4) McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1
138 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-44. McASP1 Timing Requirements (continued)
NO. MIN MAX UNIT
Hold time, AXR1[n] input after ACLKR1 internal
(3)
-2.6Hold time, AXR1[n] input after ACLKX1 internal
(4)
-2.6Hold time, AXR1[n] input after ACLKR1 external
0.3input
(3)
Hold time, AXR1[n] input after ACLKX1 external8 t
h(ACLKRX-AXR)
ns0.3input
(4)
Hold time, AXR1[n] input after ACLKR1 external
0.3output
(3)
Hold time, AXR1[n] input after ACLKX1 external
0.3output
(4)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 139
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-45. McASP1 Switching Characteristics
(1)
NO. PARAMETER MIN MAX UNIT
Cycle time, AHCLKX1 internal, AHCLKR1 output 20Cycle time, AHCLKR1 external, AHCLKR1 output 209 t
c(AHCLKRX)
nsCycle time, AHCLKX1 internal, AHCLKX1 output 20Cycle time, AHCLKX1 external, AHCLKX1 output 20Pulse duration, AHCLKR1 internal, AHCLKR1
(AHR/2) 2.5
(2)output
Pulse duration, AHCLKR1 external, AHCLKR1
(AHR/2) 2.5
(2)output10 t
w(AHCLKRX)
nsPulse duration, AHCLKX1 internal, AHCLKX1
(AHX/2) 2.5
(3)output
Pulse duration, AHCLKX1 external, AHCLKX1
(AHX/2) 2.5
(3)output
Cycle time, ACLKR1 internal, ACLKR1 output greater of 2P or 20 ns
(4)
Cycle time, ACLKR1 external, ACLKR1 output greater of 2P or 20 ns
(4)11 t
c(ACLKRX)
nsCycle time, ACLKX1 internal, ACLKX1 output greater of 2P or 20 ns
(4)
Cycle time, ACLKX1 external, ACLKX1 output greater of 2P or 20 ns
(4)
Pulse duration, ACLKR1 internal, ACLKR1 output (AR/2) 2.5
(5)
Pulse duration, ACLKR1 external, ACLKR1 output (AR/2) 2.5
(5)12 t
w(ACLKRX)
nsPulse duration, ACLKX1 internal, ACLKX1 output (AX/2) 2.5
(6)
Pulse duration, ACLKX1 external, ACLKX1 output (AX/2) 2.5
(6)
Delay time, ACLKR1 internal, AFSR output
(7)
0.5 6.7Delay time, ACLKX1 internal, AFSR output
(8)
0.5 6.7Delay time, ACLKX1 internal, AFSX output 0.5 6.7Delay time, ACLKR1 external input, AFSR output
(7)
3.9 13.8Delay time, ACLKX1 external input, AFSR output
(8)
3.9 13.813 t
d(ACLKRX-AFSRX)
nsDelay time, ACLKX1 external input, AFSX output 3.9 13.8Delay time, ACLKR1 external output, AFSR
3.9 13.8output
(7)
Delay time, ACLKX1 external output, AFSR
3.9 13.8output
(8)
Delay time, ACLKX1 external output, AFSX output 3.9 13.8Delay time, ACLKX1 internal, AXR1[n] output 0.5 6.7Delay time, ACLKX1 external input, AXR1[n] output 3.9 13.814 t
d(ACLKX-AXRV)
nsDelay time, ACLKX1 external output, AXR1[n]
3.9 13.8output
Disable time, ACLKX1 internal, AXR1[n] output 0.5 6.7Disable time, ACLKX1 external input, AXR1[n]
3.9 13.815 t
dis(ACLKX-AXRHZ)
output nsDisable time, ACLKX1 external output, AXR1[n]
3.9 13.8output
(1) McASP1 ACLKX1 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1McASP1 ACLKX1 external input ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0McASP1 ACLKX1 external output ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1McASP1 ACLKR1 internal ACLKR1CTL.CLKRM = 1, PDIR.ACLKR =1McASP1 ACLKR1 external input ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0McASP1 ACLKR1 external output ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1(2) AHR - Cycle time, AHCLKR1.(3) AHX - Cycle time, AHCLKX1.(4) P = SYSCLK2 period(5) AR - ACLKR1 period.(6) AX - ACLKX1 period.(7) McASP1 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR1(8) McASP1 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX1
Peripheral Information and Electrical Specifications140 Submit Documentation Feedback
PRODUCT PREVIEW
6.15.2.3 Multichannel Audio Serial Port 2 (McASP2) Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-46 and Table 6-47 assume testing over recommended operating conditions (see Figure 6-33 andFigure 6-34 ).
Table 6-46. McASP2 Timing Requirements
(1) (2)
NO. MIN MAX UNIT
Cycle time, AHCLKR2 external, AHCLKR2 input 131 t
c(AHCLKRX)
nsCycle time, AHCLKX2 external, AHCLKX2 input 13Pulse duration, AHCLKR2 external, AHCLKR2 input 6.52 t
w(AHCLKRX)
nsPulse duration, AHCLKX2 external, AHCLKX2 input 6.5Cycle time, ACLKR2 external, ACLKR2 input greater of 2P or 133 t
c(ACLKRX)
nsCycle time, ACLKX2 external, ACLKX2 input greater of 2P or 13Pulse duration, ACLKR2 external, ACLKR2 input 6.54 t
w(ACLKRX)
nsPulse duration, ACLKX2 external, ACLKX2 input 6.5Setup time, AFSR2 input to ACLKR2 internal
(3)
10Setup time, AFSR2 input to ACLKX2 internal
(4)
10Setup time, AFSX2 input to ACLKX2 internal 10Setup time, AFSR2 input to ACLKR2 external input
(3)
1.65 t
su(AFSRX-ACLKRX)
Setup time, AFSR2 input to ACLKX2 external input
(4)
1.6 nsSetup time, AFSX2 input to ACLKX2 external input 1.6Setup time, AFSR2 input to ACLKR2 external output
(3)
1.6Setup time, AFSR2 input to ACLKX2 external output
(4)
1.6Setup time, AFSX2 input to ACLKX2 external output 1.6Hold time, AFSR2 input after ACLKR2 internal
(3)
-2.2Hold time, AFSR2 input after ACLKX2 internal
(4)
-2.2Hold time, AFSX2 input after ACLKX2 internal -2.2Hold time, AFSR2 input after ACLKR2 external input
(3)
1.3Hold time, AFSR2 input after ACLKX2 external input
(4)
1.36 t
h(ACLKRX-AFSRX)
nsHold time, AFSX2 input after ACLKX2 external input 1.3Hold time, AFSR2 input after ACLKR2 external
1.3output
(3)
Hold time, AFSR2 input after ACLKX2 external
1.3output
(4)
Hold time, AFSX2 input after ACLKX2 external output 1.3Setup time, AXR2[n] input to ACLKR2 internal
(3)
10Setup time, AXR2[n] input to ACLKX2 internal
(4)
10Setup time, AXR2[n] input to ACLKR2 external input
(3)
1.6Setup time, AXR2[n] input to ACLKX2 external input
(4)
1.67 t
su(AXR-ACLKRX)
nsSetup time, AXR2[n] input to ACLKR2 external
1.6output
(3)
Setup time, AXR2[n] input to ACLKX2 external
1.6output
(4)
(1) ACLKX2 internal McASP2 ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1ACLKX2 external input McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0ACLKX2 external output McASP2 ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1ACLKR2 internal McASP2 ACLKRCTL.CLKRM = 1, PDIR.ACLKR =1ACLKR2 external input McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0ACLKR2 external output McASP2 ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1(2) P = SYSCLK2 period(3) McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2(4) McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2
Submit Documentation Feedback Peripheral Information and Electrical Specifications 141
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-46. McASP2 Timing Requirements (continued)
NO. MIN MAX UNIT
Hold time, AXR2[n] input after ACLKR2 internal
(3)
-2.2Hold time, AXR2[n] input after ACLKX2 internal
(4)
-2.2Hold time, AXR2[n] input after ACLKR2 external
1.3input
(3)
Hold time, AXR2[n] input after ACLKX2 external8 t
h(ACLKRX-AXR)
ns1.3input
(4)
Hold time, AXR2[n] input after ACLKR2 external
1.3output
(3)
Hold time, AXR2[n] input after ACLKX2 external
1.3output
(4)
Peripheral Information and Electrical Specifications142 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-47. McASP2 Switching Characteristics
(1)
NO. PARAMETER MIN MAX UNIT
Cycle time, AHCLKX2 internal, AHCLKR2 output 13Cycle time, AHCLKR2 external, AHCLKR2 output 139 t
c(AHCLKRX)
nsCycle time, AHCLKX2 internal, AHCLKX2 output 13Cycle time, AHCLKX2 external, AHCLKX2 output 13Pulse duration, AHCLKR2 internal, AHCLKR2
(AHR/2) 2.5
(2)output
Pulse duration, AHCLKR2 external, AHCLKR2
(AHR/2) 2.5
(2)output10 t
w(AHCLKRX)
nsPulse duration, AHCLKX2 internal, AHCLKX2
(AHX/2) 2.5
(3)output
Pulse duration, AHCLKX2 external, AHCLKX2
(AHX/2) 2.5
(3)output
Cycle time, ACLKR2 internal, ACLKR2 output greater of 2P or 13 ns
(4)
Cycle time, ACLKR2 external, ACLKR2 output greater of 2P or 13 ns
(4)11 t
c(ACLKRX)
nsCycle time, ACLKX2 internal, ACLKX2 output greater of 2P or 13 ns
(4)
Cycle time, ACLKX2 external, ACLKX2 output greater of 2P or 13 ns
(4)
Pulse duration, ACLKR2 internal, ACLKR2 output (AR/2) 2.5
(5)
Pulse duration, ACLKR2 external, ACLKR2 output (AR/2) 2.5
(5)12 t
w(ACLKRX)
nsPulse duration, ACLKX2 internal, ACLKX2 output (AX/2) 2.5
(6)
Pulse duration, ACLKX2 external, ACLKX2 output (AX/2) 2.5
(6)
Delay time, ACLKR2 internal, AFSR output
(7)
-1.4 2.8Delay time, ACLKX2 internal, AFSR output
(8)
-1.4 2.8Delay time, ACLKX2 internal, AFSX output -1.4 2.8Delay time, ACLKR2 external input, AFSR output
(7)
2.9 10Delay time, ACLKX2 external input, AFSR output
(8)
2.9 1013 t
d(ACLKRX-AFSRX)
nsDelay time, ACLKX2 external input, AFSX output 2.9 10Delay time, ACLKR2 external output, AFSR
2.9 10output
(7)
Delay time, ACLKX2 external output, AFSR
2.9 10output
(8)
Delay time, ACLKX2 external output, AFSX output 2.9 10Delay time, ACLKX2 internal, AXR2[n] output -1.4 2.8Delay time, ACLKX2 external input, AXR2[n] output 2.9 1014 t
d(ACLKX-AXRV)
nsDelay time, ACLKX2 external output, AXR2[n]
2.9 10output
Disable time, ACLKX2 internal, AXR2[n] output -1.4 2.8Disable time, ACLKX2 external input, AXR2[n]
2.9 1015 t
dis(ACLKX-AXRHZ)
output nsDisable time, ACLKX2 external output, AXR2[n]
2.9 10output
(1) McASP2 ACLKX2 internal ACLKXCTL.CLKXM = 1, PDIR.ACLKX = 1McASP2 ACLKX2 external input ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 0McASP2 ACLKX2 external output ACLKXCTL.CLKXM = 0, PDIR.ACLKX = 1McASP2 ACLKR2 internal ACLKR2CTL.CLKRM = 1, PDIR.ACLKR =1McASP2 ACLKR2 external input ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 0McASP2 ACLKR2 external output ACLKRCTL.CLKRM = 0, PDIR.ACLKR = 1(2) AHR - Cycle time, AHCLKR2.(3) AHX - Cycle time, AHCLKX2.(4) P = SYSCLK2 period(5) AR - ACLKR2 period.(6) AX - ACLKX2 period.(7) McASP2 ACLKXCTL.ASYNC=1: Receiver is clocked by its own ACLKR2(8) McASP2 ACLKXCTL.ASYNC=0: Receiver is clocked by transmitter's ACLKX2
Submit Documentation Feedback Peripheral Information and Electrical Specifications 143
PRODUCT PREVIEW
8
7
4
4
3
2
21
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data In/Receive)
6
5
ACLKR/X (CLKRP = CLKXP = 0)(A)
ACLKR/X (CLKRP = CLKXP = 1)(B)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
A. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASPreceiver is configured for falling edge (to shift data in).B. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASPreceiver is configured for rising edge (to shift data in).
Figure 6-33. McASP Input Timings
144 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
15
14
13
13
13
13
13
13
13
12
12
11
10
10
9
A0 A1 B0 B1A30 A31 B30 B31 C0 C1 C2 C3 C31
AHCLKR/X (Falling Edge Polarity)
AHCLKR/X (Rising Edge Polarity)
AFSR/X (Bit Width, 0 Bit Delay)
AFSR/X (Bit Width, 1 Bit Delay)
AFSR/X (Bit Width, 2 Bit Delay)
AFSR/X (Slot Width, 0 Bit Delay)
AFSR/X (Slot Width, 1 Bit Delay)
AFSR/X (Slot Width, 2 Bit Delay)
AXR[n] (Data Out/Transmit)
ACLKR/X (CLKRP = CLKXP = 0)(B)
ACLKR/X (CLKRP = CLKXP = 1)(A)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
A. For CLKRP = CLKXP = 1, the McASP transmitter is configured for falling edge (to shift data out) and the McASPreceiver is configured for rising edge (to shift data in).B. For CLKRP = CLKXP = 0, the McASP transmitter is configured for rising edge (to shift data out) and the McASPreceiver is configured for falling edge (to shift data in).
Figure 6-34. McASP Output Timings
Submit Documentation Feedback Peripheral Information and Electrical Specifications 145
PRODUCT PREVIEW
6.16 Serial Peripheral Interface Ports (SPI0, SPI1)
Peripheral
Configuration Bus
Interrupt and
DMA Requests
16-Bit Shift Register
16-Bit Buffer
GPIO
Control
(all pins)
State
Machine
Clock
Control
SPIx_SIMO
SPIx_SOMI
SPIx_ENA
SPIx_SCS
SPIx_CLK
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-35 is a block diagram of the SPI module, which is a simple shift register and buffer plus controllogic. Data is written to the shift register before transmission occurs and is read from the buffer at the endof transmission. The SPI can operate either as a master, in which case, it initiates a transfer and drivesthe SPIx_CLK pin, or as a slave. Four clock phase and polarity options are supported as well as manydata formatting options.
Figure 6-35. Block Diagram of SPI Module
The SPI supports 3-, 4-, and 5-pin operation with three basic pins (SPIx_CLK, SPIx_SIMO, andSPIx_SOMI) and two optional pins ( SPIx_SCS, SPIx_ENA).
The optional SPIx_SCS (Slave Chip Select) pin is most useful to enable in slave mode when there areother slave devices on the same SPI port. The OMAP-L137 will only shift data and drive the SPIx_SOMIpin when SPIx_SCS is held low.
In slave mode, SPIx_ENA is an optional output and can be driven in either a push-pull or open-drainmanner. The SPIx_ENA output provides the status of the internal transmit buffer (SPIDAT0/1 registers). Infour-pin mode with the enable option, SPIx_ENA is asserted only when the transmit buffer is full, indicatingthat the slave is ready to begin another transfer. In five-pin mode, the SPIx_ENA is additionally qualifiedby SPIx_SCS being asserted. This allows a single handshake line to be shared by multiple slaves on thesame SPI bus.
In master mode, the SPIx_ENA pin is an optional input and the master can be configured to delay the startof the next transfer until the slave asserts SPIx_ENA. The addition of this handshake signal simplifies SPIcommunications and, on average, increases SPI bus throughput since the master does not need to delayeach transfer long enough to allow for the worst-case latency of the slave device. Instead, each transfercan begin as soon as both the master and slave have actually serviced the previous SPI transfer.
146 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
Optional − Slave Chip Select
Optional Enable (Ready)
SLAVE SPIMASTER SPI
SPIx_SIMOSPIx_SIMO
SPIx_SOMI SPIx_SOMI
SPIx_CLK SPIx_CLK
SPIx_ENA SPIx_ENA
SPIx_SCS SPIx_SCS
6.16.1 SPI Peripheral Registers Description(s)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-36. Illustration of SPI Master-to-SPI Slave Connection
Table 6-48 is a list of the SPI registers.
Table 6-48. SPIx Configuration Registers
SPI0 SPI1
REGISTER NAME DESCRIPTIONBYTE ADDRESS BYTE ADDRESS
0x01C4 1000 0x01E1 2000 SPIGCR0 Global Control Register 00x01C4 1004 0x01E1 2004 SPIGCR1 Global Control Register 10x01C4 1008 0x01E1 2008 SPIINT0 Interrupt Register0x01C4 100C 0x01E1 200C SPILVL Interrupt Level Register0x01C4 1010 0x01E1 2010 SPIFLG Flag Register0x01C4 1014 0x01E1 2014 SPIPC0 Pin Control Register 0 (Pin Function)0x01C4 1018 0x01E1 2018 SPIPC1 Pin Control Register 1 (Pin Direction)0x01C4 101C 0x01E1 201C SPIPC2 Pin Control Register 2 (Pin Data In)0x01C4 1020 0x01E1 2020 SPIPC3 Pin Control Register 3 (Pin Data Out)0x01C4 1024 0x01E1 2024 SPIPC4 Pin Control Register 4 (Pin Data Set)0x01C4 1028 0x01E1 2028 SPIPC5 Pin Control Register 5 (Pin Data Clear)0x01C4 102C 0x01E1 202C Reserved Reserved - Do not write to this register0x01C4 1030 0x01E1 2030 Reserved Reserved - Do not write to this register0x01C4 1034 0x01E1 2034 Reserved Reserved - Do not write to this register0x01C4 1038 0x01E1 2038 SPIDAT0 Shift Register 0 (without format select)0x01C4 103C 0x01E1 203C SPIDAT1 Shift Register 1 (with format select)0x01C4 1040 0x01E1 2040 SPIBUF Buffer Register0x01C4 1044 0x01E1 2044 SPIEMU Emulation Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 147
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-48. SPIx Configuration Registers (continued)
SPI0 SPI1
REGISTER NAME DESCRIPTIONBYTE ADDRESS BYTE ADDRESS
0x01C4 1048 0x01E1 2048 SPIDELAY Delay Register0x01C4 104C 0x01E1 204C SPIDEF Default Chip Select Register0x01C4 1050 0x01E1 2050 SPIFMT0 Format Register 00x01C4 1054 0x01E1 2054 SPIFMT1 Format Register 10x01C4 1058 0x01E1 2058 SPIFMT2 Format Register 20x01C4 105C 0x01E1 205C SPIFMT3 Format Register 30x01C4 1060 0x01E1 2060 INTVEC0 Interrupt Vector for SPI INT00x01C4 1064 0x01E1 2064 INTVEC1 Interrupt Vector for SPI INT1
Peripheral Information and Electrical Specifications148 Submit Documentation Feedback
PRODUCT PREVIEW
6.16.2 SPI Electrical Data/Timing
6.16.2.1 Serial Peripheral Interface (SPI) Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-49 through Table 6-64 assume testing over recommended operating conditions (see Figure 6-37through Figure 6-40 ).
Table 6-49. General Timing Requirements for SPI0 Master Modes
(1)
NO. MIN MAX UNIT
1 t
c(SPC)M
Cycle Time, SPI0_CLK, All Master Modes greater of 2P or 20 ns 256P ns2 t
w(SPCH)M
Pulse Width High, SPI0_CLK, All Master Modes 0.5t
c(SPC)M
- 1 ns3 t
w(SPCL)M
Pulse Width Low, SPI0_CLK, All Master Modes 0.5t
c(SPC)M
- 1 nsPolarity = 0, Phase = 0,
5to SPI0_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
- 5Delay, initial data bit valid
to SPI0_CLK rising4,5 t
d(SIMO_SPC)M
on SPI0_SIMO to initial nsPolarity = 1, Phase = 0,edge on SPI0_CLK
(2)
5to SPI0_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
- 5to SPI0_CLK fallingPolarity = 0, Phase = 0,
5from SPI0_CLK risingPolarity = 0, Phase = 1,
5Delay, subsequent bits
from SPI0_CLK falling5 t
d(SPC_SIMO)M
valid on SPI0_SIMO after nsPolarity = 1, Phase = 0,transmit edge of SPI0_CLK
5from SPI0_CLK fallingPolarity = 1, Phase = 1,
5from SPI0_CLK risingPolarity = 0, Phase = 0,
0.5t
c(SPC)M
-3from SPI0_CLK fallingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
-3Output hold time,
from SPI0_CLK rising6 t
oh(SPC_SIMO)M
SPI0_SIMO valid after nsPolarity = 1, Phase = 0,receive edge of SPI0_CLK
0.5t
c(SPC)M
-3from SPI0_CLK risingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
-3from SPI0_CLK fallingPolarity = 0, Phase = 0,
0to SPI0_CLK fallingPolarity = 0, Phase = 1,
0Input Setup Time,
to SPI0_CLK rising7 t
su(SOMI_SPC)M
SPI0_SOMI valid before nsPolarity = 1, Phase = 0,receive edge of SPI0_CLK
0to SPI0_CLK risingPolarity = 1, Phase = 1,
0to SPI0_CLK fallingPolarity = 0, Phase = 0,
5from SPI0_CLK fallingPolarity = 0, Phase = 1,
5Input Hold Time,
from SPI0_CLK rising8 t
ih(SPC_SOMI)M
SPI0_SOMI valid after nsPolarity = 1, Phase = 0,receive edge of SPI0_CLK
5from SPI0_CLK risingPolarity = 1, Phase = 1,
5from SPI0_CLK falling
(1) P = SYSCLK2 period(2) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output onSPI0_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI0_SOMI.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 149
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-50. General Timing Requirements for SPI0 Slave Modes
(1)
NO. MIN MAX UNIT
greater of 2P or9 t
c(SPC)S
Cycle Time, SPI0_CLK, All Slave Modes 256P ns20 ns10 t
w(SPCH)S
Pulse Width High, SPI0_CLK, All Slave Modes 10 ns11 t
w(SPCL)S
Pulse Width Low, SPI0_CLK, All Slave Modes 10 nsPolarity = 0, Phase = 0,
2Pto SPI0_CLK risingPolarity = 0, Phase = 1,Setup time, transmit data
2Pto SPI0_CLK risingwritten to SPI before initial12 t
su(SOMI_SPC)S
nsclock edge from
Polarity = 1, Phase = 0,
2Pmaster.
(2) (3)
to SPI0_CLK fallingPolarity = 1, Phase = 1,
2Pto SPI0_CLK fallingPolarity = 0, Phase = 0,
9from SPI0_CLK risingPolarity = 0, Phase = 1,
9Delay, subsequent bits
from SPI0_CLK falling13 t
d(SPC_SOMI)S
valid on SPI0_SOMI after nsPolarity = 1, Phase = 0,transmit edge of SPI0_CLK
9from SPI0_CLK fallingPolarity = 1, Phase = 1,
9from SPI0_CLK risingPolarity = 0, Phase = 0,
0.5t
c(SPC)S
-3from SPI0_CLK fallingPolarity = 0, Phase = 1,
0.5t
c(SPC)S
-3Output hold time,
from SPI0_CLK rising14 t
oh(SPC_SOMI)S
SPI0_SOMI valid after nsPolarity = 1, Phase = 0,receive edge of SPI0_CLK
0.5t
c(SPC)S
-3from SPI0_CLK risingPolarity = 1, Phase = 1,
0.5t
c(SPC)S
-3from SPI0_CLK fallingPolarity = 0, Phase = 0,
0to SPI0_CLK fallingPolarity = 0, Phase = 1,
0Input Setup Time,
to SPI0_CLK rising15 t
su(SIMO_SPC)S
SPI0_SIMO valid before nsPolarity = 1, Phase = 0,receive edge of SPI0_CLK
0to SPI0_CLK risingPolarity = 1, Phase = 1,
0to SPI0_CLK fallingPolarity = 0, Phase = 0,
5from SPI0_CLK fallingPolarity = 0, Phase = 1,
5Input Hold Time,
from SPI0_CLK rising16 t
ih(SPC_SIMO)S
SPI0_SIMO valid after nsPolarity = 1, Phase = 0,receive edge of SPI0_CLK
5from SPI0_CLK risingPolarity = 1, Phase = 1,
5from SPI0_CLK falling
(1) P = SYSCLK2 period(2) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output onSPI0_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI0_SIMO.(3) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal buscycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.
150 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-51. Additional
(1)
SPI0 Master Timings, 4-Pin Enable Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
3P + 5to SPI0_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5Delay from slave assertion of
to SPI0_CLK rising17 t
d(ENA_SPC)M
SPI0_ENA active to first nsPolarity = 1, Phase = 0,SPI0_CLK from master.
(4)
3P + 5to SPI0_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5to SPI0_CLK fallingPolarity = 0, Phase = 0,
0.5t
c(SPC)Mfrom SPI0_CLK fallingPolarity = 0, Phase = 1,Max delay for slave to deassert
0from SPI0_CLK fallingSPI0_ENA after final SPI0_CLK18 t
d(SPC_ENA)M
nsedge to ensure master does not
Polarity = 1, Phase = 0,
0.5t
c(SPC)Mbegin the next transfer.
(5)
from SPI0_CLK risingPolarity = 1, Phase = 1,
0from SPI0_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 6-49 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.(4) In the case where the master SPI is ready with new data before SPI0_ENA assertion.(5) In the case where the master SPI is ready with new data before SPI0_EN A deassertion.
Table 6-52. Additional
(1)
SPI0 Master Timings, 4-Pin Chip Select Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
2P -3to SPI0_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 2P -3to SPI0_CLK risingDelay from SPI0_SCS active to19 t
d(SCS_SPC)M
nsfirst SPI0_CLK
(4) (5)
Polarity = 1, Phase = 0,
2P -3to SPI0_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 2P -3to SPI0_CLK fallingPolarity = 0, Phase = 0,
0.5t
c(SPC)Mfrom SPI0_CLK fallingPolarity = 0, Phase = 1,
0Delay from final SPI0_CLK edge
from SPI0_CLK falling20 t
d(SPC_SCS)M
to master deasserting SPI0_SCS nsPolarity = 1, Phase = 0,(6) (7)
0.5t
c(SPC)Mfrom SPI0_CLK risingPolarity = 1, Phase = 1,
0from SPI0_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 6-49 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.(4) In the case where the master SPI is ready with new data before SPI0_SCS assertion.(5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].(6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remainasserted.
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Submit Documentation Feedback Peripheral Information and Electrical Specifications 151
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-53. Additional
(1)
SPI0 Master Timings, 5-Pin Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
P + 5from SPI0_CLK fallingMax delay for slave to
Polarity = 0, Phase = 1,deassert SPI0_ENA after
0.5t
c(SPC)M
+ P + 5from SPI0_CLK fallingfinal SPI0_CLK edge to18 t
d(SPC_ENA)M
nsensure master does not
Polarity = 1, Phase = 0,
P + 5begin the next
from SPI0_CLK risingtransfer.
(4)
Polarity = 1, Phase = 1,
0.5t
c(SPC)M
+ P + 5from SPI0_CLK risingPolarity = 0, Phase = 0,
0.5t
c(SPC)Mfrom SPI0_CLK fallingPolarity = 0, Phase = 1,Delay from final
0from SPI0_CLK fallingSPI0_CLK edge to20 t
d(SPC_SCS)M
nsmaster deasserting
Polarity = 1, Phase = 0,
0.5t
c(SPC)MSPI0_SCS
(5) (6)
from SPI0_CLK risingPolarity = 1, Phase = 1,
0from SPI0_CLK risingMax delay for slave SPI to drive SPI0_ENA valid21 t
d(SCSL_ENAL)M
after master asserts SPI0_SCS to delay the C2TDELAY + P nsmaster from beginning the next transfer,
Polarity = 0, Phase = 0,
2P -3to SPI0_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 2P -3Delay from SPI0_SCS
to SPI0_CLK rising22 t
d(SCS_SPC)M
active to first nsPolarity = 1, Phase = 0,SPI0_CLK
(7) (8) (9)
2P -3to SPI0_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 2P -3to SPI0_CLK fallingPolarity = 0, Phase = 0,
3P + 5to SPI0_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5Delay from assertion of
to SPI0_CLK rising23 t
d(ENA_SPC)M
SPI0_ENA low to first nsPolarity = 1, Phase = 0,SPI0_CLK edge.
(10)
3P + 5to SPI0_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5to SPI0_CLK falling
(1) These parameters are in addition to the general timings for SPI master modes (Table 6-50 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.(4) In the case where the master SPI is ready with new data before SPI0_ENA deassertion.(5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI0_SCS will remainasserted.
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].(7) If SPI0_ENA is asserted immediately such that the transmission is not delayed by SPI0_ENA.(8) In the case where the master SPI is ready with new data before SPI0_SCS assertion.(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].(10) If SPI0_ENA was initially deasserted high and SPI0_CLK is delayed.
152 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-54. Additional
(1)
SPI0 Slave Timings, 4-Pin Enable Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
1.5 P -3 2.5 P + 9from SPI0_CLK fallingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 1.5 P -3 0.5t
c(SPC)M
+ 2.5 P + 9Delay from final
from SPI0_CLK falling24 t
d(SPC_ENAH)S
SPI0_CLK edge to slave nsPolarity = 1, Phase = 0,deasserting SPI0_ENA.
1.5 P -3 2.5 P + 9from SPI0_CLK risingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 1.5 P -3 0.5t
c(SPC)M
+ 2.5 P + 9from SPI0_CLK rising
(1) These parameters are in addition to the general timings for SPI slave modes (Table 6-50 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 6-55. Additional
(1)
SPI0 Slave Timings, 4-Pin Chip Select Option
(2) (3)
NO. MIN MAX UNIT
Required delay from SPI0_SCS asserted at slave to first25 t
d(SCSL_SPC)S
P nsSPI0_CLK edge at slave.
Polarity = 0, Phase = 0,
0.5t
c(SPC)M
+ 0from SPI0_CLK fallingPolarity = 0, Phase = 1,
0Required delay from final
from SPI0_CLK falling26 t
d(SPC_SCSH)S
SPI0_CLK edge before nsPolarity = 1, Phase = 0,SPI0_SCS is deasserted.
0.5t
c(SPC)M
+ 0from SPI0_CLK risingPolarity = 1, Phase = 1,
0from SPI0_CLK risingDelay from master asserting SPI0_SCS to slave driving27 t
ena(SCSL_SOMI)S
P + 9 nsSPI0_SOMI validDelay from master deasserting SPI0_SCS to slave 3-stating28 t
dis(SCSH_SOMI)S
P + 9 nsSPI0_SOMI
(1) These parameters are in addition to the general timings for SPI slave modes (Table 6-50 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 153
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-56. Additional
(1)
SPI0 Slave Timings, 5-Pin Option
(2) (3)
NO. MIN MAX UNIT
Required delay from SPI0_SCS asserted at slave to first25 t
d(SCSL_SPC)S
P nsSPI0_CLK edge at slave.
Polarity = 0, Phase = 0,
0.5t
c(SPC)M
+ 0from SPI0_CLK fallingPolarity = 0, Phase = 1,
0Required delay from final
from SPI0_CLK falling26 t
d(SPC_SCSH)S
SPI0_CLK edge before nsPolarity = 1, Phase = 0,SPI0_SCS is deasserted.
0.5t
c(SPC)M
+ 0from SPI0_CLK risingPolarity = 1, Phase = 1,
0from SPI0_CLK risingDelay from master asserting SPI0_SCS to slave driving27 t
ena(SCSL_SOMI)S
P + 9 nsSPI0_SOMI validDelay from master deasserting SPI0_SCS to slave 3-stating28 t
dis(SCSH_SOMI)S
P + 9 nsSPI0_SOMI
Delay from master deasserting SPI0_SCS to slave driving29 t
ena(SCSL_ENA)S
9 nsSPI0_ENA valid
Polarity = 0, Phase = 0,
2.5 P + 9from SPI0_CLK fallingPolarity = 0, Phase = 1,Delay from final clock receive
2.5 P + 9from SPI0_CLK risingedge on SPI0_CLK to slave30 t
dis(SPC_ENA)S
ns3-stating or driving high
Polarity = 1, Phase = 0,
2.5 P + 9SPI0_ENA.
(4)
from SPI0_CLK risingPolarity = 1, Phase = 1,
2.5 P + 9from SPI0_CLK falling
(1) These parameters are in addition to the general timings for SPI slave modes (Table 6-50 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.(4) SPI0_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it istri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tyingseveral SPI slave devices to a single master.
Table 6-57. General Timing Requirements for SPI1 Master Modes
(1)
NO. MIN MAX UNIT
1 t
c(SPC)M
Cycle Time, SPI1_CLK, All Master Modes greater of 2P or 20 ns 256P ns2 t
w(SPCH)M
Pulse Width High, SPI1_CLK, All Master Modes 0.5t
c(SPC)M
- 1 ns3 t
w(SPCL)M
Pulse Width Low, SPI1_CLK, All Master Modes 0.5t
c(SPC)M
- 1 nsPolarity = 0, Phase = 0,
5to SPI1_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
- 5Delay, initial data bit valid
to SPI1_CLK rising4,5 t
d(SIMO_SPC)M
on SPI1_SIMO to initial nsPolarity = 1, Phase = 0,edge on SPI1_CLK
(2)
5to SPI1_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
- 5to SPI1_CLK fallingPolarity = 0, Phase = 0,
5from SPI1_CLK risingPolarity = 0, Phase = 1,
5Delay, subsequent bits
from SPI1_CLK falling5 t
d(SPC_SIMO)M
valid on SPI1_SIMO after nsPolarity = 1, Phase = 0,transmit edge of SPI1_CLK
5from SPI1_CLK fallingPolarity = 1, Phase = 1,
5from SPI1_CLK rising
(1) P = SYSCLK2 period(2) First bit may be MSB or LSB depending upon SPI configuration. MO(0) refers to first bit and MO(n) refers to last bit output onSPI1_SIMO. MI(0) refers to the first bit input and MI(n) refers to the last bit input on SPI1_SOMI.
Peripheral Information and Electrical Specifications154 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-57. General Timing Requirements for SPI1 Master Modes (continued)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
0.5t
c(SPC)M
-3from SPI1_CLK fallingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
-3Output hold time,
from SPI1_CLK rising6 t
oh(SPC_SIMO)M
SPI1_SIMO valid after nsPolarity = 1, Phase = 0,receive edge of SPI1_CLK
0.5t
c(SPC)M
-3from SPI1_CLK risingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
-3from SPI1_CLK fallingPolarity = 0, Phase = 0,
0to SPI1_CLK fallingPolarity = 0, Phase = 1,
0Input Setup Time,
to SPI1_CLK rising7 t
su(SOMI_SPC)M
SPI1_SOMI valid before nsPolarity = 1, Phase = 0,receive edge of SPI1_CLK
0to SPI1_CLK risingPolarity = 1, Phase = 1,
0to SPI1_CLK fallingPolarity = 0, Phase = 0,
5from SPI1_CLK fallingPolarity = 0, Phase = 1,
5Input Hold Time,
from SPI1_CLK rising8 t
ih(SPC_SOMI)M
SPI1_SOMI valid after nsPolarity = 1, Phase = 0,receive edge of SPI1_CLK
5from SPI1_CLK risingPolarity = 1, Phase = 1,
5from SPI1_CLK falling
Table 6-58. General Timing Requirements for SPI1 Slave Modes
(1)
NO. MIN MAX UNIT
greater of 2P or9 t
c(SPC)S
Cycle Time, SPI1_CLK, All Slave Modes 256P ns20 ns10 t
w(SPCH)S
Pulse Width High, SPI1_CLK, All Slave Modes 10 ns11 t
w(SPCL)S
Pulse Width Low, SPI1_CLK, All Slave Modes 10 nsPolarity = 0, Phase = 0,
2Pto SPI1_CLK risingPolarity = 0, Phase = 1,Setup time, transmit data
2Pto SPI1_CLK risingwritten to SPI before initial12 t
su(SOMI_SPC)S
nsclock edge from
Polarity = 1, Phase = 0,
2Pmaster.
(2) (3)
to SPI1_CLK fallingPolarity = 1, Phase = 1,
2Pto SPI1_CLK fallingPolarity = 0, Phase = 0,
9.7from SPI1_CLK risingPolarity = 0, Phase = 1,
9.7Delay, subsequent bits
from SPI1_CLK falling13 t
d(SPC_SOMI)S
valid on SPI1_SOMI after nsPolarity = 1, Phase = 0,transmit edge of SPI1_CLK
9.7from SPI1_CLK fallingPolarity = 1, Phase = 1,
9.7from SPI1_CLK rising
(1) P = SYSCLK2 period(2) First bit may be MSB or LSB depending upon SPI configuration. SO(0) refers to first bit and SO(n) refers to last bit output onSPI1_SOMI. SI(0) refers to the first bit input and SI(n) refers to the last bit input on SPI1_SIMO.(3) Measured from the termination of the write of new data to the SPI module, In analyzing throughput requirements, additional internal buscycles must be accounted for to allow data to be written to the SPI module by the DSP CPU.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 155
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-58. General Timing Requirements for SPI1 Slave Modes (continued)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
0.5t
c(SPC)S
-3from SPI1_CLK fallingPolarity = 0, Phase = 1,
0.5t
c(SPC)S
-3Output hold time,
from SPI1_CLK rising14 t
oh(SPC_SOMI)S
SPI1_SOMI valid after nsPolarity = 1, Phase = 0,receive edge of SPI1_CLK
0.5t
c(SPC)S
-3from SPI1_CLK risingPolarity = 1, Phase = 1,
0.5t
c(SPC)S
-3from SPI1_CLK fallingPolarity = 0, Phase = 0,
0to SPI1_CLK fallingPolarity = 0, Phase = 1,
0Input Setup Time,
to SPI1_CLK rising15 t
su(SIMO_SPC)S
SPI1_SIMO valid before nsPolarity = 1, Phase = 0,receive edge of SPI1_CLK
0to SPI1_CLK risingPolarity = 1, Phase = 1,
0to SPI1_CLK fallingPolarity = 0, Phase = 0,
5from SPI1_CLK fallingPolarity = 0, Phase = 1,
5Input Hold Time,
from SPI1_CLK rising16 t
ih(SPC_SIMO)S
SPI1_SIMO valid after nsPolarity = 1, Phase = 0,receive edge of SPI1_CLK
5from SPI1_CLK risingPolarity = 1, Phase = 1,
5from SPI1_CLK falling
Table 6-59. Additional
(1)
SPI1 Master Timings, 4-Pin Enable Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
3P + 5to SPI1_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5Delay from slave assertion of
to SPI1_CLK rising17 t
d(EN A_SPC)M
SPI1_ENA active to first nsPolarity = 1, Phase = 0,SPI1_CLK from master.
(4)
3P + 5to SPI1_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5to SPI1_CLK fallingPolarity = 0, Phase = 0,
0.5t
c(SPC)Mfrom SPI1_CLK fallingPolarity = 0, Phase = 1,Max delay for slave to deassert
0from SPI1_CLK fallingSPI1_ENA after final SPI1_CLK18 t
d(SPC_ENA)M
nsedge to ensure master does not
Polarity = 1, Phase = 0,
0.5t
c(SPC)Mbegin the next transfer.
(5)
from SPI1_CLK risingPolarity = 1, Phase = 1,
0from SPI1_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 6-57 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.(4) In the case where the master SPI is ready with new data before SPI1_ENA assertion.(5) In the case where the master SPI is ready with new data before SPI1_ENA deassertion.
156 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-60. Additional
(1)
SPI1 Master Timings, 4-Pin Chip Select Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
2P -3to SPI1_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 2P -3to SPI1_CLK risingDelay from SPI1_SCS active to19 t
d(SCS_SPC)M
nsfirst SPI1_CLK
(4) (5)
Polarity = 1, Phase = 0,
2P -3to SPI1_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 2P -3to SPI1_CLK fallingPolarity = 0, Phase = 0,
0.5t
c(SPC)Mfrom SPI1_CLK fallingPolarity = 0, Phase = 1,
0Delay from final SPI1_CLK edge
from SPI1_CLK falling20 t
d(SPC_SCS)M
to master deasserting SPI1_SCS nsPolarity = 1, Phase = 0,(6) (7)
0.5t
c(SPC)Mfrom SPI1_CLK risingPolarity = 1, Phase = 1,
0from SPI1_CLK rising
(1) These parameters are in addition to the general timings for SPI master modes (Table 6-57 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.(4) In the case where the master SPI is ready with new data before SPI1_SCS assertion.(5) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].(6) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remainasserted.
(7) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Table 6-61. Additional
(1)
SPI1 Master Timings, 5-Pin Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
P + 5from SPI1_CLK fallingMax delay for slave to
Polarity = 0, Phase = 1,deassert SPI1_ENA after
0.5t
c(SPC)M
+ P + 5from SPI1_CLK fallingfinal SPI1_CLK edge to18 t
d(SPC_ENA)M
nsensure master does not
Polarity = 1, Phase = 0,
P + 5begin the next
from SPI1_CLK risingtransfer.
(4)
Polarity = 1, Phase = 1,
0.5t
c(SPC)M
+ P + 5from SPI1_CLK risingPolarity = 0, Phase = 0,
0.5t
c(SPC)Mfrom SPI1_CLK fallingPolarity = 0, Phase = 1,Delay from final
0from SPI1_CLK fallingSPI1_CLK edge to20 t
d(SPC_SCS)M
nsmaster deasserting
Polarity = 1, Phase = 0,
0.5t
c(SPC)MSPI1_SCS
(5) (6)
from SPI1_CLK risingPolarity = 1, Phase = 1,
0from SPI1_CLK risingMax delay for slave SPI to drive SPI1_ENA valid21 t
d(SCSL_ENAL)M
after master asserts SPI1_SCS to delay the C2TDELAY + P nsmaster from beginning the next transfer,
(1) These parameters are in addition to the general timings for SPI master modes (Table 6-58 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four master clocking modes.(4) In the case where the master SPI is ready with new data before SPI1_ENA deassertion.(5) Except for modes when SPIDAT1.CSHOLD is enabled and there is additional data to transmit. In this case, SPI1_SCS will remainasserted.
(6) This delay can be increased under software control by the register bit field SPIDELAY.T2CDELAY[4:0].
Submit Documentation Feedback Peripheral Information and Electrical Specifications 157
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-61. Additional SPI1 Master Timings, 5-Pin Option (continued)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
2P -3to SPI1_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 2P -3Delay from SPI1_SCS
to SPI1_CLK rising22 t
d(SCS_SPC)M
active to first nsPolarity = 1, Phase = 0,SPI1_CLK
(7) (8) (9)
2P -3to SPI1_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 2P -3to SPI1_CLK fallingPolarity = 0, Phase = 0,
3P + 5to SPI1_CLK risingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5Delay from assertion of
to SPI1_CLK rising23 t
d(ENA_SPC)M
SPI1_ENA low to first nsPolarity = 1, Phase = 0,SPI1_CLK edge.
(10)
3P + 5to SPI1_CLK fallingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 3P + 5to SPI1_CLK falling
(7) If SPI1_ENA is asserted immediately such that the transmission is not delayed by SPI1_ENA.(8) In the case where the master SPI is ready with new data before SPI1_SCS assertion.(9) This delay can be increased under software control by the register bit field SPIDELAY.C2TDELAY[4:0].(10) If SPI1_ENA was initially deasserted high and SPI1_CLK is delayed.
Table 6-62. Additional
(1)
SPI1 Slave Timings, 4-Pin Enable Option
(2) (3)
NO. MIN MAX UNIT
Polarity = 0, Phase = 0,
1.5 P -3 2.5 P + 9.7from SPI1_CLK fallingPolarity = 0, Phase = 1,
0.5t
c(SPC)M
+ 1.5 P -3 0.5t
c(SPC)M
+ 2.5 P + 9.7Delay from final
from SPI1_CLK falling24 t
d(SPC_ENAH)S
SPI1_CLK edge to slave nsPolarity = 1, Phase = 0,deasserting SPI1_ENA.
1.5 P -3 2.5 P + 9.7from SPI1_CLK risingPolarity = 1, Phase = 1,
0.5t
c(SPC)M
+ 1.5 P -3 0.5t
c(SPC)M
+ 2.5 P + 9.7from SPI1_CLK rising
(1) These parameters are in addition to the general timings for SPI slave modes (Table 6-58 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Table 6-63. Additional
(1)
SPI1 Slave Timings, 4-Pin Chip Select Option
(2) (3)
NO. MIN MAX UNIT
Required delay from SPI1_SCS asserted at slave to first25 t
d(SCSL_SPC)S
P nsSPI1_CLK edge at slave.
Polarity = 0, Phase = 0,
0.5t
c(SPC)M
+ 0from SPI1_CLK fallingPolarity = 0, Phase = 1,
0Required delay from final
from SPI1_CLK falling26 t
d(SPC_SCSH)S
SPI1_CLK edge before nsPolarity = 1, Phase = 0,SPI1_SCS is deasserted.
0.5t
c(SPC)M
+ 0from SPI1_CLK risingPolarity = 1, Phase = 1,
0from SPI1_CLK risingDelay from master asserting SPI1_SCS to slave driving27 t
ena(SCSL_SOMI)S
P + 9.7 nsSPI1_SOMI validDelay from master deasserting SPI1_SCS to slave 3-stating28 t
dis(SCSH_SOMI)S
P + 9.7 nsSPI1_SOMI
(1) These parameters are in addition to the general timings for SPI slave modes (Table 6-58 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.
Peripheral Information and Electrical Specifications158 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-64. Additional
(1)
SPI1 Slave Timings, 5-Pin Option
(2) (3)
NO. MIN MAX UNIT
Required delay from SPI1_SCS asserted at slave to first25 t
d(SCSL_SPC)S
P nsSPI1_CLK edge at slave.
Polarity = 0, Phase = 0,
0.5t
c(SPC)M
+ 0from SPI1_CLK fallingPolarity = 0, Phase = 1,
0Required delay from final
from SPI1_CLK falling26 t
d(SPC_SCSH)S
SPI1_CLK edge before nsPolarity = 1, Phase = 0,SPI1_SCS is deasserted.
0.5t
c(SPC)M
+ 0from SPI1_CLK risingPolarity = 1, Phase = 1,
0from SPI1_CLK risingDelay from master asserting SPI1_SCS to slave driving27 t
ena(SCSL_SOMI)S
P + 9.7 nsSPI1_SOMI validDelay from master deasserting SPI1_SCS to slave 3-stating28 t
dis(SCSH_SOMI)S
P + 9.7 nsSPI1_SOMI
Delay from master deasserting SPI1_SCS to slave driving29 t
ena(SCSL_ENA)S
9.7 nsSPI1_ENA valid
Polarity = 0, Phase = 0,
2.5 P + 9.7from SPI1_CLK fallingPolarity = 0, Phase = 1,Delay from final clock receive
2.5 P + 9.7from SPI1_CLK risingedge on SPI1_CLK to slave30 t
dis(SPC_ENA)S
ns3-stating or driving high
Polarity = 1, Phase = 0,
2.5 P + 9.7SPI1_ENA.
(4)
from SPI1_CLK risingPolarity = 1, Phase = 1,
2.5 P + 9.7from SPI1_CLK falling
(1) These parameters are in addition to the general timings for SPI slave modes (Table 6-58 ).(2) P = SYSCLK2 period(3) Figure shows only Polarity = 0, Phase = 0 as an example. Table gives parameters for all four slave clocking modes.(4) SPI1_ENA is driven low after the transmission completes if the SPIINT0.ENABLE_HIGHZ bit is programmed to 0. Otherwise it istri-stated. If tri-stated, an external pullup resistor should be used to provide a valid level to the master. This option is useful when tyingseveral SPI slave devices to a single master.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 159
PRODUCT PREVIEW
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
6
6
7
7
7
7
8
8
8
8
32
6
1
4
4
4
45
5
56
MASTER MODE
POLARITY = 0 PHASE = 0
MASTER MODE
POLARITY = 0 PHASE = 1
MASTER MODE
POLARITY = 1 PHASE = 0
MASTER MODE
POLARITY = 1 PHASE = 1
5
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-37. SPI Timings—Master Mode
160 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1) SO(n−1) SO(n)
14
14
15
15
15
15
16
16
16
16
1110
14
9
12
12
12
12
13
13
13
13
14
SLAVE MODE
POLARITY = 0 PHASE = 0
SLAVE MODE
POLARITY = 0 PHASE = 1
SLAVE MODE
POLARITY = 1 PHASE = 0
SLAVE MODE
POLARITY = 1 PHASE = 1
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-38. SPI Timings—Slave Mode
Submit Documentation Feedback Peripheral Information and Electrical Specifications 161
PRODUCT PREVIEW
MASTER MODE 4 PIN WITH CHIP SELECT
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_ENA
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_SCS
SPIx_CLK
SPIx_SIMO
SPIx_SOMI
SPIx_ENA
SPIx_SCS
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0) MO(1) MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
MO(0)
MO(1)
MO(n−1) MO(n)
MI(0) MI(1) MI(n−1) MI(n)
17
19
21
22
23
20
18
20
18
MASTER MODE 4 PIN WITH ENABLE
MASTER MODE 5 PIN
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
DESEL(A) DESEL(A)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-39. SPI Timings—Master Mode (4-Pin and 5-Pin)
162 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
27
SPIx_CLK
SPIx_SOMI
SPIx_SIMO
SPIx_ENA
SPIx_CLK
SPIx_SOMI
SPIx_SIMO
SPIx_SCS
SPIx_CLK
SPIx_SOMI
SPIx_SIMO
SPIx_ENA
SPIx_SCS
SO(0) SO(1) SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0) SO(1)
SO(n−1)
SO(n)
SI(0) SI(1) SI(n−1) SI(n)
SO(0)
SO(1)
SO(n−1) SO(n)
SI(0) SI(1) SI(n−1) SI(n)
24
26
28
26
30
28
25
25
27
29
SLAVE MODE 4 PIN WITH ENABLE
SLAVE MODE 4 PIN WITH CHIP SELECT
SLAVE MODE 5 PIN
DESEL(A) DESEL(A)
A. DESELECTED IS PROGRAMMABLE EITHER HIGH OR
3−STATE (REQUIRES EXTERNAL PULLUP)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-40. SPI Timings—Slave Mode (4-Pin and 5-Pin)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 163
PRODUCT PREVIEW
6.17 ECAP Peripheral Registers Description(s)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The OMAP-L137 device contains up to three enhanced capture (eCAP) modules. Figure 6-41 shows afunctional block diagram of a module. See the OMAP-L137 Applications Processor DSP PeripheralsOverview Reference Guide. Literature Number SPRUGA6 for more details.
Uses for ECAP include:Speed measurements of rotating machinery (e.g. toothed sprockets sensed via Hall sensors)Elapsed time measurements between position sensor triggersPeriod and duty cycle measurements of Pulse train signalsDecoding current or voltage amplitude derived from cuty cycle encoded current/voltage sensors
The ECAP module described in this specification includes the following features:32 bit time base4 event time-stamp registers (each 32 bits)Edge polarity selection for up to 4 sequenced time-stamp capture eventsInterrupt on either of the 4 eventsSingle shot capture of up to 4 event time-stampsContinuous mode capture of time-stamps in a 4 deep circular bufferAbsolute time-stamp captureDifference mode time-stamp captureAll the above resources are dedicated to a single input pin
The eCAP modules are clocked at the SYSCLK2 rate.
The clock enable bits (ECAP1/2/3/4ENCLK) in the PCLKCR1 register are used to turn off the eCAPmodules individually (for low power operation). Upon reset, ECAP1ENCLK, ECAP2ENCLK,ECAP3ENCLK, and ECAP4EN CLK are set to low, indicating that the peripheral clock is off.
164 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
TSCTR
(counter−32 bit) RST
CAP1
(APRD active) LD
CAP2
(ACMP active) LD
CAP3
(APRD shadow) LD
CAP4
(ACMP shadow) LD
Continuous /
Oneshot
Capture Control
LD1
LD2
LD3
LD4
32
32
PRD [0−31]
CMP [0−31]
CTR [0−31]
eCAPx
Interrupt
Trigger
and
Flag
control
to PIE
CTR=CMP
32
32
32
32
32
ACMP
shadow Event
Pre-scale
CTRPHS
(phase register−32 bit)
SYNCOut
SYNCIn
Event
qualifier
Polarity
select
Polarity
select
Polarity
select
Polarity
select
CTR=PRD
CTR_OVF
4
PWM
compare
logic
CTR [0−31]
PRD [0−31]
CMP [0−31]
CTR=CMP
CTR=PRD
CTR_OVF
OVF
APWM mode
Delta−mode
SYNC
4
Capture events
CEVT[1:4]
APRD
shadow
32
32
MODE SELECT
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-41. eCAP Functional Block Diagram
Table 6-65 is the list of the ECAP registers.
Table 6-65. ECAPx Configuration Registers
ECAP0 ECAP1 ECAP2
REGISTER NAME DESCRIPTIONBYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01F0 6000 0x01F0 7000 0x01F0 8000 TSCTR Time-Stamp Counter0x01F0 6004 0x01F0 7004 0x01F0 8004 CTRPHS Counter Phase Offset Value Register0x01F0 6008 0x01F0 7008 0x01F0 8008 CAP1 Capture 1 Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 165
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-65. ECAPx Configuration Registers (continued)
ECAP0 ECAP1 ECAP2
REGISTER NAME DESCRIPTIONBYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01F0 600C 0x01F0 700C 0x01F0 800C CAP2 Capture 2 Register0x01F0 6010 0x01F0 7010 0x01F0 8010 CAP3 Capture 3 Register0x01F0 6014 0x01F0 7014 0x01F0 8014 CAP4 Capture 4 Register0x01F0 6028 0x01F0 7028 0x01F0 8028 ECCTL1 Capture Control Register 10x01F0 602A 0x01F0 702A 0x01F0 802A ECCTL2 Capture Control Register 20x01F0 602C 0x01F0 702C 0x01F0 802C ECEINT Capture Interrupt Enable Register0x01F0 602E 0x01F0 702E 0x01F0 802E ECFLG Capture Interrupt Flag Register0x01F0 6030 0x01F0 7030 0x01F0 8030 ECCLR Capture Interrupt Clear Register0x01F0 6032 0x01F0 7032 0x01F0 8032 ECFRC Capture Interrupt Force Register0x01F0 605C 0x01F0 705C 0x01F0 805C REVID Revision ID
Table 6-66 shows the eCAP timing requirement and Table 6-67 shows the eCAP switching characteristics.
Table 6-66. Enhanced Capture (eCAP) Timing Requirement
TEST CONDITIONS MIN MAX UNIT
t
w(CAP)
Capture input pulse width Asynchronous 2t
c(SCO)
cyclesSynchronous 2t
c(SCO)
cyclesWith input qualifier 1t
c(SCO)
+ t
w(IQSW)
cycles
Table 6-67. eCAP Switching Characteristics
PARAMETER TEST CONDITIONS MIN MAX UNIT
t
w(APWM)
Pulse duration, APWMx output high/low 20 ns
Peripheral Information and Electrical Specifications166 Submit Documentation Feedback
PRODUCT PREVIEW
6.18 EQEP Peripheral Registers Description(s)
QWDTMR
QWDPRD
16
QWDOGUTIME
QUPRD
QUTMR
32
UTOUT
WDTOUT
Quadrature
capture unit
(QCAP)
QCPRDLAT
QCTMRLAT
16
QFLG
QEPSTS
QEPCTL
Registers
used by
multiple units
QCLK
QDIR
QI
QS
PHE
PCSOUT
Quadrature
decoder
(QDU)
QDECCTL
16
Position counter/
control unit
(PCCU)
QPOSLAT
QPOSSLAT
16
QPOSILAT
EQEPxAIN
EQEPxBIN
EQEPxIIN
EQEPxIOUT
EQEPxIOE
EQEPxSIN
EQEPxSOUT
EQEPxSOE
GPIO
MUX
EQEPxA/XCLK
EQEPxB/XDIR
EQEPxS
EQEPxI
QPOSCMP QEINT
QFRC
32
QCLR
QPOSCTL
1632
QPOSCNT
QPOSMAX
QPOSINIT
EQEPxINT
Enhanced QEP (eQEP) peripheral
System
control registers
QCTMR
QCPRD
1616
QCAPCTL
EQEPxENCLK
SYSCLK2
Data bus
To CPU
Interrupt Controller
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The OMAP-L137 device contains up to two enhanced quadrature encoder (eQEP) modules. See theOMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. Literature NumberSPRUGA6 . for more details.
Figure 6-42. eQEP Functional Block Diagram
Table 6-68 is the list of the EQEP registers.
Table 6-69 shows the eQEP timing requirement and Table 6-70 shows the eQEP switchingcharacteristics.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 167
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-68. EQEP Registers
EQEP0 EQEP1BYTE ADDRESS BYTE ADDRESS REGISTER NAME DESCRIPTION
0x01F0 9000 0x01F0 A000 QPOSCNT eQEP Position Counter0x01F0 9004 0x01F0 A004 QPOSINIT eQEP Initialization Position Count0x01F0 9008 0x01F0 A008 QPOSMAX eQEP Maximum Position Count0x01F0 900C 0x01F0 A00C QPOSCMP eQEP Position-compare0x01F0 9010 0x01F0 A010 QPOSILAT eQEP Index Position Latch0x01F0 9014 0x01F0 A014 QPOSSLAT eQEP Strobe Position Latch0x01F0 9018 0x01F0 A018 QPOSLAT eQEP Position Latch0x01F0 901C 0x01F0 A01C QUTMR eQEP Unit Timer0x01F0 9020 0x01F0 A020 QUPRD eQEP Unit Period Register0x01F0 9024 0x01F0 A024 QWDTMR eQEP Watchdog Timer0x01F0 9026 0x01F0 A026 QWDPRD eQEP Watchdog Period Register0x01F0 9028 0x01F0 A028 QDECCTL eQEP Decoder Control Register0x01F0 902A 0x01F0 A02A QEPCTL eQEP Control Register0x01F0 902C 0x01F0 A02C QCAPCTL eQEP Capture Control Register0x01F0 902E 0x01F0 A02E QPOSCTL eQEP Position-compare Control Register0x01F0 9030 0x01F0 A030 QEINT eQEP Interrupt Enable Register0x01F0 9032 0x01F0 A032 QFLG eQEP Interrupt Flag Register0x01F0 9034 0x01F0 A034 QCLR eQEP Interrupt Clear Register0x01F0 9036 0x01F0 A036 QFRC eQEP Interrupt Force Register0x01F0 9038 0x01F0 A038 QEPSTS eQEP Status Register0x01F0 903A 0x01F0 A03A QCTMR eQEP Capture Timer0x01F0 903C 0x01F0 A03C QCPRD eQEP Capture Period Register0x01F0 903E 0x01F0 A03E QCTMRLAT eQEP Capture Timer Latch0x01F0 9040 0x01F0 A040 QCPRDLAT eQEP Capture Period Latch0x01F0 905C 0x01F0 A05C REVID eQEP Revision ID
Table 6-69. Enhanced Quadrature Encoder Pulse (eQEP) Timing Requirements
TEST CONDITIONS MIN MAX UNIT
t
w(QEPP)
QEP input period Asynchronous/synchronous 2t
c(SCO)
cyclesWith input qualifier 2(1t
c(SCO)
+ t
w(IQSW)
) cyclest
w(INDEXH)
QEP Index Input High time Asynchronous/synchronous 2t
c(SCO)
cyclesWith input qualifier 2t
c(SCO)
+t
w(IQSW)
cyclest
w(INDEXL)
QEP Index Input Low time Asynchronous/synchronous 2t
c(SCO)
cyclesWith input qualifier 2t
c(SCO)
+ t
w(IQSW)
cyclest
w(STROBH)
QEP Strobe High time Asynchronous/synchronous 2t
c(SCO)
cyclesWith input qualifier 2t
c(SCO)
+ t
w(IQSW)
cyclest
w(STROBL)
QEP Strobe Input Low time Asynchronous/synchronous 2t
c(SCO)
cyclesWith input qualifier 2t
c(SCO)
+t
w(IQSW)
cycles
Table 6-70. eQEP Switching Characteristics
PARAMETER TEST CONDITIONS MIN MAX UNIT
t
d(CNTR)xin
Delay time, external clock to counter increment 4t
c(SCO)
cyclest
d(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output 6t
c(SCO)
cycles
Peripheral Information and Electrical Specifications168 Submit Documentation Feedback
PRODUCT PREVIEW
6.19 eHRPWM
TZ
Peripheral Bus
ePWM1 module
ePWM2 module
ePWMx module
EPWM1SYNCI
EPWM2SYNCI
EPWM2SYNCO
EPWMxSYNCI
EPWMxSYNCO
GPIO
MUX
EPWM1SYNCI
EPWM1SYNCO
EPWMxA
EPWMxB
EPWM2A
EPWM2B
EPWM1A
EPWM1B
EPWM1INT
EPWM2INT
EPWMxINT
to eCAP1
module
(sync in)
TZ
TZ
.
EPWM1SYNCO
Interrupt
Controllers
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The OMAP-L137 device contains up to three enhanced PWM Modules (eHRPWM). Figure 6-43 shows ablock diagram of multiple eHRPWM modules. Figure 4-4 shows the signal interconnections with theeHRPWM. See the OMAP-L137 Applications Processor DSP Peripherals Overview Reference Guide. Literature Number SPRUGA6 for more details.
Figure 6-43. Multiple PWM Modules in a OMAP-L137 System
Submit Documentation Feedback Peripheral Information and Electrical Specifications 169
PRODUCT PREVIEW
CTR=PRD
TBPRD shadow (16)
TBPRD active (16)
Counter
up/down
(16 bit)
TBCNT
active (16)
TBCTL[CNTLDE]
TBCTL[SWFSYNC]
(software forced sync)
EPWMxSYNCI
CTR=ZERO
CTR_Dir
CTR=CMPB
Disabled
Sync
in/out
select
Mux
TBCTL[SYNCOSEL]
EPWMxSYNCO
TBPHS active (24)
16 8TBPHSHR (8)
Phase
control
Time−base (TB)
CTR=CMPA
CMPA active (24)
16
CMPA shadow (24)
Action
qualifier
(AQ)
8
16
Counter compare (CC)
CMPB active (16)
CTR=CMPB
CMPB shadow (16)
CMPAHR (8)
EPWMA
EPWMB
Dead
band
(DB) (PC)
chopper
PWM zone
(TZ)
Trip
CTR = ZERO
EPWMxA
EPWMxB
EPWMxTZINT
TZ
HiRes PWM (HRPWM)
CTR = PRD
CTR = ZERO
CTR = CMPB
CTR = CMPA
CTR_Dir
Event
trigger
and
interrupt
(ET)
EPWMxINT
CTR=ZERO
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-44. eHRPWM Sub-Modules Showing Critical Internal Signal Interconnections
Table 6-71. eHRPWM Module Control and Status Registers Grouped by Submodule
eHRPWM1 eHRPWM2 eHRPWM3 Size ShadBYTE ADDRESS BYTE ADDRESS BYTE ADDRESS Acronym ( ×16) ow Register Description
Time-Base Submodule Registers
0x01F0 0000 0x01F0 2000 0x01F0 4000 TBCTL 1 No Time-Base Control Register0x01F0 0002 0x01F0 2002 0x01F0 4002 TBSTS 1 No Time-Base Status Register0x01F0 0004 0x01F0 2004 0x01F0 4004 TBPHSHR 1 No Extension for HRPWM Phase Register(1)
0x01F0 0006 0x01F0 2006 0x01F0 4006 TBPHS 1 No Time-Base Phase Register0x01F0 0008 0x01F0 2008 0x01F0 4008 TBCNT 1 No Time-Base Counter Register0x01F0 000A 0x01F0 200A 0x01F0 400A TBPRD 1 Yes Time-Base Period Register
Counter-Compare Submodule Registers
0x01F0 000E 0x01F0 200E 0x01F0 400E CMPCTL 1 No Counter-Compare Control Register0x01F0 0010 0x01F0 2010 0x01F0 4010 CMPAHR 1 No Extension for HRPWMCounter-Compare A Register
(1)
0x01F0 0012 0x01F0 2012 0x01F0 4012 CMPA 1 Yes Counter-Compare A Register0x01F0 0014 0x01F0 2014 0x01F0 4014 CMPB 1 Yes Counter-Compare B Register
(1) These registers are only available on eHRPWM instances that include the high-resolution PWM (HRPWM) extension; otherwise, theselocations are reserved.
Peripheral Information and Electrical Specifications170 Submit Documentation Feedback
PRODUCT PREVIEW
6.20 Enhanced Pulse Width Modulator (eHRPWM) Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-71. eHRPWM Module Control and Status Registers Grouped by Submodule (continued)
eHRPWM1 eHRPWM2 eHRPWM3 Size ShadBYTE ADDRESS BYTE ADDRESS BYTE ADDRESS Acronym ( ×16) ow Register Description
Action-Qualifier Submodule Registers
0x01F0 0016 0x01F0 2016 0x01F0 4016 AQCTLA 1 No Action-Qualifier Control Register forOutput A (eHRPWMxA)0x01F0 0018 0x01F0 2018 0x01F0 4018 AQCTLB 1 No Action-Qualifier Control Register forOutput B (eHRPWMxB)0x01F0 001A 0x01F0 201A 0x01F0 401A AQSFRC 1 No Action-Qualifier Software Force Register0x01F0 001C 0x01F0 201C 0x01F0 401C AQCSFRC 1 Yes Action-Qualifier Continuous S/W ForceRegister Set
Dead-Band Generator Submodule Registers
0x01F0 001E 0x01F0 201E 0x01F0 401E DBCTL 1 No Dead-Band Generator Control Register0x01F0 0020 0x01F0 2020 0x01F0 4020 DBRED 1 No Dead-Band Generator Rising EdgeDelay Count Register0x01F0 0022 0x01F0 2022 0x01F0 4022 DBFED 1 No Dead-Band Generator Falling EdgeDelay Count Register
PWM-Chopper Submodule Registers
0x01F0 003C 0x01F0 203C 0x01F0 403C PCCTL 1 No PWM-Chopper Control Register
Trip-Zone Submodule Registers
0x01F0 0024 0x01F0 2024 0x01F0 4024 TZSEL 1 No Trip-Zone Select Register0x01F0 0028 0x01F0 2028 0x01F0 4028 TZCTL 1 No Trip-Zone Control Register0x01F0 002A 0x01F0 202A 0x01F0 402A TZEINT 1 No Trip-Zone Enable Interrupt Register0x01F0 002C 0x01F0 202C 0x01F0 402C TZFLG 1 No Trip-Zone Flag Register0x01F0 002E 0x01F0 202E 0x01F0 402E TZCLR 1 No Trip-Zone Clear Register0x01F0 0030 0x01F0 2030 0x01F0 4030 TZFRC 1 No Trip-Zone Force Register
Event-Trigger Submodule Registers
0x01F0 0032 0x01F0 2032 0x01F0 4032 ETSEL 1 No Event-Trigger Selection Register0x01F0 0034 0x01F0 2034 0x01F0 4034 ETPS 1 No Event-Trigger Pre-Scale Register0x01F0 0036 0x01F0 2036 0x01F0 4036 ETFLG 1 No Event-Trigger Flag Register0x01F0 0038 0x01F0 2038 0x01F0 4038 ETCLR 1 No Event-Trigger Clear Register0x01F0 003A 0x01F0 203A 0x01F0 403A ETFRC 1 No Event-Trigger Force Register
High-Resolution PWM (HRPWM) Submodule Registers
0x01F0 1020 0x01F0 3020 0x01F0 5020 HRCNFG 1 No HRPWM Configuration Register
(1)
PWM refers to PWM outputs on eHRPWM1-6. Table 6-72 shows the PWM timing requirements andTable 6-73 , switching characteristics.
Table 6-72. eHRPWM Timing Requirements
TEST CONDITIONS MIN MAX UNIT
t
w(SYCIN)
Sync input pulse width Asynchronous 2t
c(SCO)
cyclesSynchronous 2t
c(SCO)
cyclesWith input qualifier 1t
c(SCO)
+ t
w(IQSW)
cycles
Table 6-73. eHRPWM Switching Characteristics
PARAMETER TEST CONDITIONS MIN MAX UNIT
t
w(PWM)
Pulse duration, PWMx output high/low 20 nst
w(SYNCOUT)
Sync output pulse width 8t
c(SCO)
cyclest
d(PWM)tza
Delay time, trip input active to PWM forced high no pin load 25 nsDelay time, trip input active to PWM forced low
Submit Documentation Feedback Peripheral Information and Electrical Specifications 171
PRODUCT PREVIEW
6.21 Trip-Zone Input Timing
PWM(A)
TZ
tw(TZ)
td(TZ-PWM)HZ
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-73. eHRPWM Switching Characteristics (continued)
PARAMETER TEST CONDITIONS MIN MAX UNIT
t
d(TZ-PWM)HZ
Delay time, trip input active to PWM Hi-Z 20 ns
A. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWMrecovery software.
Figure 6-45. PWM Hi-Z Characteristics
Table 6-74. Trip-Zone input Timing Requirements
MIN MAX UNIT
t
w(TZ)
Pulse duration, TZx input low Asynchronous 1t
c(SCO)
cyclesSynchronous 2t
c(SCO)
cyclesWith input qualifier 1t
c(SCO)
+ t
w(IQSW)
cycles
Table 6-75 shows the high-resolution PWM switching characteristics.
Table 6-75. High Resolution PWM Characteristics at SYSCLKOUT = (60 - 100 MHz)
MIN TYP MAX UNIT
Micro Edge Positioning (MEP) step size
(1)
150 310 ps
(1) Maximum MEP step size is based on worst-case process, maximum temperature and maximum voltage. MEP step size will increasewith low voltage and high temperature and decrease with voltage and cold temperature.Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TIsoftware libraries for details of using SFO function in end applications. SFO functions help to estimate the number of MEP steps perSYSCLKOUT period dynamically while the HRPWM is in operation.
Peripheral Information and Electrical Specifications172 Submit Documentation Feedback
PRODUCT PREVIEW
6.22 LCD Controller
6.22.1 LCD Interface Display Driver (LIDD Mode)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-76 lists the LCD Controller registers
Table 6-76. LCD Controller (LCDC) Registers
Address Offset Acronym Register Description
0x01E1 3000 REVID LCD Revision Identification Register0x01E1 3004 LCD_CTRL LCD Control Register0x01E1 3008 LCD_STAT LCD Status Register0x01E1 300C LIDD_CTRL LCD LIDD Control Register0x01E1 3010 LIDD_CS0_CONF LCD LIDD CS0 Configuration Register0x01E1 3014 LIDD_CS0_ADDR LCD LIDD CS0 Address Read/Write Register0x01E1 3018 LIDD_CS0_DATA LCD LIDD CS0 Data Read/Write Register0x01E1 301C LIDD_CS1_CONF LCD LIDD CS1 Configuration Register0x01E1 3020 LIDD_CS1_ADDR LCD LIDD CS1 Address Read/Write Register0x01E1 3024 LIDD_CS1_DATA LCD LIDD CS1 Data Read/Write Register0x01E1 3028 RASTER_CTRL LCD Raster Control Register0x01E1 302C RASTER_TIMING_0 LCD Raster Timing 0 Register0x01E1 3030 RASTER_TIMING_1 LCD Raster Timing 1 Register0x01E1 3034 RASTER_TIMING_2 LCD Raster Timing 2 Register0x01E1 3038 RASTER_SUBPANEL LCD Raster Subpanel Display Register0x01E1 3040 LCDDMA_CTRL LCD DMA Control Register0x01E1 3044 LCDDMA_FB0_BASE LCD DMA Frame Buffer 0 Base Address Register0x01E1 3048 LCDDMA_FB0_CEILING LCD DMA Frame Buffer 0 Ceiling Address Register0x01E1 304C LCDDMA_FB1_BASE LCD DMA Frame Buffer 1 Base Address Register0x01E1 3050 LCDDMA_FB1_CEILING LCD DMA Frame Buffer 1 Ceiling Address Register
Table 6-77. LCD LIDD Mode Timing Requirements
(1)
NO PARAMETER MIN MAX UNIT
Setup time, LCD_D[15:0] valid16 t
su(LCD_D)
7 nsbefore LCD_MCLK Hold time, LCD_D[15:0] valid after17 t
h(LCD_D)
0 nsLCD_MCLK
(1) Over operating free-air temperature range (unless otherwise noted)
Table 6-78. LCD LIDD Mode Timing Characteristics
NO PARAMETER MIN MAX UNIT
Delay time, LCD_MCLK to4 t
d(LCD_D_V)
0 7 nsLCD_D[15:0] valid (write)Delay time, LCD_MCLK to5 t
d(LCD_D_I)
0 7 nsLCD_D[15:0] invalid (write)Delay time, LCD_MCLK to6 t
d(LCD_E_A
) 0 7 nsLCD_AC_ENB_CS
Delay time, LCD_MCLK to7 t
d(LCD_E_I)
0 7 nsLCD_AC_ENB_CS
Delay time, LCD_MCLK to8 t
d(LCD_A_A)
0 7 nsLCD_VSYNC Delay time, LCD_MCLK to9 t
d(LCD_A_I)
0 7 nsLCD_VSYNC
Submit Documentation Feedback Peripheral Information and Electrical Specifications 173
PRODUCT PREVIEW
LCD_AC_ENB_CS
LCD_PCLK
23
1W_SU
(0 to 31) W_STROBE
(1 to 63) W_HOLD
(1 to 15)
CS_DELAY
(0 to 3) R_SU
(0 to 31) R_STROBE
(1 to 63)
R_HOLD
(1 to 15) CS_DELAY
(0 to 3)
LCD_MCLK
4
Write Data
5 14 16 17 15
Data[7:0]
Not Used
8 9
10 11
12 13 12 13
RS
R/W
E0
E1
LCD_D[15:0]
LCD_VSYNC
LCD_HSYNC
Read Status
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-78. LCD LIDD Mode Timing Characteristics (continued)
NO PARAMETER MIN MAX UNIT
Delay time, LCD_MCLK to10 t
d(LCD_W_A)
0 7 nsLCD_HSYNC Delay time, LCD_MCLK to11 t
d(LCD_W_I)
0 7 nsLCD_HSYNC Delay time, LCD_MCLK to12 t
d(LCD_STRB_A)
0 7 nsLCD_PCLK Delay time, LCD_MCLK to13 t
d(LCD_STRB_I)
0 7 nsLCD_PCLK Delay time, LCD_MCLK to14 t
d(LCD_D_Z)
0 7 nsLCD_D[15:0] in 3-stateDelay time, LCD_MCLK to 1515 t
d(Z_LCD_D)
td(Z_LCD_D) 3-state) LCD_D[15:0] 0 7 ns(valid from 3-state)
Figure 6-46. Character Display HD44780 Write
174 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
LCD_AC_ENB_CS
LCD_PCLK
LCD_VSYNC
LCD_HSYNC
R_SU
R_STROBE R_HOLD
(0–31)
(1–63) (1–5) CS_DELAY
(0−3)
Not
Used
RS
R/W
LCD_MCLK
1
2 3
W_SU W_STROBE
W_HOLD
(0–31) (1–63)
(1–15)
CS_DELAY
(0 − 3)
89
12 13
10 11
Not
Used
LCD_D[7:0]
14 17
16
Read
Data
15 45
E0
E1
12 13
Data[7:0]
Write Instruction
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-47. Character Display HD44780 Read
Submit Documentation Feedback Peripheral Information and Electrical Specifications 175
PRODUCT PREVIEW
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_MCLK
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
R/W
E
Clock
1
23
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
545
6767
89
12 13
Write Address Write Data
12 13
10 11 10 11
Data[15:0]
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-48. Micro-Interface Graphic Display 6800 Write
176 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_MCLK
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
R/W
E
Clock
1
23
R_SU
R_STROBE R_HOLD
(0−31)
(1−63 (1−15)
CS_DELAY
(0−3)
514 15
6767
89
12 13
17
16
Write Address
Read
Data
10 11
1213
Data[15:0]
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-49. Micro-Interface Graphic Display 6800 Read
Submit Documentation Feedback Peripheral Information and Electrical Specifications 177
PRODUCT PREVIEW
Read
Data
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_MCLK
LCD_PCLK
R_SU
R_STROBE R_HOLD
(0−31)
(1−63) (1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
R/W
E
Clock
1
23
R_STROBE R_HOLD
(1−63) (1−15)
CS_DELAY
(0−3)
14 15
6767
89
12 13
17
16
14 17
16 15
12 13
Data[15:0]
R_SU
(0−31)
Read
Status
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-50. Micro-Interface Graphic Display 6800 Status
Peripheral Information and Electrical Specifications178 Submit Documentation Feedback
PRODUCT PREVIEW
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_MCLK
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
DATA[15:0]
CS0
CS1
A0
WR
RD
Clock
1
23
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0 − 3)
545
6767
89
10 11
Write Address Write Data
10 11
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-51. Micro-Interface Graphic Display 8080 Write
Submit Documentation Feedback Peripheral Information and Electrical Specifications 179
PRODUCT PREVIEW
LCD_D[15:0]
LCD_AC_ENB_CS
(async mode)
LCD_VSYNC
LCD_HSYNC
LCD_MCLK
LCD_PCLK
4
W_SU W_STROBE
W_HOLD
(0−31) (1−63)
(1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
WR
RD
Clock
1
2 3
R_SU
R_STROBE R_HOLD
(0−31)
(1−63) (1−15)
CS_DELAY
(0−3)
514 15
6 7 6 7
89
12 13
1716
Read
Data
10 11
Data[15:0]
Write Address
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-52. Micro-Interface Graphic Display 8080 Read
Peripheral Information and Electrical Specifications180 Submit Documentation Feedback
PRODUCT PREVIEW
LCD_D[15:0]
LCD_AC_ENB_CS
LCD_VSYNC
LCD_HSYNC
LCD_MCLK
LCD_PCLK
R_SU
R_STROBE R_HOLD
(0−31)
(1−63) (1−15)
CS_DELAY
(0−3)
CS0
CS1
A0
WR
RD
Clock
1
23
R_STROBE R_HOLD
(1−63) (1−15)
CS_DELAY
(0−3)
14 15
676
8
12 13
1716
Read Status
14 17
16
Read Data
15
12 13
Data[15:0]
7
9
R_SU
(0−31)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-53. Micro-Interface Graphic Display 8080 Status
Submit Documentation Feedback Peripheral Information and Electrical Specifications 181
PRODUCT PREVIEW
6.22.2 LCD Raster Mode
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-79. LCD Raster Mode TimingSee Figure 6-54 through Figure 6-58
NO. PARAMETER MIN MAX UNIT
f
clock(PIXEL_CLK)
Clock frequency, pixel clock F/2
(1)
MHz1 t
c(PIXEL_CLK)
Cycle time, pixel clock 23.81 ns2 t
w(PIXEL_CLK_H)
Pulse duration, pixel clock high 10 ns3 t
w(PIXEL_CLK_L)
Pulse duration, pixel clock low 10 ns4 t
d(LCD_D_V)
Delay time, LCD_PCLK to LCD_D[15:0] valid (write) 0 12 ns5 t
d(LCD_D_IV)
Delay time, LCD_PCLK to LCD_D[15:0] invalid (write) 0 12 ns6 t
d( LCD_AC_ENB_CS_A)
Delay time, LCD_PCLK to LCD_AC_ENB_CS0 12 ns7 t
d( LCD_AC_ENB_CS_I)
Delay time, LCD_PCLK to LCD_AC_ENB_CS0 12 ns8 t
d(LCD_VSYNC_A)
Delay time, LCD_PCLK to LCD_VSYNC 0 12 ns9 t
d(LCD_VSYNC_I)
Delay time, LCD_PCLK to LCD_VSYNC 0 12 ns10 t
d(LCD_HSYNC_A)
Delay time, LCD_PCLK to LCD_HSYNC 0 12 ns11 t
d(LCD_HSYNC_I)
Delay time, LCD_PCLK to LCD_HSYNC 0 12 ns
(1) F = frequency of LCD_PCLK in ns
Frame-to-frame timing is derived through the following parameters in the LCD (RASTER_TIMING_1)register:
Vertical front porch (VFP)Vertical sync pulse width (VSW)Vertical back porch (VBP)Lines per panel (LPP)
Line-to-line timing is derived through the following parameters in the LCD (RASTER_TIMING_0) register:Horizontal front porch (HFP)Horizontal sync pulse width (HSW)Horizontal back porch (HBP)Pixels per panel (PPL)
LCD_AC_ENB_CS timing is derived through the following parameter in the LCD (RASTER_TIMING_2)register:
AC bias frequency (ACB)
The display format produced in raster mode is shown in Figure 6-54 . An entire frame is delivered one lineat a time. The first line delivered starts at data pixel (1, 1) and ends at data pixel (P, 1). The last linedelivered starts at data pixel (1, L) and ends at data pixel (P, L). The beginning of each new frame isdenoted by the activation of I/O signal LCD_VSYNC. The beginning of each new line is denoted by theactivation of I/O signal LCD_HSYNC.
182 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
LCD
1, 1 2, 1 3, 1
1, 2 2, 2
1, 3
P, 1
P−1,
1
P−2,
P, 2
P−1,
2
P, 3
1, L
1,
L−1
1,
L−2
3, L2, L
2,
L−1
P, L
P−1,
L−1
P,
L−1
P−1,
L
P,
L−2
P−2,
L
Data Pixels (From 1 to P)
Data Lines (From 1 to L)
1
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-54. LCD Raster-Mode Display Format
Submit Documentation Feedback Peripheral Information and Electrical Specifications 183
PRODUCT PREVIEW
CLK
LCD_HSYNC Hsync
LCD_VSYNC
(1 to 64)
VSW (1 to 64)
VSW
(0 to 255)
VFP
(1 to 1024)
Frame Time ~ 70Hz
LPP
(0 to 255)
LCD_D[15:0]
1, 1
P, 1 1, 2
P, 2 1, L
P, L
1, L−1
P, L−1
Line
Time
LCD_HSYNC Hsync
10 11
LCD_PCLK
LCD_D[15:0] 1, 1 2, 2 P, 2
P, 1
2, 1 1, 2
PLL
16 y (1 to 1024) HBP
(1 to 256)
Line 1
(1 to 256)
HFP
(1 to 64)
HSW PLL
16 y (1 to 1024)
Line 2
Vsync
Data
Data
Active TFT
ACB
(0 to 255)
LCD_AC_ENB_CS Enable
ACB
(0 to 255)
VBP
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-55. LCD Raster-Mode Active
184 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
LCD_HSYNC LP
LCD_VSYNC
VSW = 1
(1 to 1024)
Frame Time ~ 70Hz
LPP
LCD_D[7:0]
1, L−2
P, L−2
1, L−4
P, L−4
Line
Time
LCD_HSYNC LP
10 11
LCD_PCLK
LCD_D[7:0] 1, 5 2, 6 P, 6
P, 52, 5 1, 6
PPL
16 y (1 to 1024)
HBP
(1 to 256)
Line 5
HFP
(1 to 64)
HSW PPL
16 y (1 to 2024)
Line 6
1, 1:
P, 1 1, 5:
P, 5
1, L−1
P, L−1
1, L
1, L−1
P, L−1 1, L−3
P, L−3
(1 to 64) VSW = 1
(1 to 64)
VFP = 0
VBP = 0 VFP = 0
VBP = 0
FP
Data
CP
Data
Passive STN
LCD_AC_ENB_CS M
ACB
(0 to 255)
ACB
(0 to 255)
1, 4:
P, 4
1, 3:
P, 3
1, 2:
P, 2
1, L:
P, L 1, 6:
P, 6 1, 2
P, 2
1, 1
P, 1
1, L
P, L
(1 to 256)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-56. LCD Raster-Mode Passive
Submit Documentation Feedback Peripheral Information and Electrical Specifications 185
PRODUCT PREVIEW
LCD_HSYNC
LCD_PCLK
(active mode)
LCD_D[15:0]
(active mode) 1, L P, L
2, L
PPL
16 y (1 to 1024) HBP
(1 to 256
Line L
(1 to 256)
HFP (1 to 64)
HSW PPL
16 y (1 to 256)
Line 1 (Passive Only)
LCD_VSYNC
LCD_PCLK
(passive mode)
LCD_AC_ENB_CS
LCD_D[7:0]
(passive mode) 1, L 2, 1 P, 1P, L
2, L 1, 1
10 11
8
6
4
4
5
5
1
2 3
1
2 3
VSW = 1
VFP = 0
VBP = 0
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-57. LCD Raster-Mode Control Signal Activation
186 Peripheral Information and Electrical Specifications Submit Documentation Feedback
PRODUCT PREVIEW
LCD_HSYNC
LCD_PCLK
(active mode)
LCD_D[15:0]
(active mode) 1, L P, L
2, L
PPL
16 y (1 to 1024) HBP
(1 to 256
Line L
(1 to 256)
HFP (1 to 64)
HSW PPL
16 y (1 to 256)
Line 1 (Passive Only)
LCD_VSYNC
LCD_PCLK
(passive mode)
LCD_AC_ENB_CS
LCD_D[7:0]
(passive mode) 1, L 2, 1 P, 1P, L
2, L 1, 1
10 11
8
6
4
4
5
5
1
2 3
1
2 3
VSW = 1
VFP = 0
VBP = 0
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-58. LCD Raster-Mode Control Signal Deactivation
Submit Documentation Feedback Peripheral Information and Electrical Specifications 187
PRODUCT PREVIEW
6.23 Timers
6.23.1 Timer Electrical Data/Timing
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The timers support the following features:Configurable as single 64-bit timer or two 32-bit timersPeriod timeouts generate interrupts, DMA events or external pin events8 32-bit compare registersCompare matches generate interrupt eventsCapture capability64-bit Watchdog capability (Timer64P1 only)Table 6-80 lists the timer registers.
Table 6-80. Timer Registers
Timer64P 0 Timer64P 1 Acronym Register Description
0x01C2 0000 0x01C2 1000 REV Revision Register0x01C2 0004 0x01C2 1004 EMUMGT Emulation Management Register0x01C2 0008 0x01C2 1008 GPINTGPEN GPIO Interrupt and GPIO Enable Register0x01C2 000C 0x01C2 100C GPDATGPDIR GPIO Data and GPIO Direction Register0x01C2 0010 0x01C2 1010 TIM12 Timer Counter Register 120x01C2 0014 0x01C2 1014 TIM34 Timer Counter Register 340x01C2 0018 0x01C2 1018 PRD12 Timer Period Register 120x01C2 001C 0x01C2 101C PRD34 Timer Period Register 340x01C2 0020 0x01C2 1020 TCR Timer Control Register0x01C2 0024 0x01C2 1024 TGCR Timer Global Control Register0x01C2 0028 0x01C2 1028 WDTCR Watchdog Timer Control Register0x01C2 0034 0x01C2 1034 REL12 Timer Reload Register 120x01C2 0038 0x01C2 1038 REL34 Timer Reload Register 340x01C2 003C 0x01C2 103C CAP12 Timer Capture Register 120x01C2 0040 0x01C2 1040 CAP34 Timer Capture Register 340x01C2 0044 0x01C2 1044 INTCTLSTAT Timer Interrupt Control and Status Register0x01C2 0060 0x01C2 1060 CMP0 Compare Register 00x01C2 0064 0x01C2 1064 CMP1 Compare Register 10x01C2 0068 0x01C2 1068 CMP2 Compare Register 20x01C2 006C 0x01C2 106C CMP3 Compare Register 30x01C2 0070 0x01C2 1070 CMP4 Compare Register 40x01C2 0074 0x01C2 1074 CMP5 Compare Register 50x01C2 0078 0x01C2 1078 CMP6 Compare Register 60x01C2 007C 0x01C2 107C CMP7 Compare Register 7
Table 6-81. Timing Requirements for Timer Input
(1) (2)
(see Figure 6-59 )
NO. UNITMIN MAX
1 t
c(TM64Px_IN12)
Cycle time, TM64Px_IN12 4P ns2 t
w(TINPH)
Pulse duration, TM64Px_IN12 high 0.45C 0.55C ns3 t
w(TINPL)
Pulse duration, TM64Px_IN12 low 0.45C 0.55C ns4 t
t(TM64Px_IN12)
Transition time, TM64Px_IN12 0.05C ns
(1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.0 37 ns.(2) C = TM64P0_IN12 cycle time in ns. For example, when TM64Px_IN12 frequency is 27 MHz, use C = 37.0 37 ns
Peripheral Information and Electrical Specifications188 Submit Documentation Feedback
PRODUCT PREVIEW
1
2
4
43
TM64P0_IN12
TM64P0_OUT12
56
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-59. Timer Timing
Table 6-82. Switching Characteristics Over Recommended Operating Conditions for Timer Output
(1)
NO. UNITMIN MAX
5 t
w(TOUTH)
Pulse duration, TM64P0_OUT12 high 4P ns6 t
w(TOUTL)
Pulse duration, TM64P0_OUT12 low 4P ns
(1) P = OSCIN cycle time in ns. For example, when OSCIN frequency is 27 MHz, use P = 37.0 37 ns.
Figure 6-60. Timer Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 189
PRODUCT PREVIEW
6.24 Inter-Integrated Circuit Serial Ports (I2C0, I2C1)
6.24.1 I2C Device-Specific Information
Peripheral
Configuration
Bus
Noise
Filter
Noise
Filter
Clock Prescaler
I2CPSCx Prescaler
Register
Bit Clock Generator
I2CCLKHx Clock Divide
High Register
I2CCLKLx Clock Divide
Low Register
Control
I2CCOARx Own Address
Register
I2CSARx Slave Address
Register
I2CCMDRx Mode Register
I2CEMDRx Extended Mode
Register
I2CCNTx Data Count
Register
I2CPID1 Peripheral ID
Register 1
I2CPID2 Peripheral ID
Register 2
Transmit
I2CXSRx Transmit Shift
Register
I2CDXRx Transmit Buffer
Receive
I2CDRRx Receive Buffer
I2CRSRx Receive Shift
Register
I2Cx_SCL
I2Cx_SDA
Control
Interrupt/DMA
I2CIERx Interrupt Enable
Register
I2CSTRx Interrupt Status
Register
I2CSRCx Interrupt Source
Register
Control
I2CPFUNC Pin Function
Register
I2CPDIR Pin Direction
Register
I2CPDIN Pin Data In
Register
I2CPDOUT Pin Data Out
Register
I2CPDSET Pin Data Set
Register
I2CPDCLR Pin Data Clear
Register
Interrupt DMA
Requests
6.24.2 I2C Peripheral Registers Description(s)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Having two I2C modules on the OMAP-L137 simplifies system architecture, since one module may beused by the DSP to control local peripherals ICs (DACs, ADCs, etc.) while the other may be used tocommunicate with other controllers in a system or to implement a user interface. Figure 6-61 is blockdiagram of the OMAP-L137 I2C Module.
Each I2C port supports:Compatible with Philips® I2C Specification Revision 2.1 (January 2000)Fast Mode up to 400 Kbps (no fail-safe I/O buffers)Noise Filter to Remove Noise 50 ns or lessSeven- and Ten-Bit Device Addressing ModesMaster (Transmit/Receive) and Slave (Transmit/Receive) FunctionalityEvents: DMA, Interrupt, or PollingGeneral-Purpose I/O Capability if not used as I2C
Figure 6-61. I2C Module Block Diagram
Table 6-83 is the list of the I2C registers.
Peripheral Information and Electrical Specifications190 Submit Documentation Feedback
PRODUCT PREVIEW
6.24.3 I2C Electrical Data/Timing
6.24.3.1 Inter-Integrated Circuit (I2C) Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-83. Inter-Integrated Circuit (I2C) Registers
I2C0 I2C1 Acronym Register DescriptionBYTE ADDRESS BYTE ADDRESS
0x01C2 2000 0x01E2 8000 ICOAR I2C Own Address Register0x01C2 2004 0x01E2 8004 ICIMR I2C Interrupt Mask Register0x01C2 2008 0x01E2 8008 ICSTR I2C Interrupt Status Register0x01C2 200C 0x01E2 800C ICCLKL I2C Clock Low-Time Divider Register0x01C2 2010 0x01E2 8010 ICCLKH I2C Clock High-Time Divider Register0x01C2 2014 0x01E2 8014 ICCNT I2C Data Count Register0x01C2 2018 0x01E2 8018 ICDRR I2C Data Receive Register0x01C2 201C 0x01E2 801C ICSAR I2C Slave Address Register0x01C2 2020 0x01E2 8020 ICDXR I2C Data Transmit Register0x01C2 2024 0x01E2 8024 ICMDR I2C Mode Register0x01C2 2028 0x01E2 8028 ICIVR I2C Interrupt Vector Register0x01C2 202C 0x01E2 802C ICEMDR I2C Extended Mode Register0x01C2 2030 0x01E2 8030 ICPSC I2C Prescaler Register0x01C2 2034 0x01E2 8034 REVID1 I2C Revision Identification Register 10x01C2 2038 0x01E2 8038 REVID2 I2C Revision Identification Register 20x01C2 2048 0x01E2 8048 ICPFUNC I2C Pin Function Register0x01C2 204C 0x01E2 804C ICPDIR I2C Pin Direction Register0x01C2 2050 0x01E2 8050 ICPDIN I2C Pin Data In Register0x01C2 2054 0x01E2 8054 ICPDOUT I2C Pin Data Out Register0x01C2 2058 0x01E2 8058 ICPDSET I2C Pin Data Set Register0x01C2 205C 0x01E2 805C ICPDCLR I2C Pin Data Clear Register
Table 6-84 and Table 6-85 assume testing over recommended operating conditions (see Figure 6-62 andFigure 6-63 ).
Table 6-84. I2C Input Timing Requirements
NO. MIN MAX UNIT
Standard Mode 101 t
c(SCL)
Cycle time, I2Cx_SCL µsFast Mode 2.5Standard Mode 4.7Setup time, I2Cx_SCL high before I2Cx_SDA2 t
su(SCLH-SDAL)
µslow
Fast Mode 0.6Standard Mode 43 t
h(SCLL-SDAL)
Hold time, I2Cx_SCL low after I2Cx_SDA low µsFast Mode 0.6Standard Mode 4.74 t
w(SCLL)
Pulse duration, I2Cx_SCL low µsFast Mode 1.3Standard Mode 45 t
w(SCLH)
Pulse duration, I2Cx_SCL high µsFast Mode 0.6Standard Mode 2506 t
su(SDA-SCLH)
Setup time, I2Cx_SDA before I2Cx_SCL high nsFast Mode 100Standard Mode 07 t
h(SDA-SCLL)
Hold time, I2Cx_SDA after I2Cx_SCL low µsFast Mode 0 0.9Standard Mode 4.78 t
w(SDAH)
Pulse duration, I2Cx_SDA high µsFast Mode 1.3
Submit Documentation Feedback Peripheral Information and Electrical Specifications 191
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-84. I2C Input Timing Requirements (continued)
NO. MIN MAX UNIT
Standard Mode 10009 t
r(SDA)
Rise time, I2Cx_SDA nsFast Mode 20 + 0.1C
b
300Standard Mode 100010 t
r(SCL)
Rise time, I2Cx_SCL nsFast Mode 20 + 0.1C
b
300Standard Mode 30011 t
f(SDA)
Fall time, I2Cx_SDA nsFast Mode 20 + 0.1C
b
300Standard Mode 30012 t
f(SCL)
Fall time, I2Cx_SCL nsFast Mode 20 + 0.1C
b
300Standard Mode 4Setup time, I2Cx_SCL high before I2Cx_SDA13 t
su(SCLH-SDAH)
µshigh
Fast Mode 0.6Standard Mode N/A14 t
w(SP)
Pulse duration, spike (must be suppressed) nsFast Mode 0 50Standard Mode 40015 C
b
Capacitive load for each bus line pFFast Mode 400
Table 6-85. I2C Switching Characteristics
(1)
NO. PARAMETER MIN MAX UNIT
Standard Mode 1016 t
c(SCL)
Cycle time, I2Cx_SCL µsFast Mode 2.5Standard Mode 4.7Setup time, I2Cx_SCL high before I2Cx_SDA17 t
su(SCLH-SDAL)
µslow
Fast Mode 0.6Standard Mode 418 t
h(SDAL-SCLL)
Hold time, I2Cx_SCL low after I2Cx_SDA low µsFast Mode 0.6Standard Mode 4.719 t
w(SCLL)
Pulse duration, I2Cx_SCL low µsFast Mode 1.3Standard Mode 420 t
w(SCLH)
Pulse duration, I2Cx_SCL high µsFast Mode 0.6Standard Mode 250Setup time, I2Cx_SDA valid before I2Cx_SCL21 t
su(SDAV-SCLH)
nshigh
Fast Mode 100Standard Mode 022 t
h(SCLL-SDAV)
Hold time, I2Cx_SDA valid after I2Cx_SCL low µsFast Mode 0 0.9Standard Mode 4.723 t
w(SDAH)
Pulse duration, I2Cx_SDA high µsFast Mode 1.3Standard Mode 4Setup time, I2Cx_SCL high before I2Cx_SDA28 t
su(SCLH-SDAH)
µshigh
Fast Mode 0.6
(1) I2C must be configured correctly to meet the timings in Table 6-85 .
Peripheral Information and Electrical Specifications192 Submit Documentation Feedback
PRODUCT PREVIEW
10
84
3712
5
614
2
3
13
Stop Start Repeated
Start Stop
I2Cx_SDA
I2Cx_SCL
1
11 9
25
23 19
18 22 27
20
21
17
18
28
Stop Start Repeated
Start Stop
I2Cx_SDA
I2Cx_SCL
16
26 24
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Figure 6-62. I2C Receive Timings
Figure 6-63. I2C Transmit Timings
Submit Documentation Feedback Peripheral Information and Electrical Specifications 193
PRODUCT PREVIEW
6.25 Universal Asynchronous Receiver/Transmitter (UART)
6.25.1 UART Peripheral Registers Description(s)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
OMAP-L137 has 3 UART peripherals. Each UART has the following features:16-byte storage space for both the transmitter and receiver FIFOs1, 4, 8, or 14 byte selectable receiver FIFO trigger level for autoflow control and DMADMA signaling capability for both received and transmitted dataProgrammable auto-rts and auto-cts for autoflow controlProgrammable Baud Rate up to 3MBaudProgrammable Oversampling Options of x13 and x16Frequency pre-scale values from 1 to 65,535 to generate appropriate baud ratesPrioritized interruptsProgrammable serial data formats 5, 6, 7, or 8-bit characters Even, odd, or no parity bit generation and detection 1, 1.5, or 2 stop bit generationFalse start bit detectionLine break generation and detectionInternal diagnostic capabilities Loopback controls for communications link fault isolation Break, parity, overrun, and framing error simulationModem control functions (CTS, RTS) on UART0 only.
The UART registers are listed in Section 6.25.1
Table 6-86 is the list of UART registers.
Table 6-86. UART Registers
UART0 UART1 UART2 REGISTER NAME Register DescriptionBYTE ADDRESS BYTE ADDRESS BYTE ADDRESS
0x01C4 2000 0x01D0 C000 0x01D0 D000 RBR Receiver Buffer Register (read only)0x01C4 2000 0x01D0 C000 0x01D0 D000 THR Transmitter Holding Register (write only)0x01C4 2004 0x01D0 C004 0x01D0 D004 IER Interrupt Enable Register0x01C4 2008 0x01D0 C008 0x01D0 D008 IIR Interrupt Identification Register (read only)0x01C4 2008 0x01D0 C008 0x01D0 D008 FCR FIFO Control Register (write only)0x01C4 200C 0x01D0 C00C 0x01D0 D00C LCR Line Control Register0x01C4 2010 0x01D0 C010 0x01D0 D010 MCR Modem Control Register0x01C4 2014 0x01D0 C014 0x01D0 D014 LSR Line Status Register0x01C4 2020 0x01D0 C020 0x01D0 D020 DLL Divisor LSB Latch0x01C4 2024 0x01D0 C024 0x01D0 D024 DLH Divisor MSB Latch0x01C4 2028 0x01D0 C028 0x01D0 D028 REVID1 Revision Identification Register 10x01C4 2030 0x01D0 C030 0x01D0 D030 PWREMU_MGMT Power and Emulation Management Register0x01C4 2034 0x01D0 C034 0x01D0 D034 MDR Mode Definition Register
Peripheral Information and Electrical Specifications194 Submit Documentation Feedback
PRODUCT PREVIEW
6.25.2 UART Electrical Data/Timing
3
2
Start
Bit
Data Bits
UART_TXDn
UART_RXDn
5
Data Bits
Bit
Start
4
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-87. Timing Requirements for UARTx Receive
(1)
(see Figure 6-64 )
NO. UNITMIN MAX
4 t
w(URXDB)
Pulse duration, receive data bit (RXDn) 0.96U 1.05U ns5 t
w(URXSB)
Pulse duration, receive start bit 0.96U 1.05U ns
(1) U = UART baud time = 1/programmed baud rate.
Table 6-88. Switching Characteristics Over Recommended Operating Conditions for UARTx Transmit
(1)
(see Figure 6-64 )
NO. PARAMETER UNITMIN MAX
1 f
(baud)
Maximum programmable baud rate 3 MBaud2 t
w(UTXDB)
Pulse duration, transmit data bit (TXDn) U - 2 U + 2 ns3 t
w(UTXSB)
Pulse duration, transmit start bit U - 2 U + 2 ns
(1) U = UART baud time = 1/programmed baud rate.
Figure 6-64. UART Transmit/Receive Timing
Submit Documentation Feedback Peripheral Information and Electrical Specifications 195
PRODUCT PREVIEW
6.26 USB1 Host Controller Registers (USB1.1 OHCI)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
All OMAP-L137 USB interfaces are compliant with Universal Serial Bus Specifications, Revision 1.1.
Table 6-89 is the list of USB Host Controller registers.
Table 6-89. USB Host Controller Registers
USB REGISTER NAME Register DescriptionBYTE ADDRESS
0x01E2 5000 HCREVISION OHCI Revision Number Register0x01E2 5004 HCCONTROL HC Operating Mode Register0x01E2 5008 HCCOMMANDSTATUS HC Command and Status Register0x01E2 500C HCINTERRUPTSTATUS HC Interrupt and Status Register0x01E2 5010 HCINTERRUPTENABLE HC Interrupt Enable Register0x01E2 5014 HCINTERRUPTDISABLE HC Interrupt Disable Register0x01E2 5018 HCHCCA HC HCAA Address Register
(1)
0x01E2 501C HCPERIODCURRENTED HC Current Periodic Register
(1)
0x01E2 5020 HCCONTROLHEADED HC Head Control Register
(1)
0x01E2 5024 HCCONTROLCURRENTED HC Current Control Register
(1)
0x01E2 5028 HCBULKHEADED HC Head Bulk Register
(1)
0x01E2 502C HCBULKCURRENTED HC Current Bulk Register
(1)
0x01E2 5030 HCDONEHEAD HC Head Done Register
(1)
0x01E2 5034 HCFMINTERVAL HC Frame Interval Register0x01E2 5038 HCFMREMAINING HC Frame Remaining Register0x01E2 503C HCFMNUMBER HC Frame Number Register0x01E2 5040 HCPERIODICSTART HC Periodic Start Register0x01E2 5044 HCLSTHRESHOLD HC Low-Speed Threshold Register0x01E2 5048 HCRHDESCRIPTORA HC Root Hub A Register0x01E2 504C HCRHDESCRIPTORB HC Root Hub B Register0x01E2 5050 HCRHSTATUS HC Root Hub Status Register0x01E2 5054 HCRHPORTSTATUS1 HC Port 1 Status and Control Register
(2)
0x01E2 5058 HCRHPORTSTATUS2 HC Port 2 Status and Control Register
(3)
(1) Restrictions apply to the physical addresses used in these registers.(2) Connected to the integrated USB1.1 phy pins (USB1_DM, USB1_DP).(3) Although the controller implements two ports, the second port cannot be used.
Table 6-90. Switching Characteristics Over Recommended Operating Conditions for USB
LOW SPEED FULL SPEEDNO. PARAMETER UNITMIN MAX MAX MAX
U1 t
r
Rise time, USB.DP and USB.DM signals
(1)
75
(1)
300
(1)
4
(1)
20
(1)
nsU2 t
f
Fall time, USB.DP and USB.DM signals
(1)
75
(1)
300
(1)
4
(1)
20
(1)
nsU3 t
RFM
Rise/Fall time matching
(2)
80
(2)
120
(2)
90
(2)
110
(2)
%U4 V
CRS
Output signal cross-over voltage
(1)
1.3
(1)
2
(1)
1.3
(1)
2
(1)
VU5 t
j
Differential propagation jitter
(3)
-25
(3)
25
(3)
-2
(3)
2
(3)
nsU6 f
op
Operating frequency
(4)
1.5 12 MHz
(1) Low Speed: C
L
= 200 pF. High Speed: C
L
= 50pF(2) t
RFM
=( t
r
/t
f
) x 100(3) t
jr
= t
px(1)
- t
px(0)(4) f
op
= 1/t
per
Peripheral Information and Electrical Specifications196 Submit Documentation Feedback
PRODUCT PREVIEW
6.27 USB0 OTG (USB2.0 OTG)
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The OMAP-L137 USB2.0 peripheral supports the following features:USB 2.0 peripheral at speeds high speed (HS: 480 Mb/s) and full speed (FS: 12 Mb/s)USB 2.0 host at speeds HS, FS, and low speed (LS: 1.5 Mb/s)All transfer modes (control, bulk, interrupt, and isochronous)4 Transmit (TX) and 4 Receive (RX) endpoints in addition to endpoint 0FIFO RAM 4K endpoint
Programmable sizeIntegrated USB 2.0 High Speed PHYConnects to a standard Charge Pump for VBUS 5 V generationRNDIS mode for accelerating RNDIS type protocols using short packet termination over USB
Table 6-91 is the list of USB OTG registers.
Table 6-91. Universal Serial Bus OTG (USB0) Registers
BYTE ADDRESS Acronym Register Description
0x01E0 0000 REVID Revision Register0x01E0 0004 CTRLR Control Register0x01E0 0008 STATR Status Register0x01E0 000C EMUR Emulation Register0x01E0 0010 MODE Mode Register0x01E0 0014 AUTOREQ Autorequest Register0x01E0 0018 SRPFIXTIME SRP Fix Time Register0x01E0 001C TEARDOWN Teardown Register0x01E0 0020 INTSRCR USB Interrupt Source Register0x01E0 0024 INTSETR USB Interrupt Source Set Register0x01E0 0028 INTCLRR USB Interrupt Source Clear Register0x01E0 002C INTMSKR USB Interrupt Mask Register0x01E0 0030 INTMSKSETR USB Interrupt Mask Set Register0x01E0 0034 INTMSKCLRR USB Interrupt Mask Clear Register0x01E0 0038 INTMASKEDR USB Interrupt Source Masked Register0x01E0 003C EOIR USB End of Interrupt Register0x01E0 0040 INTVECTR USB Interrupt Vector Register0x01E0 0050 GENRNDISSZ1 Generic RNDIS Size EP10x01E0 0054 GENRNDISSZ2 Generic RNDIS Size EP20x01E0 0058 GENRNDISSZ3 Generic RNDIS Size EP30x01E0 005C GENRNDISSZ4 Generic RNDIS Size EP40x01E0 0400 FADDR Function Address Register0x01E0 0401 POWER Power Management Register0x01E0 0402 INTRTX Interrupt Register for Endpoint 0 plus Transmit Endpoints 1 to 40x01E0 0404 INTRRX Interrupt Register for Receive Endpoints 1 to 40x01E0 0406 INTRTXE Interrupt enable register for INTRTX0x01E0 0408 INTRRXE Interrupt Enable Register for INTRRX0x01E0 040A INTRUSB Interrupt Register for Common USB Interrupts0x01E0 040B INTRUSBE Interrupt Enable Register for INTRUSB0x01E0 040C FRAME Frame Number Register0x01E0 040E INDEX Index Register for Selecting the Endpoint Status and Control Registers0x01E0 040F TESTMODE Register to Enable the USB 2.0 Test Modes
Submit Documentation Feedback Peripheral Information and Electrical Specifications 197
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-91. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS Acronym Register Description
Indexed RegistersThese registers operate on the endpoint selected by the INDEX register0x01E0 0410 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint (Indexregister set to select Endpoints 1-4 only)0x01E0 0412 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral Mode. (Indexregister set to select Endpoint 0)HOST_CSR0 Control Status Register for Endpoint 0 in Host Mode.(Index register set to select Endpoint 0)PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint. (Indexregister set to select Endpoints 1-4)HOST_TXCSR Control Status Register for Host Transmit Endpoint.(Index register set to select Endpoints 1-4)0x01E0 0414 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint (Indexregister set to select Endpoints 1-4 only)0x01E0 0416 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint. (Index registerset to select Endpoints 1-4)HOST_RXCSR Control Status Register for Host Receive Endpoint.(Index register set to select Endpoints 1-4)0x01E0 0418 COUNT0 Number of Received Bytes in Endpoint 0 FIFO.(Index register set to select Endpoint 0)RXCOUNT Number of Bytes in Host Receive Endpoint FIFO.(Index register set to select Endpoints 1- 4)0x01E0 041A HOST_TYPE0 Defines the speed of Endpoint 0HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Transmit endpoint. (Index register set to selectEndpoints 1-4 only)0x01E0 041B HOST_NAKLIMIT0 Sets the NAK response timeout on Endpoint 0.(Index register set to select Endpoint 0)HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Transmit endpoint.(Index register set to select Endpoints 1-4 only)0x01E0 041C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Receive endpoint. (Index register set to selectEndpoints 1-4 only)0x01E0 041D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Receive endpoint.(Index register set to select Endpoints 1-4 only)0x01E0 041F CONFIGDATA Returns details of core configuration. (Index register set to selectEndpoint 0)
FIFO
0x01E0 0420 FIFO0 Transmit and Receive FIFO Register for Endpoint 00x01E0 0424 FIFO1 Transmit and Receive FIFO Register for Endpoint 10x01E0 0428 FIFO2 Transmit and Receive FIFO Register for Endpoint 20x01E0 042C FIFO3 Transmit and Receive FIFO Register for Endpoint 30x01E0 0430 FIFO4 Transmit and Receive FIFO Register for Endpoint 4
OTG Device Control
0x01E0 0460 DEVCTL Device Control Register
Dynamic FIFO Control
0x01E0 0462 TXFIFOSZ Transmit Endpoint FIFO Size(Index register set to select Endpoints 1-4 only)0x01E0 0463 RXFIFOSZ Receive Endpoint FIFO Size(Index register set to select Endpoints 1-4 only)0x01E0 0464 TXFIFOADDR Transmit Endpoint FIFO Address(Index register set to select Endpoints 1-4 only)0x01E0 0464 HWVERS Hardware Version Register
Peripheral Information and Electrical Specifications198 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-91. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01E0 0466 RXFIFOADDR Receive Endpoint FIFO Address(Index register set to select Endpoints 1-4 only)
Target Endpoint 0 Control Registers, Valid Only in Host Mode
0x01E0 0480 TXFUNCADDR Address of the target function that has to be accessed through theassociated Transmit Endpoint.0x01E0 0482 TXHUBADDR Address of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 0483 TXHUBPORT Port of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 0484 RXFUNCADDR Address of the target function that has to be accessed through theassociated Receive Endpoint.0x01E0 0486 RXHUBADDR Address of the hub that has to be accessed through the associatedReceive Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 0487 RXHUBPORT Port of the hub that has to be accessed through the associated ReceiveEndpoint. This is used only when full speed or low speed device isconnected via a USB2.0 high-speed hub.
Target Endpoint 1 Control Registers, Valid Only in Host Mode
0x01E0 0488 TXFUNCADDR Address of the target function that has to be accessed through theassociated Transmit Endpoint.0x01E0 048A TXHUBADDR Address of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 048B TXHUBPORT Port of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 048C RXFUNCADDR Address of the target function that has to be accessed through theassociated Receive Endpoint.0x01E0 048E RXHUBADDR Address of the hub that has to be accessed through the associatedReceive Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 048F RXHUBPORT Port of the hub that has to be accessed through the associated ReceiveEndpoint. This is used only when full speed or low speed device isconnected via a USB2.0 high-speed hub.
Target Endpoint 2 Control Registers, Valid Only in Host Mode
0x01E0 0490 TXFUNCADDR Address of the target function that has to be accessed through theassociated Transmit Endpoint.0x01E0 0492 TXHUBADDR Address of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 0493 TXHUBPORT Port of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 0494 RXFUNCADDR Address of the target function that has to be accessed through theassociated Receive Endpoint.0x01E0 0496 RXHUBADDR Address of the hub that has to be accessed through the associatedReceive Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 0497 RXHUBPORT Port of the hub that has to be accessed through the associated ReceiveEndpoint. This is used only when full speed or low speed device isconnected via a USB2.0 high-speed hub.
Target Endpoint 3 Control Registers, Valid Only in Host Mode
0x01E0 0498 TXFUNCADDR Address of the target function that has to be accessed through theassociated Transmit Endpoint.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 199
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-91. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01E0 049A TXHUBADDR Address of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 049B TXHUBPORT Port of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 049C RXFUNCADDR Address of the target function that has to be accessed through theassociated Receive Endpoint.0x01E0 049E RXHUBADDR Address of the hub that has to be accessed through the associatedReceive Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 049F RXHUBPORT Port of the hub that has to be accessed through the associated ReceiveEndpoint. This is used only when full speed or low speed device isconnected via a USB2.0 high-speed hub.
Target Endpoint 4 Control Registers, Valid Only in Host Mode
0x01E0 04A0 TXFUNCADDR Address of the target function that has to be accessed through theassociated Transmit Endpoint.0x01E0 04A2 TXHUBADDR Address of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 04A3 TXHUBPORT Port of the hub that has to be accessed through the associatedTransmit Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 04A4 RXFUNCADDR Address of the target function that has to be accessed through theassociated Receive Endpoint.0x01E0 04A6 RXHUBADDR Address of the hub that has to be accessed through the associatedReceive Endpoint. This is used only when full speed or low speeddevice is connected via a USB2.0 high-speed hub.0x01E0 04A7 RXHUBPORT Port of the hub that has to be accessed through the associated ReceiveEndpoint. This is used only when full speed or low speed device isconnected via a USB2.0 high-speed hub.
Control and Status Register for Endpoint 0
0x01E0 0502 PERI_CSR0 Control Status Register for Endpoint 0 in Peripheral ModeHOST_CSR0 Control Status Register for Endpoint 0 in Host Mode0x01E0 0508 COUNT0 Number of Received Bytes in Endpoint 0 FIFO0x01E0 050A HOST_TYPE0 Defines the Speed of Endpoint 00x01E0 050B HOST_NAKLIMIT0 Sets the NAK Response Timeout on Endpoint 00x01E0 050F CONFIGDATA Returns details of core configuration.
Control and Status Register for Endpoint 1
0x01E0 0510 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint0x01E0 0512 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheralmode)HOST_TXCSR Control Status Register for Host Transmit Endpoint(host mode)0x01E0 0514 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint0x01E0 0516 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheralmode)HOST_RXCSR Control Status Register for Host Receive Endpoint(host mode)0x01E0 0518 RXCOUNT Number of Bytes in Host Receive endpoint FIFO0x01E0 051A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Transmit endpoint.0x01E0 051B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Transmit endpoint.
Peripheral Information and Electrical Specifications200 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-91. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01E0 051C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Receive endpoint.0x01E0 051D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 2
0x01E0 0520 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint0x01E0 0522 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheralmode)HOST_TXCSR Control Status Register for Host Transmit Endpoint(host mode)0x01E0 0524 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint0x01E0 0526 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheralmode)HOST_RXCSR Control Status Register for Host Receive Endpoint(host mode)0x01E0 0528 RXCOUNT Number of Bytes in Host Receive endpoint FIFO0x01E0 052A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Transmit endpoint.0x01E0 052B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Transmit endpoint.0x01E0 052C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Receive endpoint.0x01E0 052D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 3
0x01E0 0530 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint0x01E0 0532 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheralmode)HOST_TXCSR Control Status Register for Host Transmit Endpoint(host mode)0x01E0 0534 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint0x01E0 0536 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheralmode)HOST_RXCSR Control Status Register for Host Receive Endpoint(host mode)0x01E0 0538 RXCOUNT Number of Bytes in Host Receive endpoint FIFO0x01E0 053A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Transmit endpoint.0x01E0 053B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Transmit endpoint.0x01E0 053C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Receive endpoint.0x01E0 053D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Receive endpoint.
Control and Status Register for Endpoint 4
0x01E0 0540 TXMAXP Maximum Packet Size for Peripheral/Host Transmit Endpoint0x01E0 0542 PERI_TXCSR Control Status Register for Peripheral Transmit Endpoint (peripheralmode)HOST_TXCSR Control Status Register for Host Transmit Endpoint(host mode)0x01E0 0544 RXMAXP Maximum Packet Size for Peripheral/Host Receive Endpoint
Submit Documentation Feedback Peripheral Information and Electrical Specifications 201
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-91. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01E0 0546 PERI_RXCSR Control Status Register for Peripheral Receive Endpoint (peripheralmode)HOST_RXCSR Control Status Register for Host Receive Endpoint(host mode)0x01E0 0548 RXCOUNT Number of Bytes in Host Receive endpoint FIFO0x01E0 054A HOST_TXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Transmit endpoint.0x01E0 054B HOST_TXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Transmit endpoint.0x01E0 054C HOST_RXTYPE Sets the operating speed, transaction protocol and peripheral endpointnumber for the host Receive endpoint.0x01E0 054D HOST_RXINTERVAL Sets the polling interval for Interrupt/ISOC transactions or the NAKresponse timeout on Bulk transactions for host Receive endpoint.
DMA Registers
0x01E0 1000 DMAREVID DMA Revision Register0x01E0 1004 TDFDQ DMA Teardown Free Descriptor Queue Control Register0x01E0 1008 DMAEMU DMA Emulation Control Register0x01E0 1800 TXGCR[0] Transmit Channel 0 Global Configuration Register0x01E0 1808 RXGCR[0] Receive Channel 0 Global Configuration Register0x01E0 180C RXHPCRA[0] Receive Channel 0 Host Packet Configuration Register A0x01E0 1810 RXHPCRB[0] Receive Channel 0 Host Packet Configuration Register B0x01E0 1820 TXGCR[1] Transmit Channel 1 Global Configuration Register0x01E0 1828 RXGCR[1] Receive Channel 1 Global Configuration Register0x01E0 182C RXHPCRA[1] Receive Channel 1 Host Packet Configuration Register A0x01E0 1830 RXHPCRB[1] Receive Channel 1 Host Packet Configuration Register B0x01E0 1840 TXGCR[2] Transmit Channel 2 Global Configuration Register0x01E0 1848 RXGCR[2] Receive Channel 2 Global Configuration Register0x01E0 184C RXHPCRA[2] Receive Channel 2 Host Packet Configuration Register A0x01E0 1850 RXHPCRB[2] Receive Channel 2 Host Packet Configuration Register B0x01E0 1860 TXGCR[3] Transmit Channel 3 Global Configuration Register0x01E0 1868 RXGCR[3] Receive Channel 3 Global Configuration Register0x01E0 186C RXHPCRA[3] Receive Channel 3 Host Packet Configuration Register A0x01E0 1870 RXHPCRB[3] Receive Channel 3 Host Packet Configuration Register B0x01E0 2C00 DMA_SCHED_CTRL DMA Scheduler Control Register0x01E0 2D00 ENTRY[0] DMA Scheduler Table Word 00x01E0 2D04 ENTRY[1] DMA Scheduler Table Word 1... ... ...0x01E0 2DFC ENTRY[63] DMA Scheduler Table Word 63
Queue Manager Registers
0x01E0 4000 QMGRREVID Queue Manager Revision Register0x01E0 4008 DIVERSION Queue Diversion Register0x01E0 4020 FDBSC0 Free Descriptor/Buffer Starvation Count Register 00x01E0 4024 FDBSC1 Free Descriptor/Buffer Starvation Count Register 10x01E0 4028 FDBSC2 Free Descriptor/Buffer Starvation Count Register 20x01E0 402C FDBSC3 Free Descriptor/Buffer Starvation Count Register 30x01E0 4080 LRAM0BASE Linking RAM Region 0 Base Address Register0x01E0 4084 LRAM0SIZE Linking RAM Region 0 Size Register0x01E0 4088 LRAM1BASE Linking RAM Region 1 Base Address Register0x01E0 4090 PEND0 Queue Pending Register 0
Peripheral Information and Electrical Specifications202 Submit Documentation Feedback
PRODUCT PREVIEW
6.27.1 USB2.0 Electrical Data/Timing
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-91. Universal Serial Bus OTG (USB0) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01E0 4094 PEND1 Queue Pending Register 10x01E0 5000 QMEMRBASE[0] Memory Region 0 Base Address Register0x01E0 5004 QMEMRCTRL[0] Memory Region 0 Control Register0x01E0 5010 QMEMRBASE[1] Memory Region 1 Base Address Register0x01E0 5014 QMEMRCTRL[1] Memory Region 1 Control Register... ... ...0x01E0 5070 QMEMRBASE[7] Memory Region 7 Base Address Register0x01E0 5074 QMEMRCTRL[7] Memory Region 7 Control Register0x01E0 600C CTRLD[0] Queue Manager Queue 0 Control Register D0x01E0 601C CTRLD[1] Queue Manager Queue 1 Control Register D... ... ...0x01E0 63FC CTRLD[63] Queue Manager Queue 63 Status Register D0x01E0 6800 QSTATA[0] Queue Manager Queue 0 Status Register A0x01E0 6804 QSTATB[0] Queue Manager Queue 0 Status Register B0x01E0 6808 QSTATC[0] Queue Manager Queue 0 Status Register C0x01E0 6810 QSTATA[1] Queue Manager Queue 1 Status Register A0x01E0 6814 QSTATB[1] Queue Manager Queue 1 Status Register B0x01E0 6818 QSTATC[1] Queue Manager Queue 1 Status Register C... ... ...0x01E0 6BF0 QSTATA[63] Queue Manager Queue 63 Status Register A0x01E0 6BF4 QSTATB[63] Queue Manager Queue 63 Status Register B0x01E0 6BF8 QSTATC[63] Queue Manager Queue 63 Status Register C
Table 6-92. Switching Characteristics Over Recommended Operating Conditions for USB2.0 (seeFigure 6-65 )
LOW SPEED FULL SPEED HIGH SPEEDNO. PARAMETER 1.5 Mbps 12 Mbps 480 Mbps UNIT
MIN MAX MIN MAX MIN MAX
1 t
r(D)
Rise time, USB_DP and USB_DM signals
(1)
75 300 4 20 0.5 ns2 t
f(D)
Fall time, USB_DP and USB_DM signals
(1)
75 300 4 20 0.5 ns3 t
rfM
Rise/Fall time, matching
(2)
80 120 90 111 %4 V
CRS
Output signal cross-over voltage
(1)
1.3 2 1.3 2 V5 t
jr(source)NT
Source (Host) Driver jitter, next transition 2 2
(3)
nst
jr(FUNC)NT
Function Driver jitter, next transition 25 2
(3)
ns6 t
jr(source)PT
Source (Host) Driver jitter, paired transition
(4)
1 1
(3)
nst
jr(FUNC)PT
Function Driver jitter, paired transition 10 1
(3)
ns7 t
w(EOPT)
Pulse duration, EOP transmitter 1250 1500 160 175 ns8 t
w(EOPR)
Pulse duration, EOP receiver 670 82 ns9 t
(DRATE)
Data Rate 1.5 12 480 Mb/s10 Z
DRV
Driver Output Resistance 40.5 49.5 40.5 49.5 11 Z
INP
Receiver Input Impedance 100k 100k - -
(1) Low Speed: C
L
= 200 pF, Full Speed: C
L
= 50 pF, High Speed: C
L
= 50 pF(2) t
RFM
= (t
r
/t
f
) x 100. [Excluding the first transaction from the Idle state.](3) For more detailed information, see the Universal Serial Bus Specification Revision 2.0, Chapter 7. Electrical.(4) t
jr
= t
px(1)
- t
px(0)
Submit Documentation Feedback Peripheral Information and Electrical Specifications 203
PRODUCT PREVIEW
trtf
VCRS 90% VOH
10% VOL
USB_DM
USB_DP
tper tjr
6.32 Power and Sleep Controller (PSC)
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-65. USB2.0 Integrated Transceiver Interface Timing
The Power and Sleep Controllers (PSC) are responsible for managing transitions of system power on/off,clock on/off, resets (device level and module level). It is used primarily to provide granular power controlfor on chip modules (peripherals and CPU). A PSC module consists of a Global PSC (GPSC) and a set ofLocal PSCs (LPSCs). The GPSC contains memory mapped registers, PSC interrupts, a state machine foreach peripheral/module it controls. An LPSC is associated with every module that is controlled by the PSCand provides clock and reset control.
The PSC includes the following features:Provides a software interface to: Control module clock enable/disable Control module reset Control CPU local resetSupports IcePick emulation features: power, clock and reset
Table 6-100. Power and Sleep Controller (PSC) Registers
PSC0 PSC1 Register Description
0x01C1 0000 0x01E2 7000 REVID Peripheral Revision and Class Information Register0x01C1 0018 0x01E2 7018 INTEVAL Interrupt Evaluation Register0x01C1 0040 0x01E2 7040 MERRPR0 Module Error Pending Register 0 (module 0-15) (PSC0)Module Error Pending Register 0 (module 0-31) (PSC1)0x01C1 0050 0x01E2 7050 MERRCR0 Module Error Clear Register 0 (module 0-15) (PSC0)Module Error Clear Register 0 (module 0-31) (PSC1)0x01C1 0060 0x01E2 7060 PERRPR Power Error Pending Register0x01C1 0068 0x01E2 7068 PERRCR Power Error Clear Register0x01C1 0120 0x01E2 7120 PTCMD Power Domain Transition Command Register0x01C1 0128 0x01E2 7128 PTSTAT Power Domain Transition Status Register0x01C1 0200 0x01E2 7200 PDSTAT0 Power Domain 0 Status Register0x01C1 0204 0x01E2 7204 PDSTAT1 Power Domain 1 Status Register0x01C1 0300 0x01E2 7300 PDCTL0 Power Domain 0 Control Register0x01C1 0304 0x01E2 7304 PDCTL1 Power Domain 1 Control Register0x01C1 0400 0x01E2 7400 PDCFG0 Power Domain 0 Configuration Register0x01C1 0404 0x01E2 7404 PDCFG1 Power Domain 1 Configuration Register0x01C1 0800 - 0x01C1 0x01E2 7800 - MDSTAT0- Module Status nRegister (modules 0-15) (PSC0)083C 0x01E2 787C MDSTAT15
MDSTAT0- Module Status nRegister (modules 0-31) (PSC1)MDSTAT310x01C1 0A00 - 0x01C1 0x01E2 7A00 - MDCTL0- Module Control nRegister (modules 0-15) (PSC0)0A3C 0x01E2 7A7C MDCTL15
MDSTAT0- Module Status nRegister (modules 0-31) (PSC1)MDSTAT31
Peripheral Information and Electrical Specifications204 Submit Documentation Feedback
PRODUCT PREVIEW
6.32.1 Power Domain and Module Topology
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
The SoC includes two PSC modules.
Each PSC module controls clock states for several on the on chip modules, controllers and interconnectcomponents. Table 6-101 and Table 6-102 lists the set of peripherals/modules that are controlled by thePSC, the power domain they are associated with, the LPSC assignment and the default (power-on reset)module states. See the device-specific data manual for the peripherals available on a given device. Themodule states and terminology are defined in Section 6.32.1.2 .
Table 6-101. PSC0 Default Module Configuration
LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only
0 EDMA3 Channel Controller AlwaysON (PD0) SwRstDisable 1 EDMA3 Transfer Controller 0 AlwaysON (PD0) SwRstDisable 2 EDMA3 Transfer Controller 1 AlwaysON (PD0) SwRstDisable 3 EMIFA (BR7) AlwaysON (PD0) SwRstDisable 4 SPI 0 AlwaysON (PD0) SwRstDisable 5 MMC/SD 0 AlwaysON (PD0) SwRstDisable 6 ARM Interrupt Controller AlwaysON (PD0) SwRstDisable 7 ARM RAM/ROM AlwaysON (PD0) Enable Yes8 - - - -9 UART 0 AlwaysON (PD0) SwRstDisable 10 SCR0 AlwaysON (PD0) Enable Yes(Br 0, Br 1, Br 2, Br 8)11 SCR1 AlwaysON (PD0) Enable Yes(Br 4)12 SCR2 AlwaysON (PD0) Enable Yes(Br 3, Br 5, Br 6)13 - - - -14 ARM AlwaysON (PD0) SwRstDisable 15 DSP PD_DSP (PD1) Enable
Table 6-102. PSC1 Default Module Configuration
LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only
0 Not Used 1 USB0 (USB2.0) AlwaysON (PD0) SwRstDisable 2 USB1 (USB1.1) AlwaysON (PD0) SwRstDisable 3 GPIO AlwaysON (PD0) SwRstDisable 4 UHPI AlwaysON (PD0) SwRstDisable 5 EMAC AlwaysON (PD0) SwRstDisable 6 EMIFB (Br 20) AlwaysON (PD0) SwRstDisable 7 McASP0 ( + McASP0 FIFO) AlwaysON (PD0) SwRstDisable 8 McASP1 ( + McASP1 FIFO) AlwaysON (PD0) SwRstDisable 9 McASP2( + McASP2 FIFO) AlwaysON (PD0) SwRstDisable 10 SPI 1 AlwaysON (PD0) SwRstDisable 11 I2C 1 AlwaysON (PD0) SwRstDisable 12 UART 1 AlwaysON (PD0) SwRstDisable 13 UART 2 AlwaysON (PD0) SwRstDisable 14-15 Not Used 16 LCDC AlwaysON (PD0) SwRstDisable
Submit Documentation Feedback Peripheral Information and Electrical Specifications 205
PRODUCT PREVIEW
6.32.1.1 Power Domain States
6.32.1.2 Module States
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-102. PSC1 Default Module Configuration (continued)
LPSC Number Module Name Power Domain Default Module State Auto Sleep/Wake Only
17 eHRPWM0/1/2 AlwaysON (PD0) SwRstDisable 18-19 Not Used 20 ECAP0/1/2 AlwaysON (PD0) SwRstDisable 21 EQEP0/1 AlwaysON (PD0) SwRstDisable 22-23 Not Used 24 SCR8 AlwaysON (PD0) Enable Yes(Br 15)25 SCR7 AlwaysON (PD0) Enable Yes(Br 12)26 SCR12 AlwaysON (PD0) Enable Yes(Br 18)27-30 Not Used 31 Shared RAM PD_SHRAM Enable Yes(Br 13)
A power domain can only be in one of the two states: ON or OFF, defined as follows:ON: power to the domain is onOFF: power to the domain is off
In the SoC , for both PSC0 and PSC1, the Always ON domain, or PD0 power domain, is always in the ONstate when the chip is powered-on. This domain is not programmable to OFF state.On PSC0 PD1/PD_DSP Domain: Controls the sleep state for DSP L1 and L2 MemoriesOn PSC1 PD1/PD_SHRAM Domain: Controls the sleep state for the 128K Shared RAM
The PSC defines several possible states for a module. This states are essentially a combination of themodule reset asserted or de-asserted and module clock on/enabled or off/disabled. The module states aredefined in Table 6-103 .
Table 6-103. Module States
Module State Module Reset Module Clock Module State Definition
Enable De-asserted On A module in the enable state has its module reset de-asserted and it has itsclock on. This is the normal operational state for a given moduleDisable De-asserted Off A module in the disabled state has its module reset de-asserted and it has itsmodule clock off. This state is typically used for disabling a module clock tosave power. The SoC is designed in full static CMOS, so when you stop amodule clock, it retains the module’s state. When the clock is restarted, themodule resumes operating from the stopping point.SyncReset Asserted On A module state in the SyncReset state has its module reset asserted and it hasits clock on. Generally, software is not expected to initiate this stateSwRstDisable Asserted Off A module in the SwResetDisable state has its module reset asserted and it hasits clock disabled. After initial power-on, several modules come up in theSwRstDisable state. Generally, software is not expected to initiate this stateAuto Sleep De-asserted Off A module in the Auto Sleep state also has its module reset de-asserted and itsmodule clock disabled, similar to the Disable state. However this is a specialstate, once a module is configured in this state by software, it can“automatically” transition to “Enable” state whenever there is an internalread/write request made to it, and after servicing the request it will“automatically” transition into the sleep state (with module reset re de-assertedand module clock disabled), without any software intervention. The transitionfrom sleep to enabled and back to sleep state has some cycle latencyassociated with it. It is not envisioned to use this mode when peripherals arefully operational and moving data.
Peripheral Information and Electrical Specifications206 Submit Documentation Feedback
PRODUCT PREVIEW
6.34 Emulation Logic
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-103. Module States (continued)
Module State Module Reset Module Clock Module State Definition
Auto Wake De-asserted Off A module in the Auto Wake state also has its module reset de-asserted and itsmodule clock disabled, similar to the Disable state. However this is a specialstate, once a module is configured in this state by software, it will“automatically” transition to “Enable” state whenever there is an internalread/write request made to it, and will remain in the “Enabled” state from thenon (with module reset re de-asserted and module clock on), without anysoftware intervention. The transition from sleep to enabled state has somecycle latency associated with it. It is not envisioned to use this mode whenperipherals are fully operational and moving data.
This section describes the steps to use a third party debugger on the ARM926EJ-S within theOMAP-L137. The debug capabilities and features for DSP and ARM are as shown below.
DSP:
Basic Debug Execution Control System VisibilityReal-Time Debug Interrupts serviced while halted Low/non-intrusive system visibility while runningAdvanced Debug Global Start Global Stop Specify targeted memory level(s) during memory accesses HSRTDX (High Speed Real Time Data eXchange)Advanced System Control Subsystem reset via debug Peripheral notification of debug events Cache-coherent debug accessesSecurity
Configurable levels of security and debug visibility Halting on a security violation Debug halts prevented during secure code execution Memory accesses prevented to secure memoryAnalysis Actions Stop program execution Generate debug interrupt Benchmarking with counters External trigger generation Debug state machine state transition Combinational and Sequential event generationAnalysis Events Program event detection Data event detection External trigger Detection System event detection (i.e. cache miss) Debug state machine state detection
Submit Documentation Feedback Peripheral Information and Electrical Specifications 207
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Analysis Configuration
Application access Debugger access
Table 6-105. DSP Debug Features
Category Hardware Feature Availability
Software breakpoint UnlimitedUp to 10 HWBPs, including:4 precise HWBPs inside DSP core and one of them isBasic Debug associated with a counter.Hardware breakpoint
2 imprecise HWBPs from AET.4 imprecise HWBPs from AET which are shared forwatch point.Up to 4 watch points, which are shared with HWBPs,Watch point and can also be used as 2 watch points with data (32bits)Watch point with Data Up to 2, Which can also be used as 4 watch points.Analysis
Counters/timers 1x64-bits (cycle only) + 2x32-bits (water marke counters)External Event Trigger In 2External Event Trigger Out 2
ARM:
Basic Debug Execution Control System VisibilityAdvanced Debug Global Start Global StopAdvanced System Control Subsystem reset via debug Peripheral notification of debug events Cache-coherent debug accessesSecurity
Halting on a security violation (by cross-triggering via INTC) Memory accesses prevented to secure memory (this is ensured by system level securitymechanism)
Program Trace Program flow corruption Code coverage Path coverage
Thread/interrupt synchronization problemsData Trace Memory corruptionTiming Trace Profiling
Analysis Actions Stop program execution Control trace streams Generate debug interrupt
Peripheral Information and Electrical Specifications208 Submit Documentation Feedback
PRODUCT PREVIEW
6.34.1 JTAG Port Description
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Benchmarking with counters External trigger generation Debug state machine state transition Combinational and Sequential event generationAnalysis Events Program event detection Data event detection External trigger Detection System event detection (i.e. cache miss) Debug state machine state detectionAnalysis Configuration
Application access Debugger access
Table 6-106. ARM Debug Features
Category Hardware Feature Availability
Software breakpoint UnlimitedUp to 14 HWBPs, including:2 precise HWBP inside ARM core which are shared withwatch points.Basic Debug
Hardware breakpoint
8 imprecise HWBPs from ETM’s address comparators,which are shared with trace function, and can be usedas watch point too.4 imprecise HWBPs from ICECrusher.Up to 6 watch points, including:2 from ARM core which is shared with HWBPs and canWatch point be associated with a data.8 from ETM’s address comparators, which are sharedwith trace function, and HWBPs.2 from ARM core which is shared with HWBPs.Analysis
8 watch points from ETM can be associated with a dataWatch point with Data
comparator, and ETM of Primus has total 4 datacomparators.Counters/timers 3x32-bit (1 cycle ; 2 event)External Event Trigger In 2External Event Trigger Out 2Address range for trace 4Data qualification for trace 2System events for trace control 20Trace Control Counters/Timers for trace control 2x16-bitState Machines/Sequencers 1x3-State State MachineContext/Thread ID Comparator 1Independent trigger control units 12Capture depth PC Primus has 4k bytes ETBOn-chip Trace
Capture depth PC + Timing Primus has 4k bytes ETBCapture
Application accessible Y
The OMAP-L137 target debug interface uses the five standard IEEE 1149.1(JTAG) signals ( TRST, TCK,TMS, TDI, and TDO), a return clock (RTCK) due to the clocking requirements of the ARM926EJ-S andEMU0.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 209
PRODUCT PREVIEW
6.34.2 Initial Scan Chain Configuration
6.34.2.1 Adding TAPS to the Scan Chain
TDO Router
TDI
Steps
CLK
TMS
Router
ARM926EJ-S/ETM
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Table 6-107. JTAG Port Description
PIN TYPE NAME DESCRIPTION
When asserted (active low) causes all test and debug logic inTRST I Test Logic Reset
OMAP-L137 to be reset along with the IEEE 1149.1 interfaceThis is the test clock used to drive an IEEE 1149.1 TAP state machineTCK I Test Clock and logic. Depending on the emulator attached to OMAP-L137 , this is afree running clock or a gated clock depending on RTCK monitoring.Synchronized TCK. Depending on the emulator attached to OMAP-L137RTCK O Returned Test Clock , the JTAG signals are clocked from RTCK or RTCK is monitored by theemulator to gate TCK.TMS I Test Mode Select Directs the next state of the IEEE 1149.1 test access port state machineTDI I Test Data Input Scan data input to the deviceTDO O Test Data Output Scan data output of the deviceEMU0 I/O Emulation 0 Channel 0 trigger + HSRTDX
The first level of debug interface that sees the scan controller is the TAP router module. The debuggercan configure the TAP router for serially linking up to 16 TAP controllers or individually scanning one ofthe TAP controllers without disrupting the IR state of the other TAPs.
The TAP router must be programmed to add additional TAPs to the scan chain. The following JTAG scansmust be completed to add the ARM926EJ-S to the scan chain.
Figure 6-67. Adding ARM926EJ-S to the scan chain
Pre-amble: The device whose data reaches the emulator first is listed first in the board configuration file.This device is a pre-amble for all the other devices. This device has the lowest device ID.
Post-amble: The device whose data reaches the emulator last is listed last in the board configuration file.This device is a post-amble for all the other devices. This device has the highest device ID.Function : Update the JTAG preamble and post-amble counts. Parameter : The IR pre-amble count is '0'. Parameter : The IR post-amble count is '0'. Parameter : The DR pre-amble count is '0'. Parameter : The DR post-amble count is '0'. Parameter : The IR main count is '6'. Parameter : The DR main count is '1'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-ir'.
Peripheral Information and Electrical Specifications210 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Parameter : The JTAG destination state is 'pause-ir'. Parameter : The bit length of the command is '6'. Parameter : The send data value is '0x00000007'. Parameter : The actual receive data is 'discarded'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-dr'. Parameter : The JTAG destination state is 'pause-dr'. Parameter : The bit length of the command is '8'. Parameter : The send data value is '0x00000089'. Parameter : The actual receive data is 'discarded'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-ir'. Parameter : The JTAG destination state is 'pause-ir'. Parameter : The bit length of the command is '6'. Parameter : The send data value is '0x00000002'. Parameter : The actual receive data is 'discarded'.Function : Embed the port address in next command. Parameter : The port address field is '0x0f000000'. Parameter : The port address value is '3'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-dr'. Parameter : The JTAG destination state is 'pause-dr'. Parameter : The bit length of the command is '32'. Parameter : The send data value is '0xa3002108'. Parameter : The actual receive data is 'discarded'.Function : Do a send-only all-ones JTAG IR/DR scan. Parameter : The JTAG shift state is 'shift-ir'. Parameter : The JTAG destination state is 'run-test/idle'. Parameter : The bit length of the command is '6'. Parameter : The send data value is 'all-ones'. Parameter : The actual receive data is 'discarded'.Function : Wait for a minimum number of TCLK pulses. Parameter : The count of TCLK pulses is '10'.Function : Update the JTAG preamble and post-amble counts. Parameter : The IR pre-amble count is '0'. Parameter : The IR post-amble count is '6'. Parameter : The DR pre-amble count is '0'. Parameter : The DR post-amble count is '1'. Parameter : The IR main count is '4'. Parameter : The DR main count is '1'.
The initial scan chain contains only the TAP router module. The following steps must be completed inorder to add ETB TAP to the scan chain.
Submit Documentation Feedback Peripheral Information and Electrical Specifications 211
PRODUCT PREVIEW
TDI Router
ARM926EJ-S/ETM
TDO
Steps
CLK
TMS
Router
ARM926EJ-S/ETM
ETB
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
Figure 6-68. Adding ETB to the scan chain
Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-ir'. Parameter : The JTAG destination state is 'pause-ir'. Parameter : The bit length of the command is '6'. Parameter : The send data value is '0x00000007'. Parameter : The actual receive data is 'discarded'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-dr'. Parameter : The JTAG destination state is 'pause-dr'. Parameter : The bit length of the command is '8'. Parameter : The send data value is '0x00000089'. Parameter : The actual receive data is 'discarded'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-ir'. Parameter : The JTAG destination state is 'pause-ir'. Parameter : The bit length of the command is '6'. Parameter : The send data value is '0x00000002'. Parameter : The actual receive data is 'discarded'.Function : Embed the port address in next command. Parameter : The port address field is '0x0f000000'. Parameter : The port address value is '3'.Function : Do a send-only JTAG IR/DR scan. Parameter : The route to JTAG shift state is 'shortest transition'. Parameter : The JTAG shift state is 'shift-dr'. Parameter : The JTAG destination state is 'pause-dr'. Parameter : The bit length of the command is '32'. Parameter : The send data value is '0xa4302108'. Parameter : The actual receive data is 'discarded'.Function : Do a send-only all-ones JTAG IR/DR scan. Parameter : The JTAG shift state is 'shift-ir'. Parameter : The JTAG destination state is 'run-test/idle'. Parameter : The bit length of the command is '6'. Parameter : The send data value is 'all-ones'.
Peripheral Information and Electrical Specifications212 Submit Documentation Feedback
PRODUCT PREVIEW
6.35 Real Time Clock (RTC)
Seconds Minutes Hours Days Months Years
Alarm
Timer
Alarm
Interrupts
Periodic
Interrupts
Counter
32kHz
Oscillator
Compensation
Week
Days
Oscillator
RTC_XI
XTAL
RTC_XO
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Parameter : The actual receive data is 'discarded'.Function : Wait for a minimum number of TCLK pulses. Parameter : The count of TCLK pulses is '10'.Function : Update the JTAG preamble and post-amble counts. Parameter : The IR pre-amble count is '0'. Parameter : The IR post-amble count is '6 + 4'. Parameter : The DR pre-amble count is '0'. Parameter : The DR post-amble count is '1 + 1'. Parameter : The IR main count is '4'. Parameter : The DR main count is '1'.
The RTC provides a time reference to an application running on the device. The current date and time istracked in a set of counter registers that update once per second. The time can be represented in 12-houror 24-hour mode. The calendar and time registers are buffered during reads and writes so that updates donot interfere with the accuracy of the time and date.
Alarms are available to interrupt the CPU at a particular time, or at periodic time intervals, such as onceper minute or once per day. In addition, the RTC can interrupt the CPU every time the calendar and timeregisters are updated, or at programmable periodic intervals.
The real-time clock (RTC) provides the following features:100-year calendar (xx00 to xx99)Counts seconds, minutes, hours, day of the week, date, month, and year with leap year compensationBinary-coded-decimal (BCD) representation of time, calendar, and alarm12-hour clock mode (with AM and PM) or 24-hour clock modeAlarm interruptPeriodic interruptSingle interrupt to the CPUSupports external 32.768-kHz crystal or external clock source of the same frequencySeparate isolated power supply
Figure 6-69 shows a block diagram of the RTC.
Figure 6-69. Real-Time Clock Block Diagram
Submit Documentation Feedback Peripheral Information and Electrical Specifications 213
PRODUCT PREVIEW
6.35.1 Clock Source
XTAL
32.768
kHz
C2
C1
RTC_X1
RTC_X0
RTC_VSS
32K
OSC
Real
Time
Clock
(RTC)
Module
IsolatedRTC
PowerDomain
SwitchforDevice
CorePower
RealTimeClock
+1.2V CVDD
RTC_CVDD
6.35.2 Registers
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
The clock reference for the RTC is an external 32.768-kHz crystal or an external clock source of the samefrequency. The RTC also has a separate power supply that is isolated from the rest of the system. Whenthe CPU and other peripherals are without power, the RTC can remain powered to preserve the currenttime and calendar information.
The source for the RTC reference clock may be provided by a crystal or by an external clock source. TheRTC has an internal oscillator buffer to support direct operation with a crystal. The crystal is connectedbetween pins RTC_XI and RTC_XO. RTC_XI is the input to the on-chip oscillator and RTC_XO is theoutput from the oscillator back to the crystal.
An external 32.768-kHz clock source may be used instead of a crystal. In such a case, the clock source isconnected to RTC_XI, and RTC_XO is left unconnected.
If the RTC is not used, the RTC_XI pin should be held low and RTC_XO should be left unconnected.
Figure 6-70. Clock Source
Table 6-108 lists the memory-mapped registers for the RTC. See the device-specific data manual for thememory address of these registers.
Table 6-108. Real-Time Clock (RTC) Registers
BYTE ADDRESS Acronym Register Description
0x01C2 3000 SECOND Seconds Register0x01C2 3004 MINUTE Minutes Register0x01C2 3008 HOUR Hours Register0x01C2 300C DAY Day of the Month Register0x01C2 3010 MONTH Month Register0x01C2 3014 YEAR Year Register0x01C2 3018 DOTW Day of the Week Register0x01C2 3020 ALARMSECOND Alarm Seconds Register
Peripheral Information and Electrical Specifications214 Submit Documentation Feedback
PRODUCT PREVIEW
OMAP-L137 Low-Power Applications Processor
www.ti.com
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
Table 6-108. Real-Time Clock (RTC) Registers (continued)
BYTE ADDRESS Acronym Register Description
0x01C2 3024 ALARMMINUTE Alarm Minutes Register0x01C2 3028 ALARMHOUR Alarm Hours Register0x01C2 302C ALARMDAY Alarm Days Register0x01C2 3030 ALARMMONTH Alarm Months Register0x01C2 3034 ALARMYEAR Alarm Years Register0x01C2 3040 CTRL Control Register0x01C2 3044 STATUS Status Register0x01C2 3048 INTERRUPT Interrupt Enable Register0x01C2 304C COMPLSB Compensation (LSB) Register0x01C2 3050 COMPMSB Compensation (MSB) Register0x01C2 3054 OSC Oscillator Register0x01C2 3060 SCRATCH0 Scratch 0 (General-Purpose) Register0x01C2 3064 SCRATCH1 Scratch 1 (General-Purpose) Register0x01C2 3068 SCRATCH2 Scratch 2 (General-Purpose) Register0x01C2 306C KICK0 Kick 0 (Write Protect) Register0x01C2 3070 KICK1 Kick 1 (Write Protect) Register
Submit Documentation Feedback Peripheral Information and Electrical Specifications 215
PRODUCT PREVIEW
7 Mechanical Packaging and Orderable Information
7.1 Thermal Data for ZKB
7.2 Mechanical Drawings
OMAP-L137 Low-Power Applications Processor
SPRS563A SEPTEMBER 2008 REVISED OCTOBER 2008
www.ti.com
This section describes the OMAP-L137 orderable part numbers, packaging options, materials, thermal andmechanical parameters.
The following table(s) show the thermal resistance characteristics for the PBGA–ZKB mechanicalpackage.
Table 7-1. Thermal Resistance Characteristics (PBGA Package) [ZKB]
NO. °C/W
(1)
°C/W
(2)
AIR FLOW
(m/s)
(3)
1 R Θ
JC
Junction-to-case 12.8 13.5 N/A2 R Θ
JB
Junction-to-board 15.1 19.7 N/A3 R Θ
JA
Junction-to-free air 24.5 33.8 0.004 21.9 30 0.505 21.1 28.7 1.00RΘ
JMA
Junction-to-moving air6 20.4 27.4 2.007 19.6 26 4.008 0.6 0.8 0.009 0.8 1 0.5010 Psi
JT
Junction-to-package top 0.9 1.2 1.0011 1.1 1.4 2.0012 1.3 1.8 4.0013 14.9 19.1 0.0014 14.4 18.2 0.5015 Psi
JB
Junction-to-board 14.4 18 1.0016 14.3 17.7 2.0017 14.1 17.4 4.00
(1) These measurements were conducted in a JEDEC defined 2S2P system and will change based on environment as well as application.For more information, see these EIA/JEDEC standards EIA/JESD51-2, Integrated Circuits Thermal Test Method EnvironmentConditions - Natural Convection (Still Air) and JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface MountPackages. Power dissipation of 1W and ambient temp of 70C assumed. PCB with 2oz (70um) top and bottom copper thickness and1.5oz (50um) inner copper thickness(2) Simulation data, using the same model but with 1oz (35um) top and bottom copper thickness and 0.5oz (18um) inner copper thickness.Power dissipation of 1W and ambient temp of 70C assumed.(3) m/s = meters per second
This section contains mechanical drawings for the ZKB Ball Grid Array package .
216 Mechanical Packaging and Orderable Information Submit Documentation Feedback
PACKAGING INFORMATION
Orderable Device Status (1) Package
Type Package
Drawing Pins Package
Qty Eco Plan (2) Lead/Ball Finish MSL Peak Temp (3)
OMAPL137ZKB3 PREVIEW BGA ZKB 256 TBD Call TI Call TI
XOMAPL137ZKB3 ACTIVE BGA ZKB 256 90 TBD Call TI Call TI
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in
a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check
http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements
for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered
at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and
package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS
compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame
retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder
temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is
provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the
accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take
reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on
incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited
information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI
to Customer on an annual basis.
PACKAGE OPTION ADDENDUM
www.ti.com 1-Oct-2008
Addendum-Page 1
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,and other changes to its products and services at any time and to discontinue any product or service without notice. Customers shouldobtain the latest relevant information before placing orders and should verify that such information is current and complete. All products aresold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standardwarranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except wheremandated by government requirements, testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products andapplications using TI components. To minimize the risks associated with customer products and applications, customers should provideadequate design and operating safeguards.TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Informationpublished by TI regarding third-party products or services does not constitute a license from TI to use such products or services or awarranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectualproperty of the third party, or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompaniedby all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptivebusiness practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additionalrestrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids allexpress and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is notresponsible or liable for any such statements.TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonablybe expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governingsuch use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, andacknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their productsand any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may beprovided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products insuch safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products arespecifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet militaryspecifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely atthe Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products aredesignated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designatedproducts in automotive applications, TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers amplifier.ti.com Audio www.ti.com/audioData Converters dataconverter.ti.com Automotive www.ti.com/automotiveDSP dsp.ti.com Broadband www.ti.com/broadbandClocks and Timers www.ti.com/clocks Digital Control www.ti.com/digitalcontrolInterface interface.ti.com Medical www.ti.com/medicalLogic logic.ti.com Military www.ti.com/militaryPower Mgmt power.ti.com Optical Networking www.ti.com/opticalnetworkMicrocontrollers microcontroller.ti.com Security www.ti.com/securityRFID www.ti-rfid.com Telephony www.ti.com/telephonyRF/IF and ZigBee® Solutions www.ti.com/lprf Video & Imaging www.ti.com/videoWireless www.ti.com/wireless
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2008, Texas Instruments Incorporated