Freescale Semiconductor
Data Sheet: Technical Data
Document Number: IMX6DQCEC
Rev. 1, 11/2012
Package Information
Case FCPBGA 21 x 21 mm, 0.8 mm pitch
Ordering Information
See Table 1 on page 4
© 2012 Freescale Semiconductor, Inc. All rights reserved.
MCIMX6QxDxxxxC
MCIMX6QxExxxxC
MCIMX6DxDxxxxC
MCIMX6DxExxxxC
1 Introduction
The i.MX 6Dual and i.MX 6Quad processors represent
Freescale Semiconductors latest achievement in
integrated multimedia applications processors. These
processors are part of a growing family of
multimedia-focused products that offer high
performance processing and are optimized for lowest
power consumption.
The i.MX 6Dual and i.MX 6Quad processors feature
Freescale’s advanced implementation of the quad ARM
Cortex™-A9 core, which operates at speeds up to
1 GHz. They include 2D and 3D graphics processors, 3D
1080p video processing, and integrated power
management. Each processor provides a 64-bit
DDR3/LVDDR3/LPDDR2-1066 memory interface and
a number of other interfaces for connecting peripherals,
such as WLAN, Bluetooth™, GPS, hard drive, displays,
and camera sensors.
The i.MX 6Dual/6Quad processors are specifically
useful for applications such as the following:
Netbooks (web tablets)
i.MX 6Dual/6Quad
Applications Processors
for Consumer Products
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . 4
1.2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2. Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1. Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1. Special Signal Considerations . . . . . . . . . . . . . . . 20
3.2. Recommended Connections for Unused Analog
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1. Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . 20
4.2. Power Supplies Requirements and Restrictions . 33
4.3. Integrated LDO Voltage Regulator Parameters . . 34
4.4. PLL Electrical Characteristics . . . . . . . . . . . . . . . 36
4.5. On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . 37
4.6. I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7. I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8. Output Buffer Impedance Parameters . . . . . . . . . 46
4.9. System Modules Timing . . . . . . . . . . . . . . . . . . . . 49
4.10. General-Purpose Media Interface (GPMI) Timing 66
4.11. External Peripheral Interface Parameters . . . . . . . 76
5. Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 139
5.1. Boot Mode Configuration Pins . . . . . . . . . . . . . . 139
5.2. Boot Devices Interfaces Allocation . . . . . . . . . . . 141
6. Package Information and Contact Assignments . . . . . 142
6.1. 21 x 21 mm Package Information . . . . . . . . . . . . 142
7. Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
2Freescale Semiconductor
Introduction
Nettops (Internet desktop devices)
High-end mobile Internet devices (MID)
High-end PDAs
High-end portable media players (PMP) with HD video capability
Gaming consoles
Portable navigation devices (PND)
The i.MX 6Dual/6Quad processors have some very exciting features, for example:
Applications processors—The processors enhance the capabilities of high-tier portable
applications by fulfilling the ever increasing MIPS needs of operating systems and games.
Freescale’s Dynamic Voltage and Frequency Scaling (DVFS) provides significant power reduction,
allowing the device to run at lower voltage and frequency with sufficient MIPS for tasks, such as
audio decode.
Multilevel memory system—The multilevel memory system of each processor is based on the L1
instruction and data caches, L2 cache, and internal and external memory. The processors support
many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR
Flash, PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed
NAND, including eMMC up to rev 4.4.
Smart speed technology—The processors have power management throughout the device that
enables the rich suite of multimedia features and peripherals to consume minimum power in both
active and various low power modes. Smart speed technology enables the designer to deliver a
feature-rich product, requiring levels of power far lower than industry expectations.
Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices
by scaling the voltage and frequency to optimize performance.
Multimedia powerhouse—The multimedia performance of each processor is enhanced by a
multilevel cache system, Neon MPE (Media Processor Engine) co-processor, a multi-standard
hardware video codec, 2 autonomous and independent image processing units (IPU), and a
programmable smart DMA (SDMA) controller.
Powerful graphics acceleration—Each processor provides three independent, integrated graphics
processing units: an OpenGL® ES 2.0 3D graphics accelerator with four shaders (up to 200 MT/s
and OpenCL support), 2D graphics accelerator, and dedicated OpenVG™ 1.1 accelerator.
Interface flexibility—Each processor supports connections to a variety of interfaces: LCD
controller for up to four displays (including parallel display, HDMI1.4, MIPI display, and LVDS
display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with
PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host
and other), 10/100/1000 Mbps Gigabit Ethernet controller, and a variety of other popular interfaces
(such as UART, I2C, and I2S serial audio, SATA-II, and PCIe-II).
Advanced security—The processors deliver hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. The security features are discussed in detail in the i.MX 6Dual/6Quad
security reference manual. Contact your local Freescale representative for more information.
Introduction
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 3
Integrated power management—The processors integrate linear regulators and internally generate
voltage levels for different domains. This significantly simplifies system power management
structure.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
4Freescale Semiconductor
Introduction
1.1 Ordering Information
Table 1 shows examples of orderable part numbers covered by this datasheet. Table 1 does not include all
possible orderable part numbers. The latest part numbers are available on freescale.com/imx6series. If
your desired part number is not listed in Table 1, or you have questions about available parts, see
freescale.com/imx6series or contact your Freescale representative.
Figure 1 describes the part number nomenclature so that users can identify the characteristics of the
specific part number they have (for example, cores, frequency, temperature grade, fuse options, silicon
revision). Figure 1 applies to the i.MX 6Quad and i.MX 6Dual.
The primary characteristic that describes which datasheet a specific part applies to is the temperature grade
(junction) field:
The i.MX 6Dual/6Quad Automotive and Infotainment Applications Processors datasheet
(IMX6DQAEC) covers parts listed with A (Automotive temp)”
The i.MX 6Dual/6Quad Applications Processors for Consumer Products datasheet
(IMX6DQCEC) covers parts listed with “D (Consumer temp)” or “E (Extended Consumer temp)”
The i.MX 6Dual/6Quad Applications Processors for Industrial Products datasheet (IMX6DQIEC)
covers parts listed with “C (Industrial temp)
Ensure that you have the right datasheet for your specific part by checking the temperature grade (junction)
field and matching it to the right datasheet. If you have questions, see freescale.com/imx6series or contact
your Freescale representative.
Table 1. Example Consumer Grade Orderable Part Numbers
Part Number Quad/Dual CPU Options Speed
Grade
Temperature
Grade Package
MCIMX6Q5EYM10AC i.MX 6Quad With VPU, GPU 1 GHz Extended
Consumer
21 mm x 21 mm, 0.8 mm
pitch, FCBGA (non-lidded)
MCIMX6Q5EYM10CC i.MX 6Quad With VPU, GPU,
HDCP
1 GHz Extended
Consumer
21 mm x 21 mm, 0.8 mm
pitch, FCBGA (non-lidded)
MCIMX6D5EYM10AC i.MX 6Dual With VPU, GPU 1 GHz Extended
Consumer
21 mm x 21 mm, 0.8 mm
pitch, FCBGA (non-lidded)
MCIMX6D5EYM10CC i.MX 6Dual With VPU, GPU,
HDCP
1 GHz Extended
Consumer
21 mm x 21 mm, 0.8 mm
pitch, FCBGA (non-lidded)
Introduction
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 5
Figure 1. Part Number Nomenclature—i.MX 6Quad and i.MX 6Dual
Part differentiator @
Consumer with VPU, GPU, EPD, No MLB 8
Industrial with VPU, GPU, No EPD,
No MLB
7
Autom otive with VPU, GPU, No EPD 6
Consumer, with VPU, GPU, No EPD,
No MLB
5
Automotive with GPU, No VPU, No EPD 4
Automotive, No VPU, No GPU, No EPD 1
Temperature Tj +
Consumer: 0 to + 95C D
Extended Consumer: -20 to + 105C E
Industrial: -40 to +105C C
Autom otive: -40 to + 125C A
Frequency $$
800 MHz1(Industrial Grade) 08
852 MHz (Automotive Grade) 08
1 GHz210
1.2 GHz 12
Package Type ROHS
FCBGA 21x21 0.8mm (lidded) VT
FCBGA 21x21 0.8mm (not lidded) YM
Qualification Level MC
Prototype Samples PC
Mass Production MC
Special SC
Part # Series X
i.MX 6Quad Q
i.MX 6Dual D
Silicon Rev C
Rev 1.2 C
Fusing %
Real Codec off & no HDCP or DTCP A
Real Codec off with HDCP on C
MC IMX6 X@+VV $$ %C
1. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.
2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
6Freescale Semiconductor
Introduction
1.2 Features
The i.MX 6Dual/6Quad processors are based on ARM Cortex-A9 MPCore™ Platform, which has the
following features:
ARM Cortex-A9 MPCore 4xCPU Processor (with TrustZone)
The core configuration is symmetric, where each core includes:
32 KByte L1 Instruction Cache
32 KByte L1 Data Cache
Private Timer and Watchdog
Cortex-A9 NEON MPE (Media Processing Engine) Co-processor
The ARM Cortex-A9 MPCore complex includes:
General Interrupt Controller (GIC) with 128 interrupt support
Global Timer
Snoop Control Unit (SCU)
1 MB unified I/D L2 cache, shared by two/four cores
Two Master AXI (64-bit) bus interfaces output of L2 cache
Frequency of the core (including Neon and L1 cache) as per Table 7, "Operating Ranges," on page
23
NEON MPE coprocessor
SIMD Media Processing Architecture
NEON register file with 32x64-bit general-purpose registers
NEON Integer execute pipeline (ALU, Shift, MAC)
NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
NEON load/store and permute pipeline
The memory system consists of the following components:
Level 1 Cache—32 KB Instruction, 32 KB Data cache per core
Level 2 Cache—Unified instruction and data (1 MByte)
On-Chip Memory:
Boot ROM, including HAB (96 KB)
Internal multimedia / shared, fast access RAM (OCRAM, 256 KB)
Secure/non-secure RAM (16 KB)
External memory interfaces:
16-bit, 32-bit, and 64-bit DDR3-1066, LVDDR3-1066, and 1/2 LPDDR2-1066 channels,
supporting DDR interleaving mode, for 2x32 LPDDR2-1066
8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit.
16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
16/32-bit PSRAM, Cellular RAM
Introduction
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 7
Each i.MX 6Dual/6Quad processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
Hard Disk Drives—SATA II, 3.0 Gbps
Displays—Total five interfaces available. Total raw pixel rate of all interfaces is up to 450
Mpixels/sec, 24 bpp. Up to four interfaces may be active in parallel.
One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual
HD1080 and WXGA at 60 Hz)
LVDS serial ports—One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example,
WUXGA at 60 Hz) each
HDMI 1.4 port
MIPI/DSI, two lanes at 1 Gbps
Camera sensors:
Parallel Camera port (up to 20 bit and up to 240 MHz peak)
MIPI CSI-2 serial camera port, supporting up to 1000 Mbps/lane in 1/2/3-lane mode and up to
800 Mbps/lane in 4-lane mode. The CSI-2 Receiver core can manage one clock lane and up to
four data lanes. Each i.MX 6Dual/6Quad processor has four lanes.
Expansion cards:
Four MMC/SD/SDIO card ports all supporting:
1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104
mode (104 MB/s max)
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR
and DDR modes (104 MB/s max)
•USB:
One High Speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB PHY
Three USB 2.0 (480 Mbps) hosts:
One HS host with integrated High Speed PHY
Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) PHY
Expansion PCI Express port (PCIe) v2.0 one lane
PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint
operations. Uses x1 PHY configuration.
Miscellaneous IPs and interfaces:
Three I2S/SSI/AC97, up to 1.4 Mbps each
Enhanced Serial Audio Interface (ESAI), up to 1.4 Mbps per channel
Five UARTs, up to 4.0 Mbps each:
Providing RS232 interface
Supporting 9-bit RS485 multidrop mode
One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is
due to the SoC IOMUX limitation, since all UART IPs are identical.
Five eCSPI (Enhanced CSPI)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
8Freescale Semiconductor
Introduction
Three I2C, supporting 400 kbps
Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/10001 Mbps
Four Pulse Width Modulators (PWM)
System JTAG Controller (SJC)
GPIO with interrupt capabilities
8x8 Key Pad Port (KPP)
Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
Two Controller Area Network (FlexCAN), 1 Mbps each
Two Watchdog timers (WDOG)
Audio MUX (AUDMUX)
The i.MX 6Dual/6Quad processors integrate advanced power management unit and controllers:
Provide PMU, including LDO supplies, for on-chip resources
Use Temperature Sensor for monitoring the die temperature
Support DVFS techniques for low power modes
Use Software State Retention and Power Gating for ARM and MPE
Support various levels of system power modes
Use flexible clock gating control scheme
The i.MX 6Dual/6Quad processors use dedicated hardware accelerators to meet the targeted multimedia
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power
consumption numbers, while having the CPU core relatively free for performing other tasks.
The i.MX 6Dual/6Quad processors incorporate the following hardware accelerators:
VPU—Video Processing Unit
IPUv3H—Image Processing Unit version 3H (2 IPUs)
GPU3Dv4—3D Graphics Processing Unit (OpenGL ES 2.0) version 4
GPU2Dv2—2D Graphics Processing Unit (BitBlt)
GPUVG—OpenVG 1.1 Graphics Processing Unit
ASRC—Asynchronous Sample Rate Converter
Security functions are enabled and accelerated by the following hardware:
ARM TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking
the access to the system debug features.
CAAM—Cryptographic Acceleration and Assurance Module, containing 16 KB secure RAM and
True and Pseudo Random Number Generator (NIST certified)
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus
throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the
ERR004512 erratum in the i.MX 6Dual/6Quad errata document (IMX6DQCE).
Introduction
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 9
CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be
configured during boot and by eFUSEs and will determine the security level operation mode as
well as the TZ policy.
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
10 Freescale Semiconductor
Architectural Overview
2 Architectural Overview
The following subsections provide an architectural overview of the i.MX 6Dual/6Quad processor system.
2.1 Block Diagram
Figure 2 shows the functional modules in the i.MX 6Dual/6Quad processor system.
Figure 2. i.MX 6Dual/6Quad Consumer Grade System Block Diagram
NOTE
The numbers in brackets indicate number of module instances. For example,
PWM (4) indicates four separate PWM peripherals.
Application Processor
Smart DMA
(SDMA)
Shared Peripherals
AP Peripherals
ARM Cortex A9
SSI (3) eCSPI (5)
MPCore Platform
Timers/Control
GPT
PWM (4)
EPIT (2)
GPIO
WDOG (2)
I
2
C(3)
IOMUXC
OCOTP
AUDMUX
KPP
Boot
ROM
CSU
Fuse Box
Debug
DAP
TPIU
CAAM
(16KB Ram)
Security
USB OTG +
3 HS Ports
CTIs
Internal
Host PHY2
OTG PHY1
ESAI
External
Memory
RAM
(272KB)
LDB
1 / 2 LCD
Displays
Domain (AP)
SJC 1MB L2 cache
SCU, Timer
WLAN
USB OTG
JTAG
(IEEE1149.6)
Bluetooth
MMC/SD
eMMC/eSD
SATA II
3.0Gbps
GPS
Audio,
Power
Mngmnt.
SPBA
CAN(2)
Digital
Audio
5xFast-UART
SPDIF Rx/Tx
Video
Proc. Unit
(VPU + Cache)
3D Graphics
Proc. Unit
(GPU3D)
AXI and AHB Switch Fabric
1 / 2 LVDS
(WUXGA+)
Battery Ctrl
Device
NOR Flash
PSRAM
LPDDR2/DDR3
532MHz(DDR1066)
1-Gbps ENET
4x Camera
Parall/MIPI
(96KB)
Clock and Reset
PLL (8)
CCM
GPC
SRC
XTALOSC
OSC32K
PTMs CTI’s
HDMI 1.4
Display
GPMI
HSI/MIPI
MIPI
Display
DSI/MIPICSI2/MIPI HDMI
2xHSIC
PHY
PCIe Bus
ASRC SNVS
(SRTC)
uSDHC
uSDHC (3)
Modem IC
2D Graphics
Proc. Unit
(GPU2D)
MMC/SD
SDXC
Raw / ONFI 2.2
Nand-Flash
MMDC
EIM
Keypad
A9-Core
L1 I/D Cache
Timer, Wdog
4x
DTCP
Crystals
& Clock sources
Image Processing
Subsystem
2x IPUv3H
Temp Monitor
OpenVG 1.1
Proc.
Unit
(GPU
VG)
Mbps
10/100/1000
Ethernet
(dev/host)
Interface
2xCAN
Interface
Modules List
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 11
3 Modules List
The i.MX 6Dual/6Quad processors contain a variety of digital and analog modules. Table 2 describes these
modules in alphabetical order.
Table 2. i.MX 6Dual/6Quad Modules List
Block
Mnemonic Block Name Subsystem Brief Description
512x8 Fuse
Box
Electrical Fuse Array Security Electrical Fuse Array. Enables to setup Boot Modes, Security Levels,
Security Keys, and many other system parameters.
The i.MX 6Dual/6Quad processors consist of 512x8-bit fuse box
accessible through OCOTP_CTRL interface.
APBH-DMA NAND Flash and
BCH ECC DMA
Controller
System
Control
Peripherals
DMA controller used for GPMI2 operation
ARM ARM Platform ARM The ARM Cortex-A9 platform consists of 4x (four) Cortex-A9 cores
version r2p10 and associated sub-blocks, including Level 2 Cache
Controller, SCU (Snoop Control Unit), GIC (General Interrupt
Controller), private timers, Watchdog, and CoreSight debug modules.
ASRC Asynchronous
Sample Rate
Converter
Multimedia
Peripherals
The Asynchronous Sample Rate Converter (ASRC) converts the
sampling rate of a signal associated to an input clock into a signal
associated to a different output clock. The ASRC supports concurrent
sample rate conversion of up to 10 channels of about -120dB THD+N.
The sample rate conversion of each channel is associated to a pair of
incoming and outgoing sampling rates. The ASRC supports up to three
sampling rate pairs.
AUDMUX Digital Audio Mux Multimedia
Peripherals
The AUDMUX is a programmable interconnect for voice, audio, and
synchronous data routing between host serial interfaces (for example,
SSI1, SSI2, and SSI3) and peripheral serial interfaces (audio and voice
codecs). The AUDMUX has seven ports with identical functionality and
programming models. A desired connectivity is achieved by configuring
two or more AUDMUX ports.
BCH40 Binary-BCH ECC
Processor
System
Control
Peripherals
The BCH40 module provides up to 40-bit ECC encryption/decryption for
NAND Flash controller (GPMI)
CAAM Cryptographic
Accelerator and
Assurance Module
Security CAAM is a cryptographic accelerator and assurance module. CAAM
implements several encryption and hashing functions, a run-time
integrity checker, and a Pseudo Random Number Generator (PRNG).
The pseudo random number generator is certified by Cryptographic
Algorithm Validation Program (CAVP) of National Institute of Standards
and Technology (NIST). Its DRBG validation number is 94 and its SHS
validation number is 1455.
CAAM also implements a Secure Memory mechanism. In i.MX
6Dual/6Quad processors, the security memory provided is 16 KB.
CCM
GPC
SRC
Clock Control
Module, Global
Power Controller,
System Reset
Controller
Clocks,
Resets, and
Power
Control
These modules are responsible for clock and reset distribution in the
system, and also for the system power management.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
12 Freescale Semiconductor
Modules List
CSI MIPI CSI-2 Interface Multimedia
Peripherals
The CSI IP provides MIPI CSI-2 standard camera interface port. The
CSI-2 interface supports up to 1 Gbps for up to 3 data lanes and up to
800 Mbps for 4 data lanes.
CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting
comprehensive security policy within the i.MX 6Dual/6Quad platform.
The Security Control Registers (SCR) of the CSU are set during boot
time by the HAB and are locked to prevent further writing.
CTI-0
CTI-1
CTI-2
CTI-3
CTI-4
Cross Trigger
Interfaces
Debug / Trace Cross Trigger Interfaces allows cross-triggering based on inputs from
masters attached to CTIs. The CTI module is internal to the Cortex-A9
Core Platform.
CTM Cross Trigger Matrix Debug / Trace Cross Trigger Matrix IP is used to route triggering events between CTIs.
The CTM module is internal to the Cortex-A9 Core Platform.
DAP Debug Access Port System
Control
Peripherals
The DAP provides real-time access for the debugger without halting the
core to:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan chains. The DAP
module is internal to the Cortex-A9 Core Platform.
DCIC-0
DCIC-1
Display Content
Integrity Checker
Automotive IP The DCIC provides integrity check on portion(s) of the display. Each i.MX
6Dual/6Quad processor has two such modules, one for each IPU.
DSI MIPI DSI interface Multimedia
Peripherals
The MIPI DSI IP provides DSI standard display port interface. The DSI
interface support 80 Mbps to 1 Gbps speed per data lane.
eCSPI1-5 Configurable SPI Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface. It is configurable to
support Master/Slave modes, four chip selects to support multiple
peripherals.
ENET Ethernet Controller Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is designed to support
10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external
transceiver interface and transceiver function are required to complete
the interface to the media. The i.MX 6Dual/6Quad processors also
consist of hardware assist for IEEE 1588 standard. For details, see the
ENET chapter of the i.MX 6Dual/6Quad reference manual.
Note: The theoretical maximum performance of 1 Gbps ENET is limited
to 470 Mbps (total for Tx and Rx) due to internal bus throughput
limitations. The actual measured performance in optimized environment
is up to 400 Mbps. For details, see the ERR004512 erratum in the i.MX
6Dual/6Quad errata document (IMX6DQCE).
EPIT-1
EPIT-2
Enhanced Periodic
Interrupt Timer
Timer
Peripherals
Each EPIT is a 32-bit “set and forget” timer that starts counting after the
EPIT is enabled by software. It is capable of providing precise interrupts
at regular intervals with minimal processor intervention. It has a 12-bit
prescaler for division of input clock frequency to get the required time
setting for the interrupts to occur, and counter value can be programmed
on the fly.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 13
ESAI Enhanced Serial
Audio Interface
Connectivity
Peripherals
The Enhanced Serial Audio Interface (ESAI) provides a full-duplex serial
port for serial communication with a variety of serial devices, including
industry-standard codecs, SPDIF transceivers, and other processors.
The ESAI consists of independent transmitter and receiver sections,
each section with its own clock generator. All serial transfers are
synchronized to a clock. Additional synchronization signals are used to
delineate the word frames. The normal mode of operation is used to
transfer data at a periodic rate, one word per period. The network mode
is also intended for periodic transfers; however, it supports up to 32
words (time slots) per period. This mode can be used to build time
division multiplexed (TDM) networks. In contrast, the on-demand mode
is intended for non-periodic transfers of data and to transfer data serially
at high speed when the data becomes available.
The ESAI has 12 pins for data and clocking connection to external
devices.
FlexCAN-1
FlexCAN-2
Flexible Controller
Area Network
Connectivity
Peripherals
The CAN protocol was primarily, but not only, designed to be used as a
vehicle serial data bus, meeting the specific requirements of this field:
real-time processing, reliable operation in the Electromagnetic
interference (EMI) environment of a vehicle, cost-effectiveness and
required bandwidth. The FlexCAN module is a full implementation of the
CAN protocol specification, Version 2.0 B, which supports both standard
and extended message frames.
GPIO-1
GPIO-2
GPIO-3
GPIO-4
GPIO-5
GPIO-6
GPIO-7
General Purpose I/O
Modules
System
Control
Peripherals
Used for general purpose input/output to external devices. Each GPIO
module supports 32 bits of I/O.
GPMI General Media
Interface
Connectivity
Peripherals
The GPMI module supports up to 8x NAND devices. 40-bit ECC
encryption/decryption for NAND Flash controller (GPMI2). The GPMI
supports separate DMA channels per NAND device.
GPT General Purpose
Timer
Timer
Peripherals
Each GPT is a 32-bit “free-running” or “set and forgetmode timer with
programmable prescaler and compare and capture register. A timer
counter value can be captured using an external event and can be
configured to trigger a capture event on either the leading or trailing
edges of an input pulse. When the timer is configured to operate inset
and forget” mode, it is capable of providing precise interrupts at regular
intervals with minimal processor intervention. The counter has output
compare logic to provide the status and interrupt at comparison. This
timer can be configured to run either on an external clock or on an
internal clock.
GPU2Dv2 Graphics Processing
Unit-2D, ver. 2
Multimedia
Peripherals
The GPU2Dv2 provides hardware acceleration for 2D graphics
algorithms, such as Bit BLT, stretch BLT, and many other 2D functions.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
14 Freescale Semiconductor
Modules List
GPU3Dv4 Graphics Processing
Unit, ver. 4
Multimedia
Peripherals
The GPU3Dv4 provides hardware acceleration for 3D graphics
algorithms with sufficient processor power to run desktop quality
interactive graphics applications on displays up to HD1080 resolution.
The GPU3D provides OpenGL ES 2.0, including extensions, OpenGL
ES 1.1, and OpenVG 1.1
GPUVGv2 Vector Graphics
Processing Unit,
ver. 2
Multimedia
Peripherals
OpenVG graphics accelerator provides OpenVG 1.1 support as well as
other accelerations, including Real-time hardware curve tesselation of
lines, quadratic and cubic Bezier curves, 16x Line Anti-aliasing, and
various Vector Drawing functions.
HDMI Tx HDMI Tx interface Multimedia
Peripherals
The HDMI module provides HDMI standard interface port to an HDMI
1.4 compliant display.
HSI MIPI HSI interface Connectivity
Peripherals
The MIPI HSI provides a standard MIPI interface to the applications
processor.
I2C-1
I2C-2
I2C-3
I2C Interface Connectivity
Peripherals
I2C provide serial interface for external devices. Data rates of up to 400
kbps are supported.
IOMUXC IOMUX Control System
Control
Peripherals
This module enables flexible IO multiplexing. Each IO pad has default
and several alternate functions. The alternate functions are software
configurable.
IPUv3H-1
IPUv3H-2
Image Processing
Unit, ver. 3H
Multimedia
Peripherals
IPUv3H enables connectivity to displays and video sources, relevant
processing and synchronization and control capabilities, allowing
autonomous operation.
The IPUv3H supports concurrent output to two display ports and
concurrent input from two camera ports, through the following interfaces:
Parallel Interfaces for both display and camera
Single/dual channel LVDS display interface
HDMI transmitter
MIPI/DSI transmitter
MIPI/CSI-2 receiver
The processing includes:
Image conversions: resizing, rotation, inversion, and color space
conversion
A high-quality de-interlacing filter
Video/graphics combining
Image enhancement: color adjustment and gamut mapping, gamma
correction, and contrast enhancement
Support for display backlight reduction
KPP Key Pad Port Connectivity
Peripherals
KPP Supports 8 x 8 external key pad matrix. KPP features are:
Open drain design
Glitch suppression circuit design
Multiple keys detection
Standby key press detection
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 15
LDB LVDS Display Bridge Connectivity
Peripherals
LVDS Display Bridge is used to connect the IPU (Image Processing Unit)
to External LVDS Display Interface. LDB supports two channels; each
channel has following signals:
One clock pair
Four data pairs
Each signal pair contains LVDS special differential pad (PadP, PadM).
MMDC Multi-Mode DDR
Controller
Connectivity
Peripherals
DDR Controller has the following features:
Support 16/32/64-bit DDR3-1066 (LV) or LPDDR2-1066
Supports both dual x32 for LPDDR2 and x64 DDR3 / LPDDR2
configurations (including 2x32 interleaved mode)
Support up to 4 GByte DDR memory space
OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an interface for
reading, programming, and/or overriding identification and control
information stored in on-chip fuse elements. The module supports
electrically-programmable poly fuses (eFUSEs). The OCOTP_CTRL
also provides a set of volatile software-accessible signals that can be
used for software control of hardware elements, not requiring
non-volatility. The OCOTP_CTRL provides the primary user-visible
mechanism for interfacing with on-chip fuse elements. Among the uses
for the fuses are unique chip identifiers, mask revision numbers,
cryptographic keys, JTAG secure mode, boot characteristics, and
various control signals, requiring permanent non-volatility.
OCRAM On-Chip Memory
Controller
Data Path The On-Chip Memory controller (OCRAM) module is designed as an
interface between systems AXI bus and internal (on-chip) SRAM
memory module.
In i.MX 6Dual/6Quad processors, the OCRAM is used for controlling the
256 KB multimedia RAM through a 64-bit AXI bus.
OSC 32 kHz OSC 32 kHz Clocking Generates 32.768 kHz clock from an external crystal.
PCIe PCI Express 2.0 Connectivity
Peripherals
The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU Power-Management
Functions
Data Path Integrated power management unit. Used to provide power to various
SoC domains.
PWM-1
PWM-2
PWM-3
PWM-4
Pulse Width
Modulation
Connectivity
Peripherals
The pulse-width modulator (PWM) has a 16-bit counter and is optimized
to generate sound from stored sample audio images and it can also
generate tones. It uses 16-bit resolution and a 4x16 data FIFO to
generate sound.
RAM
16 KB
Secure/non-secure
RAM
Secured
Internal
Memory
Secure/non-secure Internal RAM, interfaced through the CAAM.
RAM
256 KB
Internal RAM Internal
Memory
Internal RAM, which is accessed through OCRAM memory controller.
ROM
96KB
Boot ROM Internal
Memory
Supports secure and regular Boot Modes. Includes read protection on
4K region for content protection.
ROMCP ROM Controller with
Patch
Data Path ROM Controller with ROM Patch support
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
16 Freescale Semiconductor
Modules List
SATA Serial ATA Connectivity
Peripherals
The SATA controller and PHY is a complete mixed-signal IP solution
designed to implement SATA II, 3.0 Gbps HDD connectivity.
SDMA Smart Direct
Memory Access
System
Control
Peripherals
The SDMA is multi-channel flexible DMA engine. It helps in maximizing
system performance by off-loading the various cores in dynamic data
routing. It has the following features:
Powered by a 16-bit Instruction-Set micro-RISC engine
Multi-channel DMA supporting up to 32 time-division multiplexed
DMA channels
48 events with total flexibility to trigger any combination of channels
Memory accesses including linear, FIFO, and 2D addressing
Shared peripherals between ARM and SDMA
Very fast context-switching with 2-level priority based preemptive
multi-tasking
DMA units with auto-flush and prefetch capability
Flexible address management for DMA transfers (increment,
decrement, and no address changes on source and destination
address)
DMA ports can handle unit-directional and bi-directional flows (copy
mode)
Up to 8-word buffer for configurable burst transfers
Support of byte-swapping and CRC calculations
Library of Scripts and API is available
SJC System JTAG
Controller
System
Control
Peripherals
The SJC provides JTAG interface, which complies with JTAG TAP
standards, to internal logic. The i.MX 6Dual/6Quad processors use
JTAG port for production, testing, and system debugging. In addition, the
SJC provides BSR (Boundary Scan Register) standard support, which
complies with IEEE1149.1 and IEEE1149.6 standards.
The JTAG port must be accessible during platform initial laboratory
bring-up, for manufacturing tests and troubleshooting, as well as for
software debugging by authorized entities. The i.MX 6Dual/6Quad SJC
incorporates three security modes for protecting against unauthorized
accesses. Modes are selected through eFUSE configuration.
SNVS Secure Non-Volatile
Storage
Security Secure Non-Volatile Storage, including Secure Real Time Clock,
Security State Machine, Master Key Control, and Violation/Tamper
Detection and reporting.
SPDIF Sony Philips Digital
Interconnect Format
Multimedia
Peripherals
A standard audio file transfer format, developed jointly by the Sony and
Phillips corporations. It supports Transmitter and Receiver functionality.
SSI-1
SSI-2
SSI-3
I2S/SSI/AC97
Interface
Connectivity
Peripherals
The SSI is a full-duplex synchronous interface, which is used on the
processor to provide connectivity with off-chip audio peripherals. The
SSI supports a wide variety of protocols (SSI normal, SSI network, I2S,
and AC-97), bit depths (up to 24 bits per word), and clock / frame sync
options.
The SSI has two pairs of 8x24 FIFOs and hardware support for an
external DMA controller in order to minimize its impact on system
performance. The second pair of FIFOs provides hardware interleaving
of a second audio stream that reduces CPU overhead in use cases
where two time slots are being used simultaneously.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 17
TEMPMON Temperature Monitor System
Control
Peripherals
The temperature monitor/sensor IP module for detecting high
temperature conditions. The temperature read out does not reflect case
or ambient temperature. It reflects the temperature in proximity of the
sensor location on the die. Temperature distribution may not be
uniformly distributed; therefore, the read out value may not be the
reflection of the temperature value for the entire die.
TZASC Trust-Zone Address
Space Controller
Security The TZASC (TZC-380 by ARM) provides security address region control
functions required for intended application. It is used on the path to the
DRAM controller.
UART-1
UART-2
UART-3
UART-4
UART-5
UART Interface Connectivity
Peripherals
Each of the UARTv2 modules support the following serial data
transmit/receive protocols and configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even,
odd or none)
Programmable baud rates up to 4 MHz. This is a higher max baud
rate relative to the 1.875 MHz, which is stated by the TIA/EIA-232-F
standard and the i.MX31 UART modules.
32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting
auto-baud
IrDA 1.0 support (up to SIR speed of 115200 bps)
Option to operate as 8-pins full UART, DCE, or DTE
USBOH3A USB 2.0 High Speed
OTG and 3x HS
Hosts
Connectivity
Peripherals
USBOH3 contains:
One high-speed OTG module with integrated HS USB PHY
One high-speed Host module with integrated HS USB PHY
Two identical high-speed Host modules connected to HSIC USB
ports.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
18 Freescale Semiconductor
Modules List
uSDHC-1
uSDHC-2
uSDHC-2
uSDHC-4
SD/MMC and SDXC
Enhanced
Multi-Media Card /
Secure Digital Host
Controller
Connectivity
Peripherals
i.MX 6Dual/6Quad specific SoC characteristics:
All four MMC/SD/SDIO controller IPs are identical and are based on the
uSDHC IP. They are:
Fully compliant with MMC command/response sets and Physical
Layer as defined in the Multimedia Card System Specification,
v4.2/4.3/4.4 including high-capacity (size > 2 GB) cards HC MMC.
Hardware reset as specified for eMMC cards is supported at ports #3
and #4 only.
Fully compliant with SD command/response sets and Physical Layer
as defined in the SD Memory Card Specifications, v3.0 including
high-capacity SDHC cards up to 32 GB.
Fully compliant with SDIO command/response sets and
interrupt/read-wait mode as defined in the SDIO Card Specification,
Part E1, v1.10
Fully compliant with SD Card Specification, Part A2, SD Host
Controller Standard Specification, v2.00
All four ports support:
1-bit or 4-bit transfer mode specifications for SD and SDIO cards up
to UHS-I SDR104 mode (104 MB/s max)
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to
52 MHz in both SDR and DDR modes (104 MB/s max)
However, the SoC-level integration and I/O muxing logic restrict the
functionality to the following:
Instances #1 and #2 are primarily intended to serve as external slots
or interfaces to on-board SDIO devices. These ports are equipped
with “Card Detection” and “Write Protection” pads and do not support
hardware reset.
Instances #3 and #4 are primarily intended to serve interfaces to
embedded MMC memory or interfaces to on-board SDIO devices.
These ports do not have “Card detection” and “Write Protection” pads
and do support hardware reset.
All ports can work with 1.8 V and 3.3 V cards. There are two
completely independent I/O power domains for Ports #1 and #2 in four
bit configuration (SD interface). Port #3 is placed in his own
independent power domain and port #4 shares power domain with
some other interfaces.
VDOA VDOA Multimedia
Peripherals
The Video Data Order Adapter (VDOA) is used to re-order video data
from the “tiled” order used by the VPU to the conventional raster-scan
order needed by the IPU.
VPU Video Processing
Unit
Multimedia
Peripherals
A high-performing video processing unit (VPU), which covers many
SD-level and HD-level video decoders and SD-level encoders as a
multi-standard video codec engine as well as several important video
processing, such as rotation and mirroring.
See the i.MX 6Dual/6Quad reference manual for complete list of VPU’s
decoding/encoding capabilities.
WDOG-1 Watchdog Timer
Peripherals
The Watchdog Timer supports two comparison points during each
counting period. Each of the comparison points is configurable to evoke
an interrupt to the ARM core, and a second point evokes an external
event on the WDOG line.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 19
WDOG-2
(TZ)
Watchdog
(TrustZone)
Timer
Peripherals
The TrustZone Watchdog (TZ WDOG) timer module protects against
TrustZone starvation by providing a method of escaping normal mode
and forcing a switch to the TZ mode. TZ starvation is a situation where
the normal OS prevents switching to the TZ mode. Such a situation is
undesirable as it can compromise the systems security. Once the TZ
WDOG module is activated, it must be serviced by TZ software on a
periodic basis. If servicing does not take place, the timer times out. Upon
a time-out, the TZ WDOG asserts a TZ mapped interrupt that forces
switching to the TZ mode. If it is still not served, the TZ WDOG asserts
a security violation signal to the CSU. The TZ WDOG module cannot be
programmed or deactivated by a normal mode Software.
EIM NOR-Flash /PSRAM
interface
Connectivity
Peripherals
The EIM NOR-FLASH / PSRAM provides:
Support 16-bit (in muxed IO mode only) PSRAM memories (sync and
async operating modes), at slow frequency
Support 16-bit (in muxed IO mode only) NOR-Flash memories, at
slow frequency
Multiple chip selects
XTALOSC Crystal Oscillator
interface
The XTALOSC module enables connectivity to external crystal oscillator
device. In a typical application use-case, it is used for 24 MHz oscillator.
Table 2. i.MX 6Dual/6Quad Modules List (continued)
Block
Mnemonic Block Name Subsystem Brief Description
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
20 Freescale Semiconductor
Electrical Characteristics
3.1 Special Signal Considerations
The package contact assignments can be found in Section 6, “Package Information and Contact
Assignments. Signal descriptions are defined in the i.MX 6Dual/6Quad reference manual. Special signal
consideration information is contained in Chapter 1 of Hardware Development Guide for i.MX 6Quad,
6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).
3.2 Recommended Connections for Unused Analog Interfaces
The recommended connections for unused analog interfaces can be found in Section 1.8, “Unused analog
interfaces,” of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of
Applications Processors (IMX6DQ6SDLHDG).
4 Electrical Characteristics
This section provides the device and module-level electrical characteristics for the i.MX 6Dual/6Quad
processors.
4.1 Chip-Level Conditions
This section provides the device-level electrical characteristics for the SoC. See Table 3 for a quick
reference to the individual tables and sections.
4.1.1 Absolute Maximum Ratings
CAUTION
Stresses beyond those listed under Table 4 may affect reliability or cause
permanent damage to the device. These are stress ratings only. Functional
operation of the device at these or any other conditions beyond those
indicated in the Operating Ranges or Parameters tables is not implied.
Table 3. i.MX 6Dual/6Quad Chip-Level Conditions
For these characteristics, … Topic appears
Absolute Maximum Ratings on page 21
FCPBGA Package Thermal Resistance on page 21
Operating Ranges on page 23
External Clock Sources on page 25
Maximal Supply Currents on page 26
Low Power Mode Supply Currents on page 28
USB PHY Current Consumption on page 29
SATA Typical Power Consumption on page 31
PCIe 2.0 Maximum Power Consumption on page 32
HDMI Maximum Power Consumption on page 32
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 21
4.1.2 Thermal Resistance
4.1.2.1 FCPBGA Package Thermal Resistance
Table 5 provides the FCPBGA package thermal resistance data.
Table 4. Absolute Maximum Ratings
Parameter Description Symbol Min Max Unit
Core supply voltages VDDARM_IN
VDDSOC_IN
-0.3 1.5 V
Internal supply voltages VDDARM_CAP
VDDARM23_CAP
VDDSOC_CAP
VDDPU_CAP
-0.3 1.3 V
GPIO supply voltage Supplies denoted as I/O supply -0.5 3.6 V
DDR I/O supply voltage Supplies denoted as I/O supply -0.4 1.975 V
LVDS I/O supply voltage Supplies denoted as I/O supply -0.3 2.8 V
VDDHIGH_IN supply voltage VDDHIGH_IN -0.3 3.6 V
USB VBUS VBUS 5.25 V
Input voltage on USB_OTG_DP, USB_OTG_DN,
USB_H1_DP, USB_H1_DN pins
USB_DP/USB_DN -0.3 3.63 V
Input/output voltage range Vin/Vout -0.5 OVDD1+0.3
1OVDD is the I/O supply voltage.
V
ESD damage immunity: Vesd
V
Human Body Model (HBM)
Charge Device Model (CDM)
2000
500
Storage temperature range TSTORAGE -40 150 oC
Table 5. FCPBGA Package Thermal Resistance Data
Thermal Parameter Test Conditions Symbol Value Unit
Junction to Ambient1
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting
site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board,
and board thermal resistance.
Single-layer board (1s); natural convection2RθJA 31 °C/W
Four-layer board (2s2p); natural convection2RθJA 22 °C/W
Junction to Ambient1Single-layer board (1s); air flow 200 ft/min3RθJMA 24 °C/W
Four-layer board (2s2p); air flow 200 ft/min3RθJMA 18 °C/W
Junction to Board1,4 —R
θJB 12 °C/W
Junction to Case (top)1,5 —R
θJCtop <0.1 °C/W
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
22 Freescale Semiconductor
Electrical Characteristics
2Per JEDEC JESD51-3 with the single layer board horizontal. Thermal test board meets JEDEC specification
for the specified package.
3Per JEDEC JESD51-6 with the board horizontal.
4Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL
SPEC-883 Method 1012.1). The cold plate temperature is used for the case temperature. Reported value
includes the thermal resistance of the interface layer.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 23
4.1.3 Operating Ranges
Table 7 provides the operating ranges of the i.MX 6Dual/6Quad processors.
Table 7. Operating Ranges
Parameter
Description Symbol Min Typ Max1Unit Comment
Run mode: LDO
enabled
VDDARM_IN
VDDARM23_IN21.3531.5 V LDO Output Set Point (VDDARM_CAP4) of
1.225 V minimum for operation up to 852 MHz
or 996 MHz (depending on the device speed
grade).
1.2531.5 V LDO Output Set Point (VDDARM_CAP4) of
1.125 V minimum for operation up to 792 MHz.
1.0531.5 V LDO Output Set Point (VDDARM_CAP4) of
0.925 V minimum for operation up to 396 MHz.
VDDSOC_IN51.3503,6 1.5 V 264 MHz < VPU 352 MHz; VDDSOC and
VDDPU LDO outputs (VDDSOC_CAP and
VDDPU_CAP) require 1.225 V minimum.
1.2753,6 1.5 V VPU 264 MHz; VDDSOC and VDDPU LDO
outputs (VDDSOC_CAP and VDDPU_CAP)
require 1.15 V minimum.
Run mode: LDO
bypassed
VDDARM_IN
VDDARM23_IN21.225 1.3 V LDO bypassed for operation up to 852 MHz or
996 MHz (depending on the device speed
grade).
1.125 1.3 V LDO bypassed for operation up to 792 MHz.
0.925 1.3 V LDO bypassed for operation up to 396 MHz.
VDDSOC_IN51.22561.3 V 264 MHz < VPU 352 MHz
1.1561.3 V VPU 264 MHz
Standby/DSM Mode VDDARM_IN
VDDARM23_IN20.9 1.3 V See Table 11, "Stop Mode Current and Power
Consumption," on page 28.
VDDSOC_IN 0.9 1.3 V
VDDHIGH internal
Regulator
VDDHIGH_IN72.8 3.3 V Must match the range of voltges that the
rechargeable backup battery supports.
Backup battery
supply range
VDD_SNVS_IN72.8 3.3 V Should be supplied from the same supply as
VDDHIGH_IN, if the system does not require
keeping real time and other data on OFF state.
USB supply voltages USB_OTG_VBUS 4.4 5.25 V
USB_H1_VBUS 4.4 5.25 V
DDR I/O supply NVCC_DRAM 1.14 1.2 1.3 V LPDDR2, DDR3-U
1.425 1.5 1.575 V DDR3
1.283 1.35 1.45 V DDR3_L
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
24 Freescale Semiconductor
Electrical Characteristics
Supply for RGMII I/O
power group8NVCC_RGMII 1.15 2.625 V 1.15 V – 1.30 V in HSIC 1.2 V mode
1.43 V – 1.58 V in RGMII 1.5 V mode
1.70 V – 1.90 V in RGMII 1.8 V mode
2.25 V – 2.625 V in RGMII 2.5 V mode
GPIO supplies8NVCC_CSI,
NVCC_EIM0,
NVCC_EIM1,
NVCC_EIM2,
NVCC_ENET,
NVCC_GPIO,
NVCC_LCD,
NVCC_NANDF,
NVCC_SD1,
NVCC_SD2,
NVCC_SD3,
NVCC_JTAG
1.65 1.8,
2.8,
3.3
3.6 V Isolation between the NVCC_EIMx and
NVCC_SDx different supplies allow them to
operate at different voltages within the
specified range.
Example: NVCC_EIM1 can operate at 1.8 V
while NVCC_EIM2 operates at 3.3 V.
NVCC_LVDS2P59
NVCC_MIPI
2.25 2.5 2.75 V
HDMI supply
voltages
HDMI_VP 0.99 1.1 1.3 V
HDMI_VPH 2.25 2.5 2.75 V
PCIe supply voltages PCIE_VP 1.023 1.1 1.3 V
PCIE_VPH 2.325 2.5 2.75 V
PCIE_VPTX 1.023 1.1 1.3 V
SATA Suppy voltages SATA_VP 0.99 1.1 1.3 V
SATA_VPH 2.25 2.5 2.75 V
Junction temperature
Extended Consumer
TJ-20 105 °C See Consumer qualification report for details
(including product lifetime information).
Junction temperature
Standard Consumer
TJ0—95°C See Consumer qualification report for details
(including product lifetime information).
1Applying the maximum voltage results in maximum power consumption and heat generation. Freescale recommends a voltage
set point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.
2For Quad core system, connect to VDDARM_IN. For Dual core system, may be shorted to GND together with
VDDARM23_CAP to reduce leakage.
3VDDARM_IN and VDDSOC_IN must be at least 125 mV higher than the LDO Output Set Point for correct voltage regulation.
4VDDARM_CAP must not exceed VDD_CACHE_CAP by more than 50 mV. VDD_CACHE_CAP must not exceed
VDDARM_CAP by more than 200 mV.
5VDDSOC_CAP and VDDPU_CAP must be equal.
6VDDSOC and VDDPU output voltages must be set according to this rule: VDDARM-VDDSOC/PU<50mV.
7While setting VDD_SNVS_IN voltage with respect to Charging Currents and RTC, see Hardware Development Guide for i.MX
6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).
8All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or
not, and associated I/O pins need to have a pull-up or pull-down resistor applied to limit any floating gate current.
9This supply also powers the pre-drivers of the DDR I/O pins; therefore, it must always be provided, even when LVDS is not used.
Table 7. Operating Ranges (continued)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 25
Table 8 shows on-chip LDO regulators that can supply on-chip loads.
4.1.4 External Clock Sources
Each i.MX 6Dual/6Quad processor has two external input system clocks: a low frequency (RTC_XTAL)
and a high frequency (XTAL).
The RTC_XTAL is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watchdog counters. The clock input can be
connected to either an external oscillator or a crystal using the internal oscillator amplifier. Additionally,
there is an internal ring oscillator, which can substitute the RTC_XTAL, in case accuracy is not important.
The system clock input XTAL is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either an external oscillator or a crystal using the
internal oscillator amplifier.
Table 9 shows the interface frequency requirements.
Table 8. On-Chip LDOs1 and their On-Chip Loads
1On-chip LDOs are designed to supply the i.MX 6Dual/6Quad loads and must not be used to supply
external loads.
Voltage Source Load Comment
VDDHIGH_CAP NVCC_LVDS2P5 Board-level connection to VDDHIGH_CAP
NVCC_MIPI
HDMI_VPH
PCIE_VPH
SATA_VPH
VDDSOC_CAP2
2VDDARM_CAP/VDDARM23_CAP must not exceed VDDSOC_CAP by more than 50 mV.
VDD_CACHE_CAP3
3VDD_CACHE_CAP must not exceed VDDARM_CAP by more than 200 mV. VDDARM_CAP must not
exceed VDD_CACHE_CAP by more than 50 mV.
Board-level connection to VDDSOC_CAP
HDMI_VP
PCIE_VP
PCIE_VPTX
SATA_VP
Table 9. External Input Clock Frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTAL Oscillator1,2
1External oscillator or a crystal with internal oscillator amplifier.
2The required frequency stability of this clock source is application dependent. For recommendations, see Hardware
Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors
(IMX6DQ6SDLHDG).
fckil —32.768
3/32.0 kHz
XTAL Oscillator4,2 fxtal 24 MHz
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
26 Freescale Semiconductor
Electrical Characteristics
The typical values shown in Table 9 are required for use with Freescale BSPs to ensure precise time
keeping and USB operation. For RTC_XTAL operation, two clock sources are available:
On-chip 40 kHz ring oscillator: This clock source has the following characteristics:
Approximately 25 μA more Idd than crystal oscillator
Approximately ±50% tolerance
No external component required
Starts up quicker than 32 kHz crystal oscillator
External crystal oscillator with on-chip support circuit
At power up, an internal ring oscillator is utilized. After crystal oscillator is stable, the clock
circuit switches over to the crystal oscillator automatically.
Higher accuracy than ring oscillator.
If no external crystal is present, then the ring oscillator is utilized.
The decision of choosing a clock source should be taken based on real-time clock use and precision
timeout.
4.1.5 Maximal Supply Currents
The Power Virus numbers shown in Table 10 represent a use case designed specifically to show the
maximum current consumption possible. All cores are running at the defined maximum frequency and are
limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a
very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention
was to specifically show the worst case power consumption.
The MMPF0100xxxx, Freescale’s power management IC targeted for the i.MX 6x family, supports the
Power Virus mode operating at 1% duty cycle. Higher duty cycles are allowed, but a robust thermal design
is required for the increased system power dissipation.
See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for more
details on typical power consumption under various use case definitions.
3Recommended nominal frequency 32.768 kHz.
4External oscillator or a fundamental frequency crystal with internal oscillator amplifier.
Table 10. Maximal Supply Currents
Power Line Conditions Max Current Unit
VDDARM_IN+VDDARM23_IN 996 MHz ARM clock based on
Power Virus operation
3920 mA
VDDSOC_IN 996 MHz ARM clock 1890 mA
VDDHIGH_IN 1251 mA
VDD_SNVS_IN 2752 μA
USB_OTG_VBUS/USB_H1_VBUS (LDO 3P0) 253 mA
Primary Interface (IO) Supplies
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 27
NVCC_DRAM 4
NVCC_ENET N=10 Use maximal IO equation5
NVCC_LCD N=29 Use maximal IO equation5
NVCC_GPIO N=24 Use maximal IO equation5
NVCC_CSI N=20 Use maximal IO equation5
NVCC_EIM0 N=19 Use maximal IO equation5
NVCC_EIM1 N=14 Use maximal IO equation5
NVCC_EIM2 N=20 Use maximal IO equation5
NVCC_JTAG N=6 Use maximal IO equation5
NVCC_RGMII N=12 Use maximal IO equation5
NVCC_SD1 N=6 Use maximal IO equation5
NVCC_SD2 N=6 Use maximal IO equation5
NVCC_SD3 N=11 Use maximal IO equation5
NVCC_NANDF N=26 Use maximal IO equation5
NVCC_MIPI 25.5 mA
MISC
DRAM_VREF 1 mA
1The actual maximum current drawn from VDDHIGH_IN will be as shown plus any additional current drawn from the
VDDHIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS2P5, NVCC_MIPI, or
HDMI, PCIe, and SATA VPH supplies).
2The maximum VDD_SNVS_IN current may be higher depending on specific operating configurations, such as
BOOT_MODE[1:0] not equal to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA,
if available. VDD_SNVS_CAP charge time will increase if less than 1 mA is available.
3This is the maximum current per active USB physical interface.
4The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators
are typically available from the memory vendors. They take in account factors, such as signal termination.
See the i.MX 6Dual/6Quad Power Consumption Measurement Application Note (AN4509) for examples of DRAM power
consumption during specific use case scenarios.
5General equation for estimated, maximal power consumption of an IO power supply:
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
Table 10. Maximal Supply Currents (continued)
Power Line Conditions Max Current Unit
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
28 Freescale Semiconductor
Electrical Characteristics
4.1.6 Low Power Mode Supply Currents
Table 11 shows the current core consumption (not including I/O) of i.MX 6Dual/6Quad processors in
selected low power modes.
Table 11. Stop Mode Current and Power Consumption
Mode Test Conditions Supply Typical1
1The typical values shown here are for information only and are not guaranteed. These values are average values measured
on a worst-case wafer at 25°C.
Unit
WAIT ARM, SoC, and PU LDOs are set to 1.225 V
HIGH LDO set to 2.5 V
Clocks are gated
DDR is in self refresh
PLLs are active in bypass (24 MHz)
Supply voltages remain ON
VDDARM_IN (1.4 V) 6 mA
VDDSoC_IN (1.4 V) 23 mA
VDDHIGH_IN (3.0 V) 3.7 mA
To t a l 5 2 m W
STOP_ON ARM LDO set to 0.9 V
SoC and PU LDOs set to 1.225 V
HIGH LDO set to 2.5 V
PLLs disabled
DDR is in self refresh
VDDARM_IN (1.4 V) 7.5 mA
VDDSoC_IN (1.4 V) 22 mA
VDDHIGH_IN (3.0 V) 3.7 mA
To t a l 5 2 m W
STOP_OFF ARM LDO set to 0.9 V
SoC LDO set to 1.225 V
PU LDO is power gated
HIGH LDO set to 2.5 V
PLLs disabled
DDR is in self refresh
VDDARM_IN (1.4 V) 7.5 mA
VDDSoC_IN (1.4 V) 13.5 mA
VDDHIGH_IN (3.0 V) 3.7 mA
To t a l 4 1 m W
STANDBY ARM and PU LDOs are power gated
SoC LDO is in bypass
HIGH LDO is set to 2.5 V
PLLs are disabled
•Low voltage
Well Bias ON
XTAL is enabled
VDDARM_IN (0.9 V) 0.1 mA
VDDSoC_IN (0.9 V) 13 mA
VDDHIGH_IN (3.0 V) 3.7 mA
To t a l 2 2 m W
Deep Sleep Mode
(DSM)
ARM and PU LDOs are power gated
SoC LDO is in bypass
HIGH LDO is set to 2.5 V
PLLs are disabled
•Low voltage
Well Bias ON
XTAL and bandgap are disabled
VDDARM_IN (0.9 V) 0.1 mA
VDDSoC_IN (0.9 V) 2 mA
VDDHIGH_IN (3.0 V) 0.5 mA
To t a l 3 . 4 m W
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 29
4.1.7 USB PHY Current Consumption
4.1.7.1 Power Down Mode
In power down mode, everything is powered down, including the VBUS valid detectors, typ condition.
Table 12 shows the USB interface current consumption in power down mode.
NOTE
The currents on the VDDHIGH_CAP and VDDUSB_CAP were identified
to be the voltage divider circuits in the USB-specific level shifters.
Table 12. USB PHY Current Consumption in Power Down Mode
VDDUSB_CAP (3.0 V) VDDHIGH_CAP (2.5 V) NVCC_PLL_OUT (1.1 V)
Current 5.1 μA 1.7 μA <0.5 μA
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
30 Freescale Semiconductor
Electrical Characteristics
4.1.8 SATA Typical Power Consumption
Table 23 provides SATA PHY currents for certain Tx operating modes.
NOTE
Tx power consumption values are provided for a single transceiver. If
T = single transceiver power and C = Clock module power, the total power
required for N lanes = N x T + C.
Table 13. SATA PHY Current Drain
Mode Test Conditions Supply Typical Current Unit
PO: Full-power state1
1Programmed for 1.0 V peak-to-peak Tx level.
Single Transceiver SATA_VP 11 mA
SATA_VPH 13
Clock Module SATA_VP 6.9
SATA_VPH 6.2
PO: Mobile2
2Programmed for 0.9 V peak-to-peak Tx level with no boost or attenuation.
Single Transceiver SATA_VP 11 mA
SATA_VPH 11
Clock Module SATA_VP 6.9
SATA_VPH 6.2
P0s: Transmitter idle Single Transceiver SATA_VP 9.4 mA
SATA_VPH 2.9
Clock Module SATA_VP 6.9
SATA_VPH 6.2
P1: Transmitter idle, Rx powered
down, LOS disabled
Single Transceiver SATA_VP 0.67 mA
SATA_VPH 0.23
Clock Module SATA_VP 6.9
SATA_VPH 6.2
P2: Powered-down state, only
LOS and POR enabled
Single Transceiver SATA_VP 0.53 mA
SATA_VPH 0.11
Clock Module SATA_VP 0.036
SATA_VPH 0.12
PDDQ mode3
3LOW power non-functional.
Single Transceiver SATA_VP 0.13 mA
SATA_VPH 0.012
Clock Module SATA_VP 0.008
SATA_VPH 0.004
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 31
4.1.9 PCIe 2.0 Maximum Power Consumption
Table 25 provides PCIe PHY currents for certain operating modes.
Table 14. PCIe PHY Current Drain
Mode Test Conditions Supply Max Current Unit
PO: Normal Operation 5G Operations PCIe_VP (1.1 V) 40 mA
PCIe_VPTX (1.1 V) 20
PCIe_VPH (2.5 V) 21
2.5G Operations PCIe_VP (1.1 V) 27
PCIe_VPTX (1.1 V) 20
PCIe_VPH (2.5 V) 20
POs: Low Recovery Time
Latency, Power Saving State
5G Operations PCIe_VP (1.1 V) 30 mA
PCIe_VPTX (1.1 V) 2.4
PCIe_VPH (2.5 V) 18
2.5G Operations PCIe_VP (1.1 V) 20
PCIe_VPTX (1.1 V) 2.4
PCIe_VPH (2.5 V) 18
P1: Longer Reocvery Time
Latency, Lower Power State
PCIe_VP (1.1 V) 12 mA
PCIe_VPTX (1.1 V) 2.4
PCIe_VPH (2.5 V) 12
Power Down PCIe_VP (1.1 V) 1.3 mA
PCIe_VPTX (1.1 V) 0.18
PCIe_VPH (2.5 V) 0.36
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
32 Freescale Semiconductor
Electrical Characteristics
4.1.10 HDMI Maximum Power Consumption
Table 15 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data pattern and Power-down
modes.
Table 15. HDMI PHY Current Drain
Mode Test Conditions Supply Max Current Unit
Active Bit rate 251.75 Mbps HDMI_VPH 14 mA
HDMI_VP 4.1 mA
Bit rate 279.27 Mbps HDMI_VPH 14 mA
HDMI_VP 4.2 mA
Bit rate 742.5 Mbps HDMI_VPH 17 mA
HDMI_VP 7.5 mA
Bit rate 1.485 Gbps HDMI_VPH 17 mA
HDMI_VP 12 mA
Bit rate 2.275 Gbps HDMI_VPH 16 mA
HDMI_VP 17 mA
Bit rate 2.97 Gbps HDMI_VPH 19 mA
HDMI_VP 22 mA
Power-down HDMI_VPH 49 μA
HDMI_VP 1100 μA
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 33
4.2 Power Supplies Requirements and Restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Irreversible damage to the processor
4.2.1 Power-Up Sequence
For power-up sequence, the restrictions are as follows:
VDD_SNVS_IN supply must be turned ON before any other power supply. It may be connected
(shorted) with VDDHIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
If VDDARM_IN and VDDSOC_IN are connected to different external supply sources, then
VDDARM_IN supply must be turned ON together with VDDSOC_IN supply or not delayed more
than 1 ms.
NOTE
The POR_B input (if used) must be immediately asserted at power-up and
remain asserted until the last power rail reaches its working voltage. In the
absence of an external reset feeding the POR_B input, the internal POR
module takes control. See the i.MX 6Dual/6Quad reference manual for
further details and to ensure that all necessary requirements are being met.
NOTE
Ensure that there is no back voltage (leakage) from any supply on the board
towards the 3.3 V supply (for example, from the external components that
use both the 1.8 V and 3.3 V supplies).
NOTE
USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply
sequence and can be powered at any time.
4.2.2 Power-Down Sequence
No special restrictions for i.MX 6Dual/6Quad SoC.
4.2.3 Power Supplies Usage
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx)
is OFF. This can cause internal latch-up and malfunctions due to reverse current flows. For
information about I/O power supply of each pin, see “Power Group” column of Table 93, "21 x 21
mm Functional Contact Assignments," on page 147.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
34 Freescale Semiconductor
Electrical Characteristics
When the SATA interface is not used, the SATA_VP and SATA_VPH supplies should be grounded.
The input and output supplies for rest of the ports (SATA_REFCLKM, SATA_REFCLKP,
SATA_REXT, SATA_RXM, SATA_RXP, and SATA_TXM) can be left floating. It is
recommended not to turn OFF the SATA_VPH supply while the SATA_VP supply is ON, as it may
lead to excessive power consumption. If boundary scan test is used, SATA_VP and SATA_VPH
must remain powered.
When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and PCIE_VPTX supplies should
be grounded. The input and output supplies for rest of the ports (PCIE_REXT, PCIE_RXM,
PCIE_RXP, PCIE_TXM, and PCIE_TXP) can be left floating. It is recommended not to turn the
PCIE_VPH supply OFF while the PCIE_VP supply is ON, as it may lead to excessive power
consumption. If boundary scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must remain
powered.
4.3 Integrated LDO Voltage Regulator Parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use
only and should not be used to power any external circuitry. See the i.MX 6Dual/6Quad reference manual
for details on the power tree scheme recommended operation.
NOTE
The *_CAP signals should not be powered externally. These signals are
intended for internal LDO or LDO bypass operation only.
4.3.1 Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)
There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because
of their construction). The advantages of the regulators are to reduce the input supply variation because of
their input supply ripple rejection and their on die trimming. This translates into more voltage for the die
producing higher operating frequencies. These regulators have three basic modes.
Bypass. The regulation FET is switched fully on passing the external voltage, DCDC_LOW, to the
load unaltered. The analog part of the regulator is powered down in this state, removing any loss
other than the IR drop through the power grid and FET.
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.
The analog part of the regulator is powered down here limiting the power consumption.
Analog regulation mode. The regulation FET is controlled such that the output voltage of the
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV
steps.
For additional information, see the i.MX 6Dual/6Quad reference manual.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 35
4.3.2 Analog Regulators
4.3.2.1 LDO_1P1
The LDO_1P1 regulator implements a programmable linear-regulator function from VDDHIGH_IN (see
Table 7 for min and max input requirements). Typical Programming Operating Range is 1.0 V to 1.2 V
with the nominal default setting as 1.1 V. Since we are not testing the accuracy or the % regulation, and
only testing with the LDO set to either 1.0V or 1.2V, this is the only range that is guaranteed. The regulator
has been designed to be stable with a minimum external low ESR decoupling capacitor of 1 μF (2.2 μF
should be considered the recommended minimum value), though the actual capacitance required should
be determined by the application. A programmable brown-out detector is included in the regulator that can
be used by the system to determine when the load capability of the regulator is being exceeded to take the
necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up,
if needed. Active-pull-down can also be enabled for systems requiring this feature.
For additional information, see the i.MX 6Dual/6Quad reference manual.
4.3.2.2 LDO_2P5
The LDO_2P5 module implements a programmable linear-regulator function from VDDHIGH_IN (see
Table 7 for min and max input requirements). Typical Programming Operating Range is 2.25 V to 2.75 V
with the nominal default setting as 2.5 V. Since we are not testing the accuracy or the % regulation, and
only testing with the LDO set to either 2.25V or 2.75V, this is the only range that is guaranteed. The
regulator has been designed to be stable with a minimum external low ESR decoupling capacitor of 1 μF
(2.2 μF should be considered the recommended minimum value), though the actual capacitance required
should be determined by the application. A programmable brown-out detector is included in the regulator
that can be used by the system to determine when the load capability of the regulator is being exceeded, to
take the necessary steps. Current-limiting can be enabled to allow for in-rush current requirements during
start-up, if needed. Active-pull-down can also be enabled for systems requiring this feature. An alternate
self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep
the output voltage alive during low-power modes where the main regulator driver and its associated global
bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a
function of the input supply as well as the load current. Typically, with a 3 V input supply the
weak-regulator output is 2.525 V and its output impedance is approximately 40 Ω.
For additional information, see the i.MX 6Dual/6Quad reference manual.
4.3.2.3 LDO_USB
The LDO_USB module implements a programmable linear-regulator function from the
USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output
voltage. The regulator has been designed to be stable with a minimum external low ESR decoupling
capacitor of 1 μF (2.2 μF should be considered the recommended minimum value), though the actual
capacitance required should be determined by the application. A programmable brown-out detector is
included in the regulator that can be used by the system to determine when the load capability of the
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows
the user to select to run the regulator from either VBUS supply, when both are present. If only one of the
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
36 Freescale Semiconductor
Electrical Characteristics
VBUS voltages is present, then the regulator automatically selects this supply. Current limit is also
included to help the system meet in-rush current targets. If no VBUS voltage is present, then the
VBUSVALID threshold setting will prevent the regulator from being enabled.
For additional information, see the i.MX 6Dual/6Quad reference manual.
4.4 PLL Electrical Characteristics
4.4.1 Audio/Video PLL Electrical Parameters
4.4.2 528 MHz PLL
4.4.3 Ethernet PLL
Table 16. Audio/Video PLL Electrical Parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 17. 528 MHz PLL Electrical Parameters
Parameter Value
Clock output range 528 MHz PLL output
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 18. Ethernet PLL Electrical Parameters
Parameter Value
Clock output range 500 MHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 37
4.4.4 480 MHz PLL
4.4.5 ARM PLL
4.5 On-Chip Oscillators
4.5.1 OSC24M
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.5.2 OSC32K
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements a low power oscillator. It also implements a power mux such that it can be powered
from either a ~3 V backup battery (VDD_SNVS_IN) or VDDHIGH_IN such as the oscillator consumes
power from VDDHIGH_IN when that supply is available and transitions to the back up battery when
VDDHIGH_IN is lost.
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz
clock will automatically switch to a crude internal ring oscillator. The frequency range of this block is
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.
The OSC32k runs from VDD_SNVS_CAP, which comes from the VDDHIGH_IN/VDD_SNVS_IN
power mux. The target battery is a ~3 V coin cell. Proper choice of coin cell type is necessary for chosen
VDDHIGH_IN range. Appropriate series resistor (Rs) must be used when connecting the coin cell. Rs
Table 19. 480 MHz PLL Electrical Parameters
Parameter Value
Clock output range 480 MHz PLL output
Reference clock 24 MHz
Lock time <383 reference cycles
Table 20. ARM PLL Electrical Parameters
Parameter Value
Clock output range 650 MHz~1.3 GHz
Reference clock 24 MHz
Lock time <2250 reference cycles
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
38 Freescale Semiconductor
Electrical Characteristics
depends on the charge current limit that depends on the chosen coin cell. For example, for Panasonic
ML621:
Average Discharge Voltage is 2.5 V
Maximum Charge Current is 0.6 mA
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k
NOTE
Always refer to the chosen coin cell manufacturer's data sheet for the latest
information.
4.6 I/O DC Parameters
This section includes the DC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
LVDS I/O
NOTE
The term ‘OVDD’ in this section refers to the associated supply rail of an
input or output.
Table 21. OSC32K Main Characteristics
Parameter Min Typ Max Comments
Fosc 32.768 kHz This frequency is nominal and determined mainly by
the crystal selected. 32.0 K would work as well.
Current
consumption
4 μA The typical value shown is only for the oscillator,
driven by an external crystal. If the internal ring
oscillator is used instead of an external crystal, then
approximately 25 μA should be added to this value.
Bias resistor 14 MΩThis the integrated bias resistor that sets the amplifier
into a high gain state. Any leakage through the ESD
network, external board leakage, or even a scope
probe that is significant relative to this value will
debias the amplifier. The debiasing will result in low
gain, and will impact the circuit's ability to start up and
maintain oscillations.
Target Crystal Properties
Cload 10 pF Usually crystals can be purchased tuned for different
Cloads. This Cload value is typically 1/2 of the
capacitances realized on the PCB on either side of
the quartz. A higher Cload will decrease oscillation
margin, but increases current oscillating through the
crystal.
ESR 50 kΩ100 kΩEquivalent series resistance of the crystal. Choosing
a crystal with a higher value will decrease the
oscillating margin.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 39
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells
4.6.1 General Purpose I/O (GPIO) DC Parameters
Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the
operating ranges in Table 7, unless otherwise noted.
Table 22. GPIO I/O DC Parameters
Parameter Symbol Test Conditions Min Max Unit
High-level output voltage1Voh Ioh = -0.1 mA (DSE2 = 001, 010)
Ioh = -1 mA (DSE = 011, 100, 101, 110, 111)
OVDD 0.15 V
Low-level output voltage1Vol Iol = 0.1 mA (DSE2 = 001, 010)
Iol = 1mA (DSE = 011, 100, 101, 110, 111)
—0.15V
High-Level DC input voltage1, 3Vih 0.7 ×OVDD OVDD V
Low-Level DC input voltage1, 3Vil 0 0.3 ×OVDD V
Input Hysteresis Vhys OVDD = 1.8 V
OVDD = 3.3 V
0.25 V
Schmitt trigger VT+3, 4 VT+ 0.5 ×OVDD V
Schmitt trigger VT–3, 4 VT– 0.5 ×OVDD V
Input current (no pull-up/down) Iin Vin = OVDD or 0 -1 1 μA
Input current (22 kΩ pull-up) Iin Vin = 0 V
Vin = OVDD
212
1μA
Input current (47 kΩ pull-up) Iin Vin = 0 V
Vin = OVDD
100
1μA
Input current (100 kΩ pull-up) Iin Vin = 0 V
Vin= OVDD
—48
1μA
Input current (100 kΩ pull-down) Iin Vin = 0 V
Vin = OVDD
—1
48 μA
Keeper circuit resistance Rkeep Vin = 0.3 x OVDD
Vin = 0.7 x OVDD
105 175 kΩ
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
40 Freescale Semiconductor
Electrical Characteristics
4.6.2 DDR I/O DC Parameters
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.
4.6.2.1 LPDDR2 Mode I/O DC Parameters
The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June,
2009. The parameters in Table 23 are guaranteed per the operating ranges in Table 7, unless otherwise
noted.
Sink current in Open Drain mode Iskod 7 mA
Sink/source current in Push-Pull
mode
Isspp 7 mA
1Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
2DSE is the Drive Strength Field setting in the associated IOMUX control register.
3To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
4Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
Table 23. LPDDR2 I/O DC Electrical Parameters1
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage Voh Ioh = -0.1 mA 0.9*OVDD V
Low-level output voltage Vol Iol = 0.1 mA 0.1*OVDD V
Input reference voltage Vref 0.49*OVDD 0.51*OVDD
DC input High Voltage Vih(dc) Vref+0.13V OVDD V
DC input Low Voltage Vil(dc) OVSS Vref-0.13V V
Differential Input Logic High Vih(diff) 0.26 See Note 2
2The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot (see Ta b l e 2 8 ).
Differential Input Logic Low Vil(diff) See Note 2-0.26
Input current (no pull-up/down) Iin Vin = 0 or OVDD -2.5 2.5 μA
Pull-up/pull-down impedance mismatch MMpupd -15 +15 %
240 Ω unit calibration resolution Rres 10 Ω
Keeper circuit resistance Rkeep 110 175 kΩ
Table 22. GPIO I/O DC Parameters (continued)
Parameter Symbol Test Conditions Min Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 41
4.6.2.2 DDR3/DDR3L Mode I/O DC Parameters
The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release April,
2008. The parameters in Table 24 are guaranteed per the operating ranges in Table 7, unless otherwise
noted.
4.6.3 LVDS I/O DC Parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
Table 25 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.
Table 24. DDR3/DDR3L I/O DC Electrical Parameters
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage Voh Ioh = -0.1 mA
Voh (DSE = 001)
0.8*OVDD1
1OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)
—V
Ioh = -1 mA
Voh (for all except DSE = 001)
Low-level output voltage Vol Iol = 0.1 mA
Vol (DSE = 001)
—0.2*OVDDV
Iol = 1 mA
Vol (for all except DSE = 001)
Input reference voltage Vref2
2Vref – DDR3/DDR3L external reference voltage
0.49*OVDD 0.51*OVDD
DC input Logic High Vih(dc) Vref+0.1 OVDD V
DC input Logic Low Vil(dc) OVSS Vref-0.1 V
Differential input Logic High Vih(diff) 0.2 See Note3
3The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot (see Ta b l e 2 9 ).
V
Differential input Logic Low Vil(diff) See Note3-0.2 V
Termination Voltage Vtt Vtt tracking OVDD/2 0.49*OVDD 0.51*OVDD V
Input current (no pull-up/down) Iin Vin = 0 or OVDD -2.9 2.9 μA
Pull-up/pull-down impedance mismatch MMpupd -10 10 %
240 Ω unit calibration resolution Rres 10 Ω
Keeper circuit resistance Rkeep 105 175 kΩ
Table 25. LVDS I/O DC Parameters
Parameter Symbol Test Conditions Min Max Unit
Output Differential Voltage VOD Rload=100 Ω between padP and padN 250 450 mV
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
42 Freescale Semiconductor
Electrical Characteristics
4.7 I/O AC Parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
LVDS I/O
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and
Figure 5.
Figure 4. Load Circuit for Output
Figure 5. Output Transition Time Waveform
Output High Voltage VOH IOH = 0 mA 1.25 1.6
VOutput Low Voltage VOL IOL = 0 mA 0.9 1.25
Offset Voltage VOS 1.125 1.375
Table 25. LVDS I/O DC Parameters (continued)
Parameter Symbol Test Conditions Min Max Unit
Test Point
From Output
CL
CL includes package, probe and fixture capacitance
Under Test
0V
OVDD
20%
80% 80%
20%
tr tf
Output (at pad)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 43
4.7.1 General Purpose I/O AC Parameters
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 26 and Table 27,
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the
IOMUXC control registers.
Table 26. General Purpose I/O AC Parameters 1.8 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=111)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.72/2.79
1.51/1.54
ns
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.20/3.36
1.96/2.07
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=100)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.64/3.88
2.27/2.53
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 4.32/4.50
3.16/3.17
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Table 27. General Purpose I/O AC Parameters 3.3 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, ipp_dse=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 1.70/1.79
1.06/1.15
ns
Output Pad Transition Times, rise/fall
(High Drive, ipp_dse=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.35/2.43
1.74/1.77
Output Pad Transition Times, rise/fall
(Medium Drive, ipp_dse=010)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.13/3.29
2.46/2.60
Output Pad Transition Times, rise/fall
(Low Drive. ipp_dse=001)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 5.14/5.57
4.77/5.15
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
44 Freescale Semiconductor
Electrical Characteristics
4.7.2 DDR I/O AC Parameters
The LPDDR2 interface mode fully complies with JESD209-2B LPDDR2 JEDEC standard release June,
2009. The DDR3/DDR3L interface mode fully complies with JESD79-3D DDR3 JEDEC standard release
April, 2008.
Table 28 shows the AC parameters for DDR I/O operating in LPDDR2 mode.
Table 29 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.
Table 28. DDR I/O LPDDR2 Mode AC Parameters1
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
Parameter Symbol Test Condition Min Typ Max Unit
AC input logic high Vih(ac) Vref + 0.22 OVDD V
AC input logic low Vil(ac) 0 Vref 0.22 V
AC differential input high voltage2
2Vid(ac) specifies the input differential voltage |Vtr Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) Vil(ac).
Vidh(ac) 0.44 V
AC differential input low voltage Vidl(ac) 0.44 V
Input AC differential cross point voltage3
3The typical value of Vix(ac) is expected to be about 0.5 * OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Vix(ac) Relative to Vref -0.12 0.12 V
Over/undershoot peak Vpeak 0.35 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 533 MHz 0.3 V-ns
Single output slew rate, measured
between Vol(ac) and Voh(ac)
tsr 50 Ω to Vref.
5 pF load.
Drive impedance = 4 0 Ω ±30%
1.5 3.5 V/ns
50 Ω to Vref.
5pF load.
Drive impedance = 60 Ω ±30%
1—2.5
Skew between pad rise/fall asymmetry +
skew caused by SSN
tSKD clk = 533 MHz ——
0.1 ns
Table 29. DDR I/O DDR3/DDR3L Mode AC Parameters1
Parameter Symbol Test Condition Min Typ Max Unit
AC input logic high Vih(ac) Vref + 0.175 OVDD V
AC input logic low Vil(ac) 0 Vref 0.175 V
AC differential input voltage2Vid(ac) 0.35 V
Input AC differential cross point voltage3Vix(ac) Relative to Vref Vref 0.15 Vref + 0.15 V
Over/undershoot peak Vpeak 0.4 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 533 MHz 0.5 V-ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 45
4.7.3 LVDS I/O AC Parameters
The differential output transition time waveform is shown in Figure 6.
Figure 6. Differential LVDS Driver Transition Time Waveform
Table 30 shows the AC parameters for LVDS I/O.
Single output slew rate, measured between
Vol(ac) and Voh(ac)
tsr Driver impedance =
34 Ω
2.5 5 V/ns
Skew between pad rise/fall asymmetry +
skew caused by SSN
tSKD clk = 533 MHz ——
0.1 ns
1Note that the JEDEC JESD79_3C specification supersedes any specification in this document.
2Vid(ac) specifies the input differential voltage |Vtr-Vcp| required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) Vil(ac).
3The typical value of Vix(ac) is expected to be about 0.5 * OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Table 30. I/O AC Parameters of LVDS Pad
Parameter Symbol Test Condition Min Typ Max Unit
Differential pulse skew1
1tSKD = | tPHLD –t
PLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and
the negative going edge of the same channel.
tSKD
Rload = 100 Ω,
Cload = 2 pF
0.25
nsTransition Low to High Time2
2Measurement levels are 20-80% from output voltage.
tTLH ——0.5
Transition High to Low Time2tTHL ——0.5
Operating Frequency f 600 800 MHz
Offset voltage imbalance Vos 150 mV
Table 29. DDR I/O DDR3/DDR3L Mode AC Parameters1 (continued)
Parameter Symbol Test Condition Min Typ Max Unit
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
46 Freescale Semiconductor
Electrical Characteristics
4.8 Output Buffer Impedance Parameters
This section defines the I/O impedance parameters of the i.MX 6Dual/6Quad processors for the following
I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2, and DDR3 modes
LVDS I/O
NOTE
GPIO and DDR I/O output driver impedance is measured with “long”
transmission line of impedance Ztl attached to I/O pad and incident wave
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that
defines specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 7).
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 47
Figure 7. Impedance Matching Load for Measurement
ipp_do
Cload = 1p
Ztl Ω, L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
0
U,(V)
OVDD
t,(ns)
0
VDD
Vin (do)
Vout (pad)
U,(V)
Vref
Rpu = Vovdd–Vref1
Vref1
× Ztl
Rpd = × Ztl
Vref2
Vovdd–Vref2
Vref1 Vref2
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
48 Freescale Semiconductor
Electrical Characteristics
4.8.1 GPIO Output Buffer Impedance
Table 31 shows the GPIO output buffer impedance (OVDD 1.8 V).
Table 32 shows the GPIO output buffer impedance (OVDD 3.3 V).
Table 31. GPIO Output Buffer Average Impedance (OVDD 1.8 V)
Parameter Symbol Drive Strength (ipp_dse) Typ Value Unit
Output Driver
Impedance
Rdrv
001
010
011
100
101
110
111
260
130
90
60
50
40
33
Ω
Table 32. GPIO Output Buffer Average Impedance (OVDD 3.3 V)
Parameter Symbol Drive Strength (ipp_dse) Typ Value Unit
Output Driver
Impedance
Rdrv
001
010
011
100
101
110
111
150
75
50
37
30
25
20
Ω
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 49
4.8.2 DDR I/O Output Buffer Impedance
The LPDDR2 interface fully complies with JESD209-2B LPDDR2 JEDEC standard release June, 2009.
The DDR3 interface fully complies with JESD79-3D DDR3 JEDEC standard release April, 2008.
Table 33 shows DDR I/O output buffer impedance of i.MX 6Dual/6Quad processors.
Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 W external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
4.8.3 LVDS I/O Output Buffer Impedance
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
4.9 System Modules Timing
This section contains the timing and electrical parameters for the modules in each i.MX 6Dual/6Quad
processor.
4.9.1 Reset Timings Parameters
Figure 8 shows the reset timing and Table 34 lists the timing parameters.
Figure 8. Reset Timing Diagram
Table 33. DDR I/O Output Buffer Impedance
Parameter Symbol Test Conditions
Typical
Unit
NVCC_DRAM=1.5 V
(DDR3)
DDR_SEL=11
NVCC_DRAM=1.2 V
(LPDDR2)
DDR_SEL=10
Output Driver
Impedance Rdrv
Drive Strength (DSE) =
000
001
010
011
100
101
110
111
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Ω
POR_B
CC1
(Input)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
50 Freescale Semiconductor
Electrical Characteristics
4.9.2 WDOG Reset Timing Parameters
Figure 9 shows the WDOG reset timing and Table 35 lists the timing parameters.
Figure 9. WDOG_B Timing Diagram
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 μs.
NOTE
WDOG_B output signals (for each one of the Watchdog modules) do not have
dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
4.9.3 External Interface Module (EIM)
The following subsections provide information on the EIM.
Table 34. Reset Timing Parameters
ID Parameter Min Max Unit
CC1 Duration of POR_B to be qualified as valid (input slope <= 5 ns) 1 RTC_XTALI cycle
Table 35. WDOG_B Timing Parameters
ID Parameter Min Max Unit
CC3 Duration of WDOG_B Assertion 1 RTC_XTALI cycle
WDOG_B
CC3
(Output)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 51
4.9.3.1 EIM Signal Cross Reference
Table 36 is a guide intended to help the user identify the signals in the EIM chapter of the i.MX
6Dual/6Quad reference manual that are identical to those mentioned in this data sheet.
4.9.3.2 EIM Interface Pads Allocation
EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes.
Table 37 provides EIM interface pads allocation in different modes.
Table 36. EIM Signal Cross Reference
Reference Manual EIM Chapter
Nomenclature
Data Sheet Nomenclature, Reference Manual External Signals and Pin
Multiplexing Chapter, and IOMUXC Controller Chapter Nomenclature
BCLK EIM_BCLK
CSx_B EIM_CSx
WE_B EIM_RW
OE_B EIM_OE
BEy_B EIM_EBx
ADV_B EIM_LBA
ADDR EIM_A[25:16], EIM_DA[15:0]
ADDR/M_DATA EIM_DAx (Addr/Data muxed mode)
DATA EIM_NFC_D (Data bus shared with NAND Flash)
EIM_Dx (dedicated data bus)
WAIT_B EIM_WAIT
Table 37. EIM Internal Module Multiplexing1
1For more information on configuration ports mentioned in this table, see the i.MX 6Dual/6Quad reference manual.
Setup
Non Multiplexed Address/Data Mode Multiplexed
Address/Data mode
8 Bit 16 Bit 32 Bit 16 Bit 32 Bit
MUM = 0,
DSZ = 100
MUM = 0,
DSZ = 101
MUM = 0,
DSZ = 110
MUM = 0,
DSZ = 111
MUM = 0,
DSZ = 001
MUM = 0,
DSZ = 010
MUM = 0,
DSZ = 011
MUM = 1,
DSZ = 001
MUM = 1,
DSZ = 011
A[15:0] EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
EIM_DA_A
[15:0]
A[25:16] EIM_A
[25:16]
EIM_A
[25:16]
EIM_A
[25:16]
EIM_A
[25:16]
EIM_A
[25:16]
EIM_A
[25:16]
EIM_A
[25:16]
EIM_A
[25:16]
EIM_D
[9:0]
D[7:0],
EIM_EB0
EIM_D
[7:0]
——EIM_D
[7:0]
—EIM_D
[7:0]
EIM_DA_A
[7:0]
EIM_DA_A
[7:0]
D[15:8],
EIM_EB1
—EIM_D
[15:8]
—EIM_D
[15:8]
—EIM_D
[15:8]
EIM_DA_A
[15:8]
EIM_DA_A
[15:8]
D[23:16],
EIM_EB2
——EIM_D
[24:16]
——EIM_D
[23:16]
EIM_D
[23:16]
—EIM_D
[7:0]
D[31:24],
EIM_EB3
—— EIM_D
[31:24]
—EIM_D
[31:24]
EIM_D
[31:24]
—EIM_D
[15:8]
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
52 Freescale Semiconductor
Electrical Characteristics
4.9.3.3 General EIM Timing-Synchronous Mode
Figure 10, Figure 11, and Table 38 specify the timings related to the EIM module. All EIM output control
signals may be asserted and deasserted by an internal clock synchronized to the BCLK rising edge
according to corresponding assertion/negation control fields.
,
Figure 10. EIM Output Timing Diagram
Figure 11. EIM Input Timing Diagram
4.9.3.4 Examples of EIM Synchronous Accesses
Table 38. EIM Bus Timing Parameters
ID Parameter Min1Max1Unit
WE1 BCLK cycle time2t*(k+1) ns
WE2 BCLK high level width 0.4*t*(k+1) ns
WE4
Address
CSx_B
WE_B
OE_B
BCLK
BEy_B
ADV_B
Output Data
...
WE5
WE6 WE7
WE8 WE9
WE10 WE11
WE12 WE13
WE14 WE15
WE16 WE17
WE3
WE2
WE1
Input Data
WAIT_B
BCLK
WE19
WE18
WE21
WE20
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 53
WE3 BCLK low level width 0.4*t*(k+1) ns
WE4 Clock rise to address valid -0.5*t*(k+1)/2+2.25 ns
WE5 Clock rise to address invalid 0.5*t*(k+1)/2-1.25 ns
WE6 Clock rise to CSx_B valid -0.5*t*(k+1)/2+2.25 ns
WE7 Clock rise to CSx_B invalid 0.5*t*(k+1)/2-1.25 ns
WE8 Clock rise to WE_B valid -0.5*t*(k+1)/2+2.25 ns
WE9 Clock rise to WE_B invalid 0.5*t*(k+1)/2-1.25 ns
WE10 Clock rise to OE_B valid -0.5*t*(k+1)/2+2.25 ns
WE11 Clock rise to OE_B invalid 0.5*t*(k+1)/2-1.25 ns
WE12 Clock rise to BEy_B valid -0.5*t*(k+1)/2+2.25 ns
WE13 Clock rise to BEy_B invalid 0.5*t*(k+1)/2-1.25 ns
WE14 Clock rise to ADV_B valid -0.5*t*(k+1)/2+2.25 ns
WE15 Clock rise to ADV_B invalid 0.5*t*(k+1)/2-1.25 ns
WE16 Clock rise to output data valid -(k+1)*t/2+2.75 ns
WE17 Clock rise to output data invalid (k+1)*t/2-1.25 ns
WE18 Input data setup time to clock rise 2.3 ns
WE19 Input data hold time from clock rise 2 ns
WE20 WAIT_B setup time to clock rise 2 ns
WE21 WAIT_B hold time from clock rise 2 ns
1k represents BCD value
2EIM maximum operating frequency is 104 MHz (t = 9.165 ns)
Table 38. EIM Bus Timing Parameters (continued)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
54 Freescale Semiconductor
Electrical Characteristics
Figure 12 to Figure 15 provide few examples of basic EIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
Figure 12. Synchronous Memory Read Access, WSC=1
Figure 13. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0
Last Valid Address Address v1
D(v1)
BCLK
ADDR
DATA
WE_B
ADV_B
OE_B
BEy_B
CSx_B
WE4 WE5
WE6 WE7
WE10 WE11
WE13
WE12
WE14
WE15
WE18
WE19
Last Valid Address Address V1
D(V1)
BCLK
ADDR
DATA
WE_B
ADV_B
OE_B
BEy_B
CSx_B
WE4 WE5
WE6 WE7
WE8 WE9
WE12
WE13
WE14
WE15
WE16 WE17
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 55
Figure 14. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,ADVA=0, ADVN=1, and
ADH=1
NOTE
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the
data bus.
Figure 15. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
56 Freescale Semiconductor
Electrical Characteristics
4.9.3.5 General EIM Timing-Asynchronous Mode
Figure 16 through Figure 20 and Table 39 provide timing parameters relative to the chip select (CS) state
for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the timing
parameters mentioned above.
Asynchronous read & write access length in cycles may vary from what is shown in Figure 16 through
Figure 19 as RWSC, OEN & CSN is configured differently. See the i.MX 6Dual/6Quad reference manual
for the EIM programming model.
Figure 16. Asynchronous Memory Read Access (RWSC = 5)
Last Valid Address Address V1
D(V1)
ADDR/
DATA[7:0]
WE_B
ADV_B
OE_B
BEy_B
CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
M_DATA
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 57
Figure 17. Asynchronous A/D Muxed Read Access (RWSC = 5)
Figure 18. Asynchronous Memory Write Access
Addr. V1 D(V1)
ADDR/
WE_B
ADV_B
OE_B
BEy_B
CSx_B
WE39
WE35A
WE37
WE36
WE38
WE40A
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
WE32A
M_DATA
Last Valid Address Address V1
D(V1)
ADDR
DATA
WE_B
ADV_B
OE_B
BEy_B
CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
58 Freescale Semiconductor
Electrical Characteristics
Figure 19. Asynchronous A/D Muxed Write Access
Figure 20. DTACK Read Access (DAP=0)
WE_B
OE_B
BEy_B
CSx_B
WE33
WE45
WE34
WE46
WE42
Addr. V1 D(V1)
ADDR/
WE31
WE42
WE41A
WE32A
M_DATA
ADV_B
WE39 WE40A
Last Valid Address Address V1
D(V1)
ADDR
DATA[7:0]
WE_B
ADV_B
OE_B
BEy_B
CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
DTACK
WE47
WE48
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 59
Figure 21. DTACK Write Access (DAP=0)
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip Select
Ref No. Parameter
Determination by
Synchronous measured
parameters1Min
Max
(If 132 MHz is
supported by SoC)
Unit
WE31 CSx_B valid to Address Valid WE4 - WE6 - CSA2 3 - CSA ns
WE32 Address Invalid to CSx_B
invalid
WE7 - WE5 - CSN3 —3 - CSNns
WE32A
(muxed
A/D)
CSx_B valid to Address Invalid t4 + WE4 - WE7 + (ADVN5 +
ADVA6 + 1 - CSA)
-3 + (ADVN +
ADVA + 1 - CSA)
—ns
WE33 CSx_B Valid to WE_B Valid WE8 - WE6 + (WEA - WCSA) 3 + (WEA - WCSA) ns
WE34 WE_B Invalid to CSx_B Invalid WE7 - WE9 + (WEN - WCSN) 3 - (WEN_WCSN) ns
WE35 CSx_B Valid to OE_B Valid WE10 - WE6 + (OEA - RCSA) 3 + (OEA - RCSA) ns
WE35A
(muxed
A/D)
CSx_B Valid to OE_B Valid WE10 - WE6 + (OEA + RADVN
+ RADVA + ADH + 1 - RCSA)
-3 + (OEA +
RADVN+RADVA+
ADH+1-RCSA)
3 + (OEA +
RADVN+RADVA+AD
H+1-RCSA)
ns
WE36 OE_B Invalid to CSx_B Invalid WE7 - WE11 + (OEN - RCSN) 3 - (OEN - RCSN) ns
WE37 CSx_B Valid to BEy_B Valid
(Read access)
WE12 - WE6 + (RBEA - RCSA) 3 + (RBEA - RCSA) ns
WE38 BEy_B Invalid to CSx_B Invalid
(Read access)
WE7 - WE13 + (RBEN - RCSN) 3 - (RBEN- RCSN) ns
WE39 CSx_B Valid to ADV_B Valid WE14 - WE6 + (ADVA - CSA) 3 + (ADVA - CSA) ns
Last Valid Address Address V1
D(V1)
ADDR
DATA
WE_B
ADV_B
OE_B
BEy_B
CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
DTACK
WE47
WE48
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
60 Freescale Semiconductor
Electrical Characteristics
WE40 ADV_B Invalid to CSx_B Invalid
(ADVL is asserted)
WE7 - WE15 - CSN 3 - CSN ns
WE40A
(muxed
A/D)
CSx_B Valid to ADV_B Invalid WE14 - WE6 + (ADVN + ADVA
+ 1 - CSA)
-3 + (ADVN +
ADVA + 1 - CSA)
3 + (ADVN + ADVA +
1 - CSA)
ns
WE41 CSx_B Valid to Output Data
Valid
WE16 - WE6 - WCSA 3 - WCSA ns
WE41A
(muxed
A/D)
CSx_B Valid to Output Data
Valid
WE16 - WE6 + (WADVN +
WADVA + ADH + 1 - WCSA)
3 + (WADVN +
WADVA + ADH + 1 -
WCSA)
ns
WE42 Output Data Invalid to CSx_B
Invalid
WE17 - WE7 - CSN 3 - CSN ns
MAXCO Output max. delay from internal
driving ADDR/control FFs to
chip outputs.
10 ns
MAXCSO Output max. delay from CSx
internal driving FFs to CSx out.
10
MAXDI DATA MAXIMUM delay from
chip input data to its internal FF
5—
WE43 Input Data Valid to CSx_B
Invalid
MAXCO - MAXCSO + MAXDI MAXCO -
MAXCSO +
MAXDI
—ns
WE44 CSx_B Invalid to Input Data
invalid
00ns
WE45 CSx_B Valid to BEy_B Valid
(Write access)
WE12 - WE6 + (WBEA -
WCSA)
3 + (WBEA - WCSA) ns
WE46 BEy_B Invalid to CSx_B Invalid
(Write access)
WE7 - WE13 + (WBEN -
WCSN)
-3 + (WBEN - WCSN) ns
MAXDTI DTACK MAXIMUM delay from
chip dtack input to its internal
FF + 2 cycles for
synchronization
10
WE47 Dtack Active to CSx_B Invalid MAXCO - MAXCSO + MAXDTI MAXCO -
MAXCSO +
MAXDTI
—ns
WE48 CSx_B Invalid to Dtack invalid 0 0 ns
1For more information on configuration parameters mentioned in this table, see the i.MX 6Solo/6DualLite reference manual.
2In this table, CSA means WCSA when write operation or RCSA when read operation.
3In this table, CSN means WCSN when write operation or RCSN when read operation.
4t is axi_clk cycle time.
5In this table, ADVN means WADVN when write operation or RADVN when read operation.
Table 39. EIM Asynchronous Timing Parameters Table Relative Chip Select (continued)
Ref No. Parameter
Determination by
Synchronous measured
parameters1
Min
Max
(If 132 MHz is
supported by SoC)
Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 61
4.9.4 DDR SDRAM Specific Parameters (DDR3/DDR3L and LPDDR2)
4.9.4.1 DDR3/DDR3L Parameters
Figure 22 shows the DDR3/DDR3L basic timing diagram. The timing parameters for this diagram appear
in Table 40.
Figure 22. DDR3/DDR3L Command and Address Timing Diagram
6In this table, ADVA means WADVA when write operation or RADVA when read operation.
Table 40. DDR3/DDR3L Timing Parameter Table
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
DDR1 CK clock high-level width tCH 0.47 0.53 tCK
DDR2 CK clock low-level width tCL 0.47 0.53 tCK
DDR4 CS, RAS, CAS, CKE, WE, ODT setup time tIS 500 ps
DDR5 CS, RAS, CAS, CKE, WE, ODT hold time tIH 400 ps
CK
WE
ADDR ROW/BA COL/BA
CS
CAS
RAS
DDR1
DDR2
DDR4
DDR4
DDR4
DDR5
DDR5
DDR5
DDR5
DDR6
DDR7
CK
ODT/CKE
DDR4
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
62 Freescale Semiconductor
Electrical Characteristics
1All measurements are in reference to Vref level.
2Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.
Figure 23 shows the DDR3/DDR3L write timing diagram. The timing parameters for this diagram appear
in Table 41.
Figure 23. DDR3/DDR3L Write Cycle
1To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle
of DQ window.
2All measurements are in reference to Vref level.
3Measurements were taken using balanced load and 25 Ω resistor from outputs to VDD_REF.
DDR6 Address output setup time tIS 500 ps
DDR7 Address output hold time tIH 400 ps
Table 41. DDR3/DDR3L Write Cycle
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
DDR17 DQ and DQM setup time to DQS (differential strobe) tDS 240 ps
DDR18 DQ and DQM hold time to DQS (differential strobe) tDH 240 ps
DDR21 DQS latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK
DDR22 DQS high level width tDQSH 0.45 0.55 tCK
DDR23 DQS low level width tDQSL 0.45 0.55 tCK
Table 40. DDR3/DDR3L Timing Parameter Table (continued)
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
CK
CK_B
DQS (output)
DQ (output)
DQM (output)
Data Data Data Data Data Data Data Data
DM DM DM DM DM DM DM DM
DDR17
DDR17
DDR17
DDR17
DDR18 DDR18
DDR18 DDR18
DDR21
DDR23
DDR22
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 63
Figure 24 shows the DDR3/DDR3L read timing diagram. The timing parameters for this diagram appear
in Table 42.
Figure 24. DDR3/DDR3L Read Cycle
1To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle
of DQ window.
2All measurements are in reference to Vref level.
3Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.
Table 42. DDR3/DDR3L Read Cycle
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
DDR26 Minimum required DQ valid window width 450 ps
CK
CK_B
DQS (input)
DQ (input)
DATA
DATA
DATA
DATADATA
DATA
DATADATA
DDR26
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
64 Freescale Semiconductor
Electrical Characteristics
4.9.4.2 LPDDR2 Parameters
Figure 25 shows the LPDDR2 basic timing diagram. The timing parameters for this diagram appear in
Table 43.
Figure 25. LPDDR2 Command and Address Timing Diagram
1All measurements are in reference to Vref level.
2Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.
Table 43. LPDDR2 Timing Parameter
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
LP1 SDRAM clock high-level width tCH 0.45 0.55 tCK
LP2 SDRAM clock low-level width tCL 0.45 0.55 tCK
LP3 CS, CKE setup time tIS 270 ps
LP4 CS, CKE hold time tIH 270 ps
LP3 CA setup time tIS 230 ps
LP4 CA hold time tIH 230 ps
CK
CS
CKE
CA
LP4
LP4
LP3
LP4
LP3
LP2
LP3
LP3
LP1
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 65
Figure 26 shows the LPDDR2 write timing diagram. The timing parameters for this diagram appear in
Table 44.
Figure 26. LPDDR2 Write Cycle
1To receive the reported setup and hold values, write calibration should be performed in order to locate the DQS in the middle
of DQ window.
2All measurements are in reference to Vref level.
3Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.
Table 44. LPDDR2 Write Cycle
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
LP17 DQ and DQM setup time to DQS (differential strobe) tDS 235 ps
LP18 DQ and DQM hold time to DQS (differential strobe) tDH 235 ps
LP21 DQS latching rising transitions to associated clock edges tDQSS -0.25 +0.25 tCK
LP22 DQS high level width tDQSH 0.4 - tCK
LP23 DQS low level width tDQSL 0.4 - tCK
CK
CK_B
DQS (output)
DQ (output)
DQM (output)
Data Data Data Data Data Data Data Data
DM DM DM DM DM DM DM DM
LP17
LP17
LP17
LP17
LP18 LP18
LP18 LP18
LP21
LP23
LP22
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
66 Freescale Semiconductor
Electrical Characteristics
Figure 27 shows the LPDDR2 read timing diagram. The timing parameters for this diagram appear in
Table 45.
Figure 27. LPDDR2 Read Cycle
1To receive the reported setup and hold values, read calibration should be performed in order to locate the DQS in the middle
of DQ window.
2All measurements are in reference to Vref level.
3Measurements were done using balanced load and 25 Ω resistor from outputs to VDD_REF.
4.10 General-Purpose Media Interface (GPMI) Timing
The i.MX 6Dual/6Quad GPMI controller is a flexible interface NAND Flash controller with 8-bit data
width, up to 200 MB/s I/O speed and individual chip select. It supports Asynchronous timing mode, Source
Synchronous timing mode, and Samsung Toggle timing mode separately described in the following
subsections.
Table 45. LPDDR2 Read Cycle
ID Parameter Symbol
CK = 532 MHz
Unit
Min Max
LP26 Minimum required DQ valid window width for LPDDR2 250 ps
CK
CK_B
DQS (input)
DQ (input)
DATA
DATA
DATA
DATADATA
DATA
DATADATA
LP26
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 67
4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
Maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 28 through Figure 31
depict the relative timing between GPMI signals at the module level for different operations under
Asynchronous mode. Table 46 describes the timing parameters (NF1–NF17) that are shown in the figures.
Figure 28. Command Latch Cycle Timing Diagram
Figure 29. Address Latch Cycle Timing Diagram
CLE
CEn
WE
ALE
IO[7:0] Command
NF9
NF8
NF1 NF2
NF5
NF3 NF4
NF6 NF7
CLE
CEn
WE
ALE
IO[7:0] Address
NF9
NF8
NF1
NF5
NF3 NF4
NF6
NF11
NF10
NF7
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
68 Freescale Semiconductor
Electrical Characteristics
Figure 30. Write Data Latch Cycle Timing Diagram
Figure 31. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)
CLE
CEn
WE
ALE
IO[7:0] Data to NF
NF9
NF8
NF1
NF5
NF3
NF6
NF11
NF10
NF7
CLE
CEn
RE
RB
IO[7:0] Data from NF
NF13
NF15
NF14
NF17
NF12
NF16
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 69
Figure 32. Read Data Latch Cycle Timing Diagram (EDO Mode)
Table 46. Asynchronous Mode Timing Parameters1
ID Parameter Symbol
Timing
T2 = GPMI Clock Cycle
Example Timing for
GPMI Clock ≈ 100 MHz
T = 10 ns Unit
Min. Max. Min. Max.
NF1 CLE setup time tCLS (AS3+1)*T 10 ns
NF2 CLE hold time tCLH (DH+1)*T 20 ns
NF3 CEn setup time tCS (AS+1)*T 10 ns
NF4 CE hold time tCH (DH+1)*T 20 ns
NF5 WE pulse width tWP DS*T 10 ns
NF6 ALE setup time tALS (AS+1)*T 10 ns
NF7 ALE hold time tALH (DH+1)*T 20 ns
NF8 Data setup time tDS DS*T 10 ns
NF9 Data hold time tDH DH*T 10 ns
NF10 Write cycle time tWC (DS+DH)*T 20 ns
NF11 WE hold time tWH DH*T 10 ns
NF12 Ready to RE low tRR (AS+1)*T 10 ns
NF13 RE pulse width tRP DS*T 10 ns
NF14 READ cycle time tRC (DS+DH)*T 20 ns
NF15 RE high hold time tREH DH*T 10 ns
NF16 Data setup on read tDSR N/A 10 ns
NF17 Data hold on read tDHR N/A 10 ns
CLE
CEn
RE
RB
IO[7:0]
NF13
NF15
NF14
NF12
Data from NF
NF16 NF17
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
70 Freescale Semiconductor
Electrical Characteristics
In EDO mode (Figure 32), NF16/NF17 are different from the definition in non-EDO mode (Figure 31).
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will
sample IO[7:0] at rising edge of delayed RE provided by an internal DPLL. The delay value can be
controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6Dual/6Quad reference
manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode. But if the board delay is
big enough and cannot be ignored, the delay value should be made larger to compensate the board delay.
4.10.2 Source Synchronous Mode AC Timing ( ONFI 2.x Compatible)
Below diagrams show the write and read timing of Source Synchronous mode.
Figure 33. Source Synchronous Mode Command and Address Timing Diagram
1GPMI’s Async Mode output timing could be controlled by module’s internal register, say GPMI_TIMING0_ADDRESS_SETUP,
GPMI_TIMING0_DATA_SETUP, GPMI_TIMING0_DATA_HOLD. This AC timing depends on these registers’ settings. In the
above table, we use AS/DS/DH to represent each of these settings.
2 T represents the GPMI clock period.
3AS minimum value could be 0, while DS/DH minimum value is 1.
CE_N
CLE
ALE
CLK
DQS
W/R#
DQ[7:0] CMD
NF20 NF21
NF22
NF23
NF18
NF19
DQS
output
enable
DQ[7:0]
Output
enable NF24
ADD ADD
NF20 NF21
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 71
Figure 34. Source Synchronous Mode Data Write Timing Diagram
CE_N
CLE
ALE
CLK
DQS
W/R#
DQ[7:0]
NF22
NF23
NF18 NF19
DQS
output
enable
DQ[7:0]
Output
enable
NF24
NF27 NF27
NF27
NF25
NF25
NF26
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
72 Freescale Semiconductor
Electrical Characteristics
Figure 35. Source Synchronous Mode Data Read Timing Diagram
Figure 36. DQS/DQ Read Valid Window
CE_N
CLE
ALE
CLK
DQS
W/R#
DQ[7:0]
NF22
NF23
NF18 NF19
DQS
output
enable
DQ[7:0]
Output
enable
NF24
NF25
NF25
NF25 NF26
tDVW
D
0
D1 D2 D3
DQS
DQ[7:0]
tDQSQ tQHS
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 73
Figure 36 shows the timing diagram of DQS/DQ read valid window. For Source Synchronous mode, the
typical value of tDQSQ is 0.85 ns (max) and 1 ns (max) for tQHS at 200MB/s. GPMI will sample DQ[7:0]
at both rising and falling edge of an delayed DQS signal, which can be provided by an internal DPLL. The
delay value can be controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET
(see the GPMI chapter of the i.MX 6Dual/6Quad reference manual). Generally, the typical delay value of
this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big
enough and cannot be ignored, the delay value should be made larger to compensate the board delay.
Table 47. Source Synchronous Mode Timing Parameters1
1GPMI’s Source sync mode output timing could be controlled by module’s internal register, say GPMI_TIMING2_CE_DELAY,
GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends on these registers’ settings.
In the above table, we use CE_DELAY/PRE_DELAY/POST_DELAY to represent each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF18 CE# access time tCE CE_DELAY*tCK ns
NF19 CE# hold time tCH 0.5 *tCK ns
NF20 Command/address DQ setup time tCAS 0.5*tCK ns
NF21 Command/address DQ hold time tCAH 0.5*tCK ns
NF22 clock period tCK 5 -- ns
NF23 preamble delay tPRE PRE_DELAY*tCK ns
NF24 postamble delay tPOST POST_DELAY*tCK ns
NF25 CLE and ALE setup time tCALS 0.5*tCK ns
NF26 CLE and ALE hold time tCALH 0.5*tCK ns
NF27 Data input to first DQS latching transition tDQSS tCK ns
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
74 Freescale Semiconductor
Electrical Characteristics
4.10.3 Samsung Toggle Mode AC Timing
4.10.3.1 Command and Address Timing
Samsung Toggle mode command and address timing is the same as ONFI 1.0 compatible Async mode AC
timing. See Section 4.10.1, Asynchronous Mode AC Timing (ONFI 1.0 Compatible) for details.
4.10.3.2 Read and Write Timing
Figure 37. Samsung Toggle Mode Data WriteTiming
CE_N
CLE
ALE
WE_N
DQS
RE_N
DQ[7:0]
NF23
0.5 tCK
NF22
NF24
0.5 tCK
0
0
0
1
1
dev_clk
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 75
Figure 38. Samsung Toggle Mode Data Read Timing
Table 48. Samsung Toggle Mode Timing Parameters
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min. Max.
NF18 CE# access time tCE CE_DELAY*tCK ns
NF19 CE# hold time tCH 0.5 *tCK ns
NF20 Command/address DQ setup time tCAS 0.5*tCK ns
NF21 Command/address DQ hold time tCAH 0.5*tCK ns
NF22 clock period tCK 7.5 -- ns
NF23 preamble delay tPRE (PRE_DELAY+1)*tCK ns
NF24 postamble delay tPOST POST_DELAY*tCK ns
NF25 CLE and ALE setup time tCALS 0.5*tCK ns
NF26 CLE and ALE hold time tCALH 0.5*tCK ns
CE_N
CLE
ALE
WE_N
DQS
RE_N
DQ[7:0]
NF23
NF24
0
0
1
1 tCK
1 tCK
1 tCK
NF18
dev_clk
1 tCK
1 tCK
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
76 Freescale Semiconductor
Electrical Characteristics
Figure 36 shows the timing diagram of DQS/DQ read valid window. For DDR Toggle mode, the typical
value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will sample DQ[7:0] at
both rising and falling edge of an delayed DQS signal, which is provided by an internal DPLL. The delay
value of this register can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX
6Dual/6Quad reference manual). Generally, the typical delay value is equal to 0x7 which means 1/4 clock
cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value should
be made larger to compensate the board delay.
4.11 External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.
4.11.1 AUDMUX Timing Parameters
The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of
AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI
electrical specifications found within this document.
4.11.2 ECSPI Timing Parameters
This section describes the timing parameters of the ECSPI block. The ECSPI has separate timing
parameters for master and slave modes.
4.11.2.1 ECSPI Master Mode Timing
Figure 39 depicts the timing of ECSPI in master mode and Table 49 lists the ECSPI master mode timing
characteristics.
Figure 39. ECSPI Master Mode Timing Diagram
CS1
CS7
CS2
CS2
CS4
CS6 CS5
CS8 CS9
SCLK
SSx
MOSI
MISO
RDY
CS10
CS3
CS3
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 77
Table 49. ECSPI Master Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 SCLK Cycle Time–Read
Slow group1
Fast group2
SCLK Cycle Time–Write
1ECSPI slow include:
ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/DISP0_DAT17,
ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2
2ECSPI fast include:
ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0
tclk
55
40
15
—ns
CS2 SCLK High or Low Time–Read
Slow group1
Fast group2
SCLK High or Low Time–Write
tSW
26
20
7
—ns
CS3 SCLK Rise or Fall3
3See specific I/O AC parameters Section 4.7,I/O AC Parameters.
tRISE/FALL ——ns
CS4 SSx pulse width tCSLH Half SCLK period ns
CS5 SSx Lead Time (CS setup time) tSCS Half SCLK period - 4 ns
CS6 SSx Lag Time (CS hold time) tHCS Half SCLK period ns
CS7 MOSI Propagation Delay (CLOAD =20pF) t
PDmosi -1 1 ns
CS8 MISO Setup Time
Slow group1
Fast group2
tSmiso
21.5
16
—ns
CS9 MISO Hold Time tHmiso 0—ns
CS10 RDY to SSx Time4
4SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
tSDRY 5—ns
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
78 Freescale Semiconductor
Electrical Characteristics
4.11.2.2 ECSPI Slave Mode Timing
Figure 40 depicts the timing of ECSPI in slave mode and Table 50 lists the ECSPI slave mode timing
characteristics.
Figure 40. ECSPI Slave Mode Timing Diagram
Table 50. ECSPI Slave Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 SCLK Cycle Time–Read
Slow group1
Fast group2
SCLK Cycle Time–Write
1ECSPI slow include:
ECSPI1/DISP0_DAT22, ECSPI1/KEY_COL1, ECSPI1/CSI0_DAT6, ECSPI2/EIM_OE, ECSPI2/DISP0_DAT17,
ECSPI2/CSI0_DAT10, ECSPI3/DISP0_DAT2
2ECSPI fast include:
ECSPI1/EIM_D17, ECSPI4/EIM_D22, ECSPI5/SD2_DAT0, ECSPI5/SD1_DAT0
tclk
55
40
15
—ns
CS2 SCLK High or Low Time–Read
Slow group1
Fast group2
SCLK High or Low Time–Write
tSW
26
20
7
—ns
CS4 SSx pulse width tCSLH Half SCLK period ns
CS5 SSx Lead Time (CS setup time) tSCS 5—ns
CS6 SSx Lag Time (CS hold time) tHCS 5—ns
CS7 MOSI Setup Time tSmosi 4—ns
CS8 MOSI Hold Time tHmosi 4—ns
CS9 MISO Propagation Delay (CLOAD =20pF)
Slow group1
Fast group2
tPDmiso 4
25
17
ns
CS1
CS7 CS8
CS2
CS2
CS4
CS6 CS5
CS9
SCLK
SSx
MISO
MOSI
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 79
4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. Table 51 shows the interface timing values. The number field in the table refers to timing
signals found in Figure 41 and Figure 42.
Table 51. Enhanced Serial Audio Interface (ESAI) Timing
ID Parameter1,2 Symbol Expression2Min Max Condition3Unit
62 Clock cycle4tSSICC 4 × Tc
4 × Tc
30.0
30.0
i ck
i ck
ns
63 Clock high period:
For internal clock
For external clock
2 × Tc 9.0
2 × Tc
6
15
ns
64 Clock low period:
For internal clock
For external clock
2 × Tc 9.0
2 × Tc
6
15
ns
65 SCKR rising edge to FSR out (bl) high
19.0
7.0
x ck
i ck a
ns
66 SCKR rising edge to FSR out (bl) low
19.0
7.0
x ck
i ck a
ns
67 SCKR rising edge to FSR out (wr) high5
19.0
9.0
x ck
i ck a
ns
68 SCKR rising edge to FSR out (wr) low5
19.0
9.0
x ck
i ck a
ns
69 SCKR rising edge to FSR out (wl) high
19.0
6.0
x ck
i ck a
ns
70 SCKR rising edge to FSR out (wl) low
17.0
7.0
x ck
i ck a
ns
71 Data in setup time before SCKR (SCK in synchronous
mode) falling edge
12.0
19.0
x ck
i ck
ns
72 Data in hold time after SCKR falling edge
3.5
9.0
x ck
i ck
ns
73 FSR input (bl, wr) high before SCKR falling edge5
2.0
19.0
x ck
i ck a
ns
74 FSR input (wl) high before SCKR falling edge
2.0
19.0
x ck
i ck a
ns
75 FSR input hold time after SCKR falling edge
2.5
8.5
x ck
i ck a
ns
78 SCKT rising edge to FST out (bl) high
19.0
8.0
x ck
i ck
ns
79 SCKT rising edge to FST out (bl) low
20.0
10.0
x ck
i ck
ns
80 SCKT rising edge to FST out (wr) high5
20.0
10.0
x ck
i ck
ns
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
80 Freescale Semiconductor
Electrical Characteristics
81 SCKT rising edge to FST out (wr) low5
22.0
12.0
x ck
i ck
ns
82 SCKT rising edge to FST out (wl) high
19.0
9.0
x ck
i ck
ns
83 SCKT rising edge to FST out (wl) low
20.0
10.0
x ck
i ck
ns
84 SCKT rising edge to data out enable from high
impedance
22.0
17.0
x ck
i ck
ns
86 SCKT rising edge to data out valid
19.0
13.0
x ck
i ck
ns
87 SCKT rising edge to data out high impedance 67
21.0
16.0
x ck
i ck
ns
89 FST input (bl, wr) setup time before SCKT falling edge5
2.0
18.0
x ck
i ck
ns
90 FST input (wl) setup time before SCKT falling edge
2.0
18.0
x ck
i ck
ns
91 FST input hold time after SCKT falling edge
4.0
5.0
x ck
i ck
ns
95 HCKR/HCKT clock cycle 2 x TC15 ns
96 HCKT input rising edge to SCKT output 18.0 ns
97 HCKR input rising edge to SCKR output 18.0 ns
1i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode
(asynchronous implies that SCKT and SCKR are two different clocks)
i ck s = internal clock, synchronous mode
(synchronous implies that SCKT and SCKR are the same clock)
2bl = bit length
wl = word length
wr = word length relative
3SCKT(SCKT pin) = transmit clock
SCKR(SCKR pin) = receive clock
FST(FST pin) = transmit frame sync
FSR(FSR pin) = receive frame sync
HCKT(HCKT pin) = transmit high frequency clock
HCKR(HCKR pin) = receive high frequency clock
4For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.
5The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the
second-to-last bit clock of the first word in the frame.
6Periodically sampled and not 100% tested.
Table 51. Enhanced Serial Audio Interface (ESAI) Timing (continued)
ID Parameter1,2 Symbol Expression2Min Max Condition3Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 81
Figure 41. ESAI Transmitter Timing
SCKT
(Input/Output)
FST (Bit)
Out
FST (Word)
Out
Data Out
FST (Bit) In
FST (Word) In
62
64
78 79
82 83
87
8686
84
91
89
90 91
63
Last BitFirst Bit
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
82 Freescale Semiconductor
Electrical Characteristics
Figure 42. ESAI Receiver Timing
SCKR
(Input/Output)
FSR (Bit)
Out
FSR (Word)
Out
Data In
FSR (Bit)
In
FSR (Word)
In
62
64
65
69 70
72
71
75
73
74 75
63
66
First Bit Last Bit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 83
4.11.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC
Timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single
Data Rate) timing and eMMC4.4 (Dual Date Rate) timing.
4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing
Figure 43 depicts the timing of SD/eMMC4.3, and Table 52 lists the SD/eMMC4.3 timing characteristics.
Figure 43. SD/eMMC4.3 Timing
Table 52. SD/eMMC4.3 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP10 400 kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) fPP20 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) fPP30 20/52 MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
eSDHC Output/Card Inputs CMD, DAT (Reference to CLK)
SD6 eSDHC Output Delay tOD –6.6 3.6 ns
SD1
SD3
SD5
SD4
SD7
CMD
output from uSDHC to card DAT1
......
DAT7
DAT0
CMD
input from card to uSDHC DAT1
......
DAT7
DAT0
SCK
SD2
SD8
SD6
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
84 Freescale Semiconductor
Electrical Characteristics
4.11.4.2 eMMC4.4 (Dual Data Rate) eSDHCv3 AC Timing
Figure 44 depicts the timing of eMMC4.4. Table 53 lists the eMMC4.4 timing characteristics. Be aware
that only DATA is sampled on both edges of the clock (not applicable to CMD).
Figure 44. eMMC4.4 Timing
eSDHC Input/Card Outputs CMD, DAT (Reference to CLK)
SD7 eSDHC Input Setup Time tISU 2.5 ns
SD8 eSDHC Input Hold Time4tIH 5.6 ns
1In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,
clock frequency can be any value between 050 MHz.
3In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock
frequency can be any value between 052 MHz.
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
Table 53. eMMC4.4 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (EMMC4.4 DDR) fPP 052MHz
SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz
uSDHC Output / Card Inputs CMD, DAT (Reference to CLK)
SD2 uSDHC Output Delay tOD 2.5 7.1 ns
Table 52. SD/eMMC4.3 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
SD1
SD2
SD3
output from eSDHCv3 to card DAT1
......
DAT7
DAT0
input from card to eSDHCv3 DAT1
......
DAT7
DAT0
SCK
SD4
SD2
......
......
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 85
4.11.4.3 SDR50/SDR104 AC Timing
Figure 45 depicts the timing of SDR50/SDR104, and Table 52 lists the SDR50/SDR104 timing
characteristics.
Figure 45. SDR50/SDR104 Timing
uSDHC Input / Card Outputs CMD, DAT (Reference to CLK)
SD3 uSDHC Input Setup Time tISU 2.6 ns
SD4 uSDHC Input Hold Time tIH 1.5 ns
Table 54. SDR50/SDR104 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 4.8 ns
SD2 Clock Low Time tCL 0.3*tCLK 0.7*tCLK ns
SD2 Clock High Time tCH 0.3*tCLK 0.7*tCLK ns
uSDHC Output/Card Inputs CMD, DAT in SDR50 (Reference to CLK)
SD4 uSDHC Output Delay tOD –3 1 ns
uSDHC Output/Card Inputs CMD, DAT in SDR104 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 1 ns
uSDHC Input/Card Outputs CMD, DAT in SDR50 (Reference to CLK)
SD6 uSDHC Input Setup Time tISU 2.5 ns
SD7 uSDHC Input Hold Time tIH 1.5 ns
Table 53. eMMC4.4 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
86 Freescale Semiconductor
Electrical Characteristics
4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling
Signaling level of SD/eMMC4.3 and eMMC4.4 modes is 3.3 V. Signaling level of SDR104/SDR50 mode
is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD3 supplies are identical to
those shown in Table 22, "GPIO I/O DC Parameters," on page 39.
4.11.5 Ethernet Controller (ENET) AC Electrical Specifications
4.11.5.1 ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.
Figure 46 shows MII receive signal timings. Table 55 describes the timing parameters (M1–M4) shown in
the figure.
Figure 46. MII Receive Signal Timing Diagram
uSDHC Input/Card Outputs CMD, DAT in SDR104 (Reference to CLK)1
SD8 Card Output Data Window tODW 0.5*tCLK —ns
1Data window in SDR100 mode is variable.
Table 54. SDR50/SDR104 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
ENET_RX_CLK (input)
ENET_RX_DATA3,2,1,0
M3
M4
M1 M2
ENET_RX_ER
ENET_RX_EN
(inputs)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 87
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed
twice the ENET_TX_CLK frequency.
Figure 47 shows MII transmit signal timings. Table 56 describes the timing parameters (M5–M8) shown
in the figure.
Figure 47. MII Transmit Signal Timing Diagram
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
Table 55. MII Receive Signal Timing
ID Characteristic1Min. Max. Unit
M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5— ns
M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5— ns
M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period
M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period
Table 56. MII Transmit Signal Timing
ID Characteristic1Min. Max. Unit
M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5— ns
M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—20 ns
M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period
M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period
ENET_TX_CLK (input)
ENET_TX_DATA3,2,1,0
M7
M8
M5
M6
ENET_TX_ER
ENET_TX_EN
(outputs)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
88 Freescale Semiconductor
Electrical Characteristics
4.11.5.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)
Figure 48 shows MII asynchronous input timings. Table 57 describes the timing parameter (M9) shown in
the figure.
Figure 48. MII Async Inputs Timing Diagram
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 49 shows MII asynchronous input timings. Table 58 describes the timing parameters (M10–M15)
shown in the figure.
Figure 49. MII Serial Management Channel Timing Diagram
Table 57. MII Asynchronous Inputs Signal Timing
ID Characteristic Min. Max. Unit
M91ENET_CRS to ENET_COL minimum pulse width 1.5 ENET_TX_CLK period
ENET_CRS, ENET_COL
M9
ENET_MDC (output)
ENET_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET_MDIO (input)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 89
4.11.5.2 RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the CRS_DV in RMII. Other signals under RMII mode include
ENET_TX_EN, ENET0_TXD[1:0], ENET0_RXD[1:0] and ENET_RX_ER.
Figure 50 shows RMII mode timings. Table 59 describes the timing parameters (M16–M21) shown in the
figure.
Figure 50. RMII Mode Signal Timing Diagram
Table 58. MII Serial Management Channel Timing
ID Characteristic Min. Max. Unit
M10 ENET_MDC falling edge to ENET_MDIO output invalid (min.
propagation delay)
0— ns
M11 ENET_MDC falling edge to ENET_MDIO output valid (max.
propagation delay)
—5 ns
M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 ns
M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 ns
M14 ENET_MDC pulse width high 40% 60% ENET_MDC period
M15 ENET_MDC pulse width low 40% 60% ENET_MDC period
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET0_RXD[1:0]
ENET0_TXD[1:0] (output)
ENET_RX_ER
CRS_DV (input)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
90 Freescale Semiconductor
Electrical Characteristics
4.11.5.3 RGMII Signal Switching Specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Table 59. RMII Signal Timing
ID Characteristic Min. Max. Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_EN valid 15 ns
M20 ENET0_RXD[1:0], CRS_DV(ENET_RX_EN), ENET_RX_ER to
ENET_CLK setup
4— ns
M21 ENET_CLK to ENET0_RXD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 ns
Table 60. RGMII Signal Switching Specifications1
1The timings assume the following configuration:
DDR_SEL = (11)b
DSE (drive-strength) = (111)b
Symbol Description Min. Max. Unit
Tcyc2
2For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
Clock cycle duration 7.2 8.8 ns
TskewT3
3For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed
such that an additional delay of greater than 1.2 ns and less than 1.7 ns will be added to the associated
clock signal. For 10/100, the max value is unspecified.
Data to clock output skew at transmitter -100 900 ps
TskewR3Data to clock input skew at receiver 1 2.6 ps
Duty_G4
4Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's
clock domain as long as minimum duty cycle is not violated and stretching occurs for no more than three
Tcyc of the lowest speed transitioned between.
Duty cycle for Gigabit 45 55 %
Duty_T4Duty cycle for 10/100T 40 60 %
Tr/Tf Rise/fall time (20–80%) 0.75 ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 91
Figure 51. RGMII Transmit Signal Timing Diagram Original
Figure 52. RGMII Receive Signal Timing Diagram Original
Figure 53. RGMII Receive Signal Timing Diagram with Internal Delay
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
92 Freescale Semiconductor
Electrical Characteristics
4.11.6 Flexible Controller Area Network (FlexCAN) AC Electrical
Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing
the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See
the IOMUXC chapter of the i.MX 6Dual/6Quad reference manual to see which pins expose Tx and Rx
pins; these ports are named TXCAN and RXCAN, respectively.
4.11.7 HDMI Module Timing Parameters
4.11.7.1 Latencies and Timing Information
Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx
PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.
Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported
(340 MHz) is 133 μs.
4.11.7.2 Electrical Characteristics
The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures
illustrate various definitions and measurement conditions specified in the table below.
Figure 54. Driver Measuring Conditions
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 93
Figure 55. Driver Definitions
Figure 56. Source Termination
Table 61. Electrical Characteristics
Symbol Parameter Condition Min. Typ. Max. Unit
Operating conditions for HDMI
avddtmds Termination supply voltage - 3.15 3.3 3.45 V
RTTermination resistance - 45 50 55 Ω
TMDS drivers DC specifications
VOFF Single-ended standby voltage RT = 50 Ω
For measurement conditions
and definitions, see the first
two figures above.
Compliance point TP1 as
defined in the HDMI
specification, version 1.3a,
section 4.2.4.
avddtmds ± 10 mV mV
VSWING Single-ended output swing
voltage
400 - 600 mV
VHSingle-ended output high
voltage
For definition, see the second
figure above.
If attached sink supports
TMDSCLK < or = 165 MHz
avddtmds ± 10 mV mV
If attached sink supports
TMDSCLK > 165 MHz
avddtmds
– 200 mV
-avddtmds
+ 10 mV
mV
VLSingle-ended output low
voltage
For definition, see the second
figure above.
If attached sink supports
TMDSCLK < or = 165 MHz
avddtmds
– 600 mV
-avddtmds
– 400mV
mV
If attached sink supports
TMDSCLK > 165 MHz
avddtmds
– 700 mV
-avddtmds
– 400 mV
mV
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
94 Freescale Semiconductor
Electrical Characteristics
4.11.8 Switching Characteristics
Table 62 describes switching characteristics for the HDMI 3D Tx PHY. Figure 57 to Figure 62 illustrate
various parameters specified in table.
NOTE
All dynamic parameters related to the TMDS line drivers’ performance
imply the use of assembly guidelines.
Figure 57. TMDS Clock Signal Definitions
RTERM Differential source termination
load (inside HDMI 3D Tx PHY)
Although the HDMI 3D Tx
PHY includes differential
source termination, the
user-defined value is set for
each single line (for
illustration, see the third figure
above).
Note: RTERM can also be
configured to be open and not
present on TMDS channels.
-50-200Ω
Hot plug detect specifications
HPDVH Hot plug detect high range - 2.0 - 5.3 V
VHPDVL Hot plug detect low range - 0 - 0.8 V
HPDZHot plug detect input
impedance
-10--kΩ
HPDtHot plug detect time delay - - - 100 µs
Table 61. Electrical Characteristics (continued)
Symbol Parameter Condition Min. Typ. Max. Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 95
Figure 58. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1
Figure 59. Intra-Pair Skew Definition
Figure 60. Inter-Pair Skew Definition
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
96 Freescale Semiconductor
Electrical Characteristics
Figure 61. TMDS Output Signals Rise and Fall Time Definition
Figure 62. PREPCLK Frequencies
Table 62. Switching Characteristics
Symbol Parameter Conditions Min. Typ. Max. Unit
TMDS Drivers Specifications
Maximum serial data rate 3.4 Gbps
FTMDSCLK TMDSCLK frequency On TMDSCLKP/N outputs 25 340 MHz
PTMDSCLK TMDSCLK period RL = 50 Ω
See Figure 57.
2.94 40 ns
tCDC TMDSCLK duty cycle tCDC = tCPH / PTMDSCLK
RL = 50 Ω
See Figure 57.
40 50 60 %
tCPH TMDSCLK high time RL = 50 Ω
See Figure 57.
4 56UI
tCPL TMDSCLK low time RL = 50 Ω
See Figure 57.
4 56UI
TMDSCLK jitter1RL = 50 Ω 0.25 UI
tSK(p) Intra-pair (pulse) skew RL = 50 Ω
See Figure 59.
0.15 UI
tSK(pp) Inter-pair skew RL = 50 Ω
See Figure 60.
——1UI
tRDifferential output signal rise
time
20–80%
RL = 50 Ω
See Figure 61.
75 0.4 UI ps
tFDifferential output signal fall time 20–80%
RL = 50 Ω
See Figure 61.
75 0.4 UI ps
Differential signal overshoot Referred to 2x VSWING ——15%
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 97
4.11.9 I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. Figure 63 depicts the timing of I2C
module, and Table 63 lists the I2C module timing characteristics.
Figure 63. I2C Bus Timing
Differential signal undershoot Referred to 2x VSWING ——25%
Data and Control Interface Specifications
tPower-up2HDMI 3D Tx PHY power-up time From power-down to
TX_READY assertion
3.35 ms
1Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.
2For information about latencies and associated timings, see Section 4.11.7.1, “Latencies and Timing Information.
Table 63 . I2C Module Timing Parameters
ID Parameter
Standard Mode Fast Mode
Unit
Min Max Min Max
IC1 I2CLK cycle time 10 2.5 µs
IC2 Hold time (repeated) START condition 4.0 0.6 µs
IC3 Set-up time for STOP condition 4.0 0.6 µs
IC4 Data hold time 013.452010.92µs
IC5 HIGH Period of I2CLK Clock 4.0 0.6 µs
IC6 LOW Period of the I2CLK Clock 4.7 1.3 µs
IC7 Set-up time for a repeated START condition 4.7 0.6 µs
IC8 Data set-up time 250 1003—ns
IC9 Bus free time between a STOP and START condition 4.7 1.3 µs
IC10 Rise time of both I2DAT and I2CLK signals 1000 20 + 0.1Cb4300 ns
IC11 Fall time of both I2DAT and I2CLK signals 300 20 + 0.1Cb4300 ns
IC12 Capacitive load for each bus line (Cb) 400 400 pF
Table 62. Switching Characteristics (continued)
IC10 IC11 IC9
IC2 IC8 IC4 IC7 IC3
IC6
IC10
IC5
IC11 START STOP START
START
I2DAT
I2CLK
IC1
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
98 Freescale Semiconductor
Electrical Characteristics
4.11.10 Image Processing Unit (IPU) Module Parameters
The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor
and/or to a display device. This support covers all aspects of these activities:
Connectivity to relevant devicescameras, displays, graphics accelerators, and TV encoders.
Related image processing and manipulation: sensor image signal processing, display processing,
image conversions, and other related functions.
Synchronization and control capabilities, such as avoidance of tearing artifacts.
1A device must internally provide a hold time of at least 300 ns for I2DAT signal in order to bridge the undefined region of the
falling edge of I2CLK.
2The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2CLK signal.
3A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2CLK signal.
If such a device does stretch the LOW period of the I2CLK signal, it must output the next data bit to the I2DAT line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the I2CLK line is released.
4Cb = total capacitance of one bus line in pF.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 99
4.11.10.1 IPU Sensor Interface Signal Mapping
The IPU supports a number of sensor input formats. Table 64 defines the mapping of the Sensor Interface
Pins used for various supported interface formats.
Table 64. Camera Input Signal Cross Reference, Format, and Bits Per Cycle
Signal
Name1
1CSIx stands for CSI1 or CSI2.
RGB565
8 bits
2 cycles
RGB5652
8 bits
3 cycles
2The MSB bits are duplicated on LSB bits implementing color extension.
RGB6663
8 bits
3 cycles
3The two MSB bits are duplicated on LSB bits implementing color extension.
RGB888
8 bits
3 cycles
YCbCr4
8 bits
2 cycles
4YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).
RGB5655
16 bits
2 cycles
5RGB, 16 bits—Supported in two ways: (1) As a “generic data” input—with no on-the-fly processing; (2) With on-the-fly
processing, but only under some restrictions on the control protocol.
YCbCr6
16 bits
1 cycle
6YCbCr, 16 bits—Supported as a “generic-data” input—with no on-the-fly processing.
YCbCr7
16 bits
1 cycle
7YCbCr, 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).
YCbCr8
20 bits
1 cycle
8YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).
CSIx_DAT0 0 C[0]
CSIx_DAT1 0 C[1]
CSIx_DAT2 C[0] C[2]
CSIx_DAT3 C[1] C[3]
CSIx_DAT4 B[0] C[0] C[2] C[4]
CSIx_DAT5 B[1] C[1] C[3] C[5]
CSIx_DAT6 B[2] C[2] C[4] C[6]
CSIx_DAT7 B[3] C[3] C[5] C[7]
CSIx_DAT8 B[4] C[4] C[6] C[8]
CSIx_DAT9 G[0] C[5] C[7] C[9]
CSIx_DAT10 G[1] C[6] 0 Y[0]
CSIx_DAT11 G[2] C[7] 0 Y[1]
CSIx_DAT12 B[0], G[3] R[2],G[4],B[2] R/G/B[4] R/G/B[0] Y/C[0] G[3] Y[0] Y[0] Y[2]
CSIx_DAT13 B[1], G[4] R[3],G[5],B[3] R/G/B[5] R/G/B[1] Y/C[1] G[4] Y[1] Y[1] Y[3]
CSIx_DAT14 B[2], G[5] R[4],G[0],B[4] R/G/B[0] R/G/B[2] Y/C[2] G[5] Y[2] Y[2] Y[4]
CSIx_DAT15 B[3], R[0] R[0],G[1],B[0] R/G/B[1] R/G/B[3] Y/C[3] R[0] Y[3] Y[3] Y[5]
CSIx_DAT16 B[4], R[1] R[1],G[2],B[1] R/G/B[2] R/G/B[4] Y/C[4] R[1] Y[4] Y[4] Y[6]
CSIx_DAT17 G[0], R[2] R[2],G[3],B[2] R/G/B[3] R/G/B[5] Y/C[5] R[2] Y[5] Y[5] Y[7]
CSIx_DAT18 G[1], R[3] R[3],G[4],B[3] R/G/B[4] R/G/B[6] Y/C[6] R[3] Y[6] Y[6] Y[8]
CSIx_DAT19 G[2], R[4] R[4],G[5],B[4] R/G/B[5] R/G/B[7] Y/C[7] R[4] Y[7] Y[7] Y[9]
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
100 Freescale Semiconductor
Electrical Characteristics
4.11.10.2 Sensor Interface Timings
There are three camera timing modes supported by the IPU.
4.11.10.2.1 BT.656 and BT.1120 Video Mode
Smart camera sensors, which include imaging processing, usually support video mode transfer. They use
an embedded timing syntax to replace the CSIx_VSYNC and CSIx_HSYNC signals. The timing syntax is
defined by the BT.656/BT.1120 standards.
This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only
control signal used is CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the data
stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital blanking
is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding from the data
stream, thus recovering CSIx_VSYNC and CSIx_HSYNC signals for internal use. On BT.656 one
component per cycle is received over the CSIx_DATA bus. On BT.1120 two components per cycle are
received over the CSIx_DATA bus.
4.11.10.2.2 Gated Clock Mode
The CSIx_VSYNC, CSIx_HSYNC, and CSIx_PIX_CLK signals are used in this mode. See Figure 64.
Figure 64. Gated Clock Mode Timing Diagram
A frame starts with a rising edge on CSIx_VSYNC (all the timings correspond to straight polarity of the
corresponding signals). Then CSIx_HSYNC goes to high and hold for the entire line. Pixel clock is valid
as long as CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel clocks. CSIx_HSYNC
goes to low at the end of line. Pixel clocks then become invalid and the CSI stops receiving data from the
stream. For the next line, the CSIx_HSYNC timing repeats. For the next frame, the CSIx_VSYNC timing
repeats.
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 101
4.11.10.2.3 Non-Gated Clock Mode
The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, “Gated Clock Mode,”)
except for the CSIx_HSYNC signal, which is not used (see Figure 65). All incoming pixel clocks are valid
and cause data to be latched into the input FIFO. The CSIx_PIX_CLK signal is inactive (states low) until
valid data is going to be transmitted over the bus.
Figure 65. Non-Gated Clock Mode Timing Diagram
The timing described in Figure 65 is that of a typical sensor. Some other sensors may have a slightly
different timing. The CSI can be programmed to support rising/falling-edge triggered CSIx_VSYNC;
active-high/low CSIx_HSYNC; and rising/falling-edge triggered CSIx_PIX_CLK.
CSIx_VSYNC
CSIx_PIX_CLK
CSIx_DATA[19:0] invalid
1st byte
n+1th frame
invalid
1st byte
nth frame
Start of Frame
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
102 Freescale Semiconductor
Electrical Characteristics
4.11.10.3 Electrical Characteristics
Figure 66 depicts the sensor interface timing. CSIx_MCLK signal described here is not generated by the
IPU. Table 65 lists the sensor interface timing characteristics.
Figure 66. Sensor Interface Timing Diagram
4.11.10.4 IPU Display Interface Signal Mapping
The IPU supports a number of display output video formats. Table 66 defines the mapping of the Display
Interface Pins used during various supported video interface formats.
Table 65. Sensor Interface Timing Characteristics
ID Parameter Symbol Min Max Unit
IP1 Sensor output (pixel) clock frequency Fpck 0.01 180 MHz
IP2 Data and control setup time Tsu 2 ns
IP3 Data and control holdup time Thd 1 ns
IP3
CSIx_DATA,
CSIx_VSYNC,
IP2 1/IP1
CSIx_PIX_CLK
(Sensor Output)
CSIx_HSYNC
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 103
Table 66. Video Signal Cross-Reference
i.MX 6Dual/6Quad LCD
Comment1
Port Name
(x = 0, 1)
RGB,
Signal
Name
(General)
RGB/TV Signal Allocation (Example)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb2
16-bit
YCrCb
20-bit
YCrCb
DISPx_DAT0 DAT[0] B[0] B[0] B[0] Y/C[0] C[0] C[0] The restrictions are as follows:
There are maximal three
continuous groups of bits that
could be independently mapped
to the external bus. Groups
should not be overlapped.
The bit order is expressed in
each of the bit groups, for
example, B[0] = least significant
blue pixel bit.
DISPx_DAT1 DAT[1] B[1] B[1] B[1] Y/C[1] C[1] C[1]
DISPx_DAT2 DAT[2] B[2] B[2] B[2] Y/C[2] C[2] C[2]
DISPx_DAT3 DAT[3] B[3] B[3] B[3] Y/C[3] C[3] C[3]
DISPx_DAT4 DAT[4] B[4] B[4] B[4] Y/C[4] C[4] C[4]
DISPx_DAT5 DAT[5] G[0] B[5] B[5] Y/C[5] C[5] C[5]
DISPx_DAT6 DAT[6] G[1] G[0] B[6] Y/C[6] C[6] C[6]
DISPx_DAT7 DAT[7] G[2] G[1] B[7] Y/C[7] C[7] C[7]
DISPx_DAT8 DAT[8] G[3] G[2] G[0] Y[0] C[8]
DISPx_DAT9 DAT[9] G[4] G[3] G[1] Y[1] C[9]
DISPx_DAT10 DAT[10] G[5] G[4] G[2] Y[2] Y[0]
DISPx_DAT11 DAT[11] R[0] G[5] G[3] Y[3] Y[1]
DISPx_DAT12 DAT[12] R[1] R[0] G[4] Y[4] Y[2]
DISPx_DAT13 DAT[13] R[2] R[1] G[5] Y[5] Y[3]
DISPx_DAT14 DAT[14] R[3] R[2] G[6] Y[6] Y[4]
DISPx_DAT15 DAT[15] R[4] R[3] G[7] Y[7] Y[5]
DISPx_DAT16 DAT[16] R[4] R[0] Y[6]
DISPx_DAT17 DAT[17] R[5] R[1] Y[7]
DISPx_DAT18 DAT[18] R[2] Y[8]
DISPx_DAT19 DAT[19] R[3] Y[9]
DISPx_DAT20 DAT[20] R[4]
DISPx_DAT21 DAT[21] R[5]
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
104 Freescale Semiconductor
Electrical Characteristics
DISPx_DAT22 DAT[22] R[6]
DISPx_DAT23 DAT[23] R[7]
DIx_DISP_CLK PixCLK
DIx_PIN1 May be required for anti-tearing
DIx_PIN2 HSYNC
DIx_PIN3 VSYNC VSYNC out
DIx_PIN4 Additional frame/row synchronous
signals with programmable timing
DIx_PIN5
DIx_PIN6
DIx_PIN7
DIx_PIN8
DIx_D0_CS
DIx_D1_CS Alternate mode of PWM output for
contrast or brightness control
DIx_PIN11
DIx_PIN12
DIx_PIN13 Register select signal
DIx_PIN14 Optional RS2
DIx_PIN15 DRDY/DV Data validation/blank, data enable
DIx_PIN16 Additional data synchronous
signals with programmable
features/timing
DIx_PIN17 Q
1 Signal mapping (both data and control/synchronization) is flexible. The table provides examples.
2This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line
start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data
during blanking intervals is not supported.
Table 66. Video Signal Cross-Reference (continued)
i.MX 6Dual/6Quad LCD
Comment1
Port Name
(x = 0, 1)
RGB,
Signal
Name
(General)
RGB/TV Signal Allocation (Example)
16-bit
RGB
18-bit
RGB
24 Bit
RGB
8-bit
YCrCb2
16-bit
YCrCb
20-bit
YCrCb
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 105
NOTE
Table 66 provides information for both the Disp0 and Disp1 ports. However,
Disp1 port has reduced pinout depending on IOMUXC configuration and
therefore may not support all the above configurations. See the IOMUXC
table for details.
4.11.10.5 IPU Display Interface Timing
The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There
are two groups of external interface pins to provide synchronous and asynchronous controls.
4.11.10.5.1 Synchronous Controls
The synchronous control changes its value as a function of a system or of an external clock. This control
has a permanent period and a permanent waveform.
There are special physical outputs to provide synchronous controls:
The ipp_disp_clk is a dedicated base synchronous signal that is used to generate a base display
(component, pixel) clock for a display.
The ipp_pin_1– ipp_pin_7 are general purpose synchronous pins, that can be used to provide
HSYNC, VSYNC, DRDY or any else independent signal to a display.
The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYCN)
calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control
starts from the local start point with predefined UP and DOWN values to calculate control’s changing
points with half DI_CLK resolution. A full description of the counter system can be found in the IPU
chapter of the i.MX 6Dual/6Quad reference manual.
4.11.10.5.2 Asynchronous Controls
The asynchronous control is a data-oriented signal that changes its value with an output data according to
additional internal flags coming with the data.
There are special physical outputs to provide asynchronous controls, as follows:
The ipp_d0_cs and ipp_d1_cs pins are dedicated to provide chip select signals to two displays.
The ipp_pin_11– ipp_pin_17 are general purpose asynchronous pins, that can be used to provide
WR. RD, RS or any other data-oriented signal to display.
NOTE
The IPU has independent signal generators for asynchronous signals
toggling. When a DI decides to put a new asynchronous data on the bus, a
new internal start (local start point) is generated. The signal generators
calculate predefined UP and DOWN values to change pins states with half
DI_CLK resolution.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
106 Freescale Semiconductor
Electrical Characteristics
4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels
4.11.10.6.1 IPU Display Operating Signals
The IPU uses four control signals and data to operate a standard synchronous interface:
IPP_DISP_CLK—Clock to display
HSYNC—Horizontal synchronization
VSYNC—Vertical synchronization
DRDY—Active data
All synchronous display controls are generated on the base of an internally generated “local start point”.
The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters.
The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved
relative to the local start point. The data bus of the synchronous interface is output direction only.
4.11.10.6.2 LCD Interface Functional Description
Figure 67 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure,
signals are shown with negative polarity. The sequence of events for active matrix interface timing is:
DI_CLK internal DI clock is used for calculation of other controls.
IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected).
In active mode, IPP_DISP_CLK runs continuously.
HSYNC causes the panel to start a new line. (Usually IPP_PIN_2 is used as HSYNC.)
VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.
(Usually IPP_PIN_3 is used as VSYNC.)
DRDY acts like an output enable signal to the CRT display. This output enables the data to be
shifted onto the display. When disabled, the data is invalid and the trace is off.
(DRDY can be used either synchronous or asynchronous generic purpose pin as well.)
Figure 67. Interface Timing Diagram for TFT (Active Matrix) Panels
123 mm–1
HSYNC
VSYNC
HSYNC
LINE 1 LINE 2 LINE 3 LINE 4 LINE n-1 LINE n
DRDY
IPP_DISP_CLK
IPP_DATA
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 107
4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams
Figure 68 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and
the data. All the parameters shown in the figure are programmable. All controls are started by
corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of
the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.
Figure 68. TFT Panels Timing Diagram—Horizontal Sync Pulse
Figure 69 depicts the vertical timing (timing of one frame). All parameters shown in the figure are
programmable.
Figure 69. TFT Panels Timing Diagram—Vertical Sync Pulse
DI clock
VSYNC
HSYNC
DRDY
D0 D1
IP5o
IP13o
IP9o
IP8o IP8
IP9
Dn
IP10
IP7
IP5
IP6
local start point
local start point
local start point
IPP_DISP_CLK
IPP_DATA
IP14
VSYNC
HSYNC
DRDY
Start of frame End of frame
IP12
IP15
IP13
IP11
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
108 Freescale Semiconductor
Electrical Characteristics
Table 67 shows timing characteristics of signals presented in Figure 68 and Figure 69.
Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level)
ID Parameter Symbol Value Description Unit
IP5 Display interface clock period Tdicp (1) Display interface clock. IPP_DISP_CLK ns
IP6 Display pixel clock period Tdpcp DISP_CLK_PER_PIXEL
× Tdicp
Time of translation of one pixel to display,
DISP_CLK_PER_PIXEL—number of pixel
components in one pixel (1.n). The
DISP_CLK_PER_PIXEL is virtual
parameter to define display pixel clock
period.
The DISP_CLK_PER_PIXEL is received by
DC/DI one access division to n
components.
ns
IP7 Screen width time Tsw (SCREEN_WIDTH)
× Tdicp
SCREEN_WIDTH—screen width in,
interface clocks. horizontal blanking
included.
The SCREEN_WIDTH should be built by
suitable DI’s counter2.
ns
IP8 HSYNC width time Thsw (HSYNC_WIDTH) HSYNC_WIDTH—Hsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
IP9 Horizontal blank interval 1 Thbi1 BGXP × Tdicp BGXP—width of a horizontal blanking
before a first active data in a line (in
interface clocks). The BGXP should be built
by suitable DIs counter.
ns
IP10 Horizontal blank interval 2 Thbi2 (SCREEN_WIDTH –
BGXP – FW) × Tdicp
Width a horizontal blanking after a last
active data in a line (in interface clocks)
FW—with of active line in interface clocks.
The FW should be built by suitable DIs
counter.
ns
IP12 Screen height Tsh (SCREEN_HEIGHT)
× Tsw
SCREEN_HEIGHT— screen height in lines
with blanking.
The SCREEN_HEIGHT is a distance
between 2 VSYNCs.
The SCREEN_HEIGHT should be built by
suitable DI’s counter.
ns
IP13 VSYNC width Tvsw VSYNC_WIDTH VSYNC_WIDTH—Vsync width in DI_CLK
with 0.5 DI_CLK resolution. Defined by DI’s
counter.
ns
IP14 Vertical blank interval 1 Tvbi1 BGYP × Tsw BGYP—width of first Vertical
blanking interval in line. The BGYP should
be built by suitable DIs counter.
ns
IP15 Vertical blank interval 2 Tvbi2 (SCREEN_HEIGHT –
BGYP – FH) × Tsw
Width of second vertical blanking interval in
line. The FH should be built by suitable DI’s
counter.
ns
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 109
The maximal accuracy of UP/DOWN edge of controls is:
IP5o Offset of IPP_DISP_CLK Todicp DISP_CLK_OFFSET
× Tdiclk
DISP_CLK_OFFSET—offset of
IPP_DISP_CLK edges from local start
point, in DI_CLK×2
(0.5 DI_CLK Resolution).
Defined by DISP_CLK counter.
ns
IP13o Offset of VSYNC Tovs VSYNC_OFFSET
× Tdiclk
VSYNC_OFFSET—offset of Vsync edges
from a local start point, when a Vsync
should be active, in DI_CLK×2
(0.5 DI_CLK Resolution). The
VSYNC_OFFSET should be built by
suitable DI’s counter.
ns
IP8o Offset of HSYNC Tohs HSYNC_OFFSET
× Tdiclk
HSYNC_OFFSET—offset of Hsync edges
from a local start point, when a Hsync
should be active, in DI_CLK×2
(0.5 DI_CLK Resolution). The
HSYNC_OFFSET should be built by
suitable DI’s counter.
ns
IP9o Offset of DRDY Todrdy DRDY_OFFSET
× Tdiclk
DRDY_OFFSET—offset of DRDY edges
from a suitable local start point, when a
corresponding data has been set on the
bus, in DI_CLK×2
(0.5 DI_CLK Resolution).
The DRDY_OFFSET should be built by
suitable DI’s counter.
ns
1Display interface clock period immediate value.
DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK.
DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency
Display interface clock period average value.
2DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the
counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by
corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance
between HSYNCs is a SCREEN_WIDTH.
Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)
ID Parameter Symbol Value Description Unit
Tdicp
Tdiclk
DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------
× for integer DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------,
Tdiclk floor DISP_CLK_PERIOD
DI_CLK_PERIOD
---------------------------------------------------- 0.5 0.5±+
⎝⎠
⎛⎞
for fractional DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------,
=
Tdicp Tdiclk
DISP_CLK_PERIOD
DI_CLK_PERIOD
----------------------------------------------------
×=
Accuracy 0.5 Tdiclk
×()0.62ns±=
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
110 Freescale Semiconductor
Electrical Characteristics
The maximal accuracy of UP/DOWN edge of IPP_DATA is:
The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are register-controlled.
Figure 70 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and
DISP_CLK_UP parameters are register-controlled. Table 68 lists the synchronous display interface timing
characteristics.
Figure 70. Synchronous Display Interface Timing Diagram—Access Level
Table 68. Synchronous Display Interface Timing Characteristics (Access Level)
ID Parameter Symbol Min Typ1
1The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.
These conditions may be chip specific.
Max Unit
IP16 Display interface clock low
time
Tckl Tdicd-Tdicu-1.24 Tdicd2-Tdicu3Tdicd-Tdicu+1.24 ns
IP17 Display interface clock
high time
Tckh Tdicp-Tdicd+Tdicu-1.24 Tdicp-Tdicd+Tdicu Tdicp-Tdicd+Tdicu+1.2 ns
IP18 Data setup time Tdsu Tdicd-1.24 Tdicu ns
IP19 Data holdup time Tdhd Tdicp-Tdicd-1.24 Tdicp-Tdicu ns
IP20o Control signals offset
times (defined for each
pin)
Tocsu Tocsu-1.24 Tocsu Tocsu+1.24 ns
IP20 Control signals setup time
to display interface clock
(defined for each pin)
Tcsu Tdicd-1.24-Tocsu%Tdicp Tdicu ns
Accuracy Tdiclk 0.62ns±=
IP19 IP18
IP20
VSYNC
IP17IP16
DRDY
HSYNC
other controls
IP20o
local start point
Tdicd
Tdicu
IPP_DISP_CLK
IPP_DATA
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 111
4.11.11 LVDS Display Bridge (LDB) Module Parameters
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD
644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits.
4.11.12 MIPI D-PHY Timing Parameters
This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0,
D-PHY specification Rev. 1.0 (for MIPI sensor port x4 lanes) and MIPI DSI Version 1.01, and D-PHY
specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for
MIPI display port x2 lanes).
4.11.12.1 Electrical and Timing Information
2Display interface clock down time
3Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.
Table 69. LVDS Display Bridge (LDB) Electrical Specification
Parameter Symbol Test Condition Min Max Units
Differential Voltage Output Voltage VOD 100 Ω Differential load 250 450 mV
Output Voltage High Voh 100 Ω differential load
(0 V Diff—Output High Voltage static)
1.25 1.6 mV
Output Voltage Low Vol 100 Ω differential load
(0 V Diff—Output Low Voltage static)
0.9 1.25 mV
Offset Static Voltage VOS Two 49.9 Ω resistors in series between N-P
terminal, with output in either Zero or One state, the
voltage measured between the 2 resistors.
1.15 1.375 V
VOS Differential VOSDIFF Difference in VOS between a One and a Zero state -50 50 mV
Output short circuited to GND ISA ISB With the output common shorted to GND -24 24 mA
VT Full Load Test VTLoad 100 Ω Differential load with a 3.74 kΩ load between
GND and I/O supply voltage
247 454 mV
Table 70. Electrical and Timing Information
Symbol Parameters Test Conditions MIN TYP MAX Unit
Input DC Specifications - Apply to CLKP/N and DATAP/N inputs
VIInput signal voltage range Transient voltage range is
limited from -300 mV to 1600 mV
-50 1350 mV
Tdicd 1
2
---T
diclk ceil×2 DISP_CLK_DOWN×
DI_CLK_PERIOD
-----------------------------------------------------------
⎝⎠
⎛⎞
=
Tdicu 1
2
---T
diclk ceil×2 DISP_CLK_UP×
DI_CLK_PERIOD
------------------------------------------------
⎝⎠
⎛⎞
=
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
112 Freescale Semiconductor
Electrical Characteristics
VLEAK Input leakage current VGNDSH(min) = VI =
VGNDSH(max) + VOH(absmax)
Lane module in LP Receive
Mode
-10 10 mA
VGNDSH Ground Shift -50 50 mV
VOH(absmax) Maximum transient output
voltage level
——1.45V
tvoh(absmax) Maximum transient time
above VOH(absmax)
20 ns
HS Line Drivers DC Specifications
|VOD| HS Transmit Differential
output voltage magnitude
80 Ω<= RL< = 125 Ω140 200 270 mV
Δ|VOD| Change in Differential output
voltage magnitude between
logic states
80 Ω<= RL< = 125 Ω10 mV
VCMTX Steady-state common-mode
output voltage.
80 Ω<= RL< = 125 Ω150 200 250 mV
ΔVCMTX(1,0) Changes in steady-state
common-mode output voltage
between logic states
80 Ω<= RL< = 125 Ω5mV
VOHHS HS output high voltage 80 Ω<= RL< = 125 Ω360 mV
ZOS Single-ended output
impedance.
40 50 62.5 Ω
ΔZOS Single-ended output
impedance mismatch.
10 %
LP Line Drivers DC Specifications
VOL Output low-level SE voltage -50 50 mV
VOH Output high-level SE voltage 1.1 1.2 1.3 V
ZOLP Single-ended output
impedance.
110 Ω
ΔZOLP(01-10) Single-ended output
impedance mismatch driving
opposite level
20 %
ΔZOLP(0-11) Single-ended output
impedance mismatch driving
same level
5%
HS Line Receiver DC Specifications
VIDTH Differential input high voltage
threshold
70 mV
VIDTL Differential input low voltage
threshold
-70 mV
Table 70. Electrical and Timing Information (continued)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 113
4.11.12.2 D-PHY Signaling Levels
The signal levels are different for differential HS mode and single-ended LP mode. Figure 71 shows both
the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below
the LP low-level input threshold such that LP receiver always detects low on HS signals.
Figure 71. D-PHY Signaling Levels
VIHHS Single ended input high
voltage
460 mV
VILHS Single ended input low
voltage
-40 mV
VCMRXDC Input common mode voltage 70 330 mV
ZID Differential input impedance 80 125 Ω
LP Line Receiver DC Specifications
VIL Input low voltage 550 mV
VIH Input high voltage 920 mV
VHYST Input hysteresis 25 mV
Contention Line Receiver DC Specifications
VILF Input low fault threshold 200 450 mV
Table 70. Electrical and Timing Information (continued)
HS Vout
Range
HS Vcm
Range
Max VOD
Min VOD
VCMTX,MIN
VOLHS
VCMTX,MAX
VOHHS
LP VIL
LP
VOL
LP
VIH
VOH,MAX
VOH,MIN
VIH
VIL
LP Threshold
Region
VGNDSH,MA
X
VGNDSH,MIN
GND
LP VOL
HS Differential Signaling LP Single-ended Signaling
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
114 Freescale Semiconductor
Electrical Characteristics
4.11.12.3 HS Line Driver Characteristics
Figure 72. Ideal Single-ended and Resulting Differential HS Signals
4.11.12.4 Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals
Figure 73. Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals
4.11.12.5 D-PHY Switching Characteristics
Table 71. Electrical and Timing Information
Symbol Parameters Test Conditions MIN TYP MAX Unit
HS Line Drivers AC Specifications
Maximum serial data rate (forward
direction)
On DATAP/N outputs.
80 Ω <= RL <= 125 Ω
80 1000 Mbps
VOD(1)
VOD(1)
VOD(0)
VOD(0)
VOD = VDP - VDN
VCMTX = (VDP + VDN)/2
0V
(Differential)
VDN
VDP
Ideal Single-Ended High Speed Signals
Ideal Differential High Speed Signals
VOD(0)
VOD (1 )
VOD
/2
VOD /2
VOD (SE HS Signals)
Static VCMT X (SE HS Signals)
Dynamic VCMT X (SE HS Signals)
VDN
VCM TX
VDP
VDN
VCMTX
VDP
VDN
VCM TX
VDP
VOD(0)
ΔΔ
Δ
Δ
Δ
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 115
FDDRCLK DDR CLK frequency On DATAP/N outputs. 40 500 MHz
PDDRCLK DDR CLK period 80 Ω <= RL< = 125 Ω2—25ns
tCDC DDR CLK duty cycle tCDC = tCPH / PDDRCLK —50%
tCPH DDR CLK high time 1 UI
tCPL DDR CLK low time 1 UI
DDR CLK / DATA Jitter 75 ps pk-pk
tSKEW[PN] Intra-Pair (Pulse) skew 0.075 UI
tSKEW[TX] Data to Clock Skew 0.350 0.650 UI
tSETUP[RX] Data to Clock Receiver Setup time 0.15 UI
tHOLD[RX] Clock to Data Receiver Hold time 0.15 UI
trDifferential output signal rise time 20% to 80%, RL = 50 Ω 150 0.3UI ps
tfDifferential output signal fall time 20% to 80%, RL = 50 Ω 150 0.3UI ps
ΔVCMTX(HF) Common level variation above 450 MHz 80 Ω<= RL< = 125 Ω15 mVrms
ΔVCMTX(LF) Common level variation between 50
MHz and 450 MHz
80 Ω<= RL< = 125 Ω25 mVp
LP Line Drivers AC Specifications
trlp,tflp Single ended output rise/fall time 15% to 85%, CL<70 pF 25 ns
treo 30% to 85%, CL<70 pF 35 ns
δV/δtSR Signal slew rate 15% to 85%, CL<70 pF 120 mV/ns
CLLoad capacitance 0 70 pF
HS Line Receiver AC Specifications
ΔVCMRX(HF) Common mode interference beyond
450 MHz
200 mVpp
ΔVCMRX(LF) Common mode interference between
50 MHz and 450 MHz
-50 50 mVpp
CCM Common mode termination 60 pF
LP Line Receiver AC Specifications
eSPIKE Input pulse rejection 300 Vps
TMIN Minimum pulse response 50 ns
VINT Pk-to-Pk interference voltage 400 mV
fINT Interference frequency 450 MHz
Model Parameters used for Driver Load switching performance evaluation
CPA D Equivalent Single ended I/O PAD
capacitance.
1pF
CPIN Equivalent Single ended Package +
PCB capacitance.
2pF
Table 71. Electrical and Timing Information
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
116 Freescale Semiconductor
Electrical Characteristics
4.11.12.6 High-Speed Clock Timing
Figure 74. DDR Clock Definition
4.11.12.7 Forward High-Speed Data Transmission Timing
The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in
Figure 75:
Figure 75. Data to Clock Timing Definitions
LSEquivalent wire bond series inductance 1.5 nH
RSEquivalent wire bond series resistance 0.15 Ω
RLLoad Resistance 80 100 125 Ω
Table 71. Electrical and Timing Information
1 Data Bit Time = 1UI
UIINST(1)
1 Data Bit Time = 1UI
UIINST(2)
CLKp
CLKn
1 DDR Clock Period = UIINST(1) + UIINST(2)
1 UIINST
CLKp
CLKn
TCLKp
TSETUP
0.5UIINST +
TSKEW
THOLD
Reference Time
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 117
4.11.12.8 Reverse High-Speed Data Transmission Timing
Figure 76. Reverse High-Speed Data Transmission Timing at Slave Side
4.11.12.9 Low-Power Receiver Timing
Figure 77. Input Glitch Rejection of Low-Power Receivers
4.11.13 HSI Host Controller Timing Parameters
This section describes the timing parameters of the HSI Host Controller which are compliant with
High-Speed Synchronous Serial Interface (HSI) Physical Layer specification version1.01.
4.11.13.1 Synchronous Data Flow
Figure 78. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)
TTD
2UI 2UI
CLKp
CLKn
Clock to Data
Skew
NRZ Data
2*TLPX 2*TLPX
TMIN-RX TMIN-RX
eSPIKE
eSPIKE
Input
Output
VIH
VIL
N-bits Frame N-bits Frame
First bit of
frame
t
N
omBi
t
Last bit of
frame
First bit of
frame
Last bit of
frame
DATA
FLAG
READY
Receiver has
detected the start
of the Frame
Receiver has captured
and stored a complete
Frame
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
118 Freescale Semiconductor
Electrical Characteristics
4.11.13.2 Pipelined Data Flow
Figure 79. Pipelined Data Flow Ready Signal Timing (Frame Transmission Mode)
4.11.13.3 Receiver Real-Time Data Flow
Figure 80. Receiver Real-Time Data Flow READY Signal Timing
4.11.13.4 Synchronized Data Flow Transmission with Wake
Figure 81. Synchronized Data Flow Transmission with WAKE
N-bits Frame
Last bit of
frame
DATA
FLAG
N-bits Frame
First bit of
frame tNo mBit
Last bit of
frame
First bit of
frame
READY
A Ready can change B Ready shall not
change to zero
Last bit of
frame
C. Ready can change D. Ready shall
maintain zero of if
receiver does not
have free space
E.
Ready
can
change
F. Ready
shall
maintain
its value
G. Ready
can change
N-bits Frame N-bits Frame
First bit of
frame
t
N
omBi
t
Last bit of
frame
First bit of
frame
Last bit of
frame
DATA
FLAG
READY
Receiver has
detected the start
of the Frame
Receiver has captured a
complete Frame
DATA
FLAG
READY
1. Transmitter has
data to transmit
3. First bit
received
PHY Frame PHY Frame
TX state
RX state
WAKE
A
A
B
B
C
C
D
D
A
A
2. Receiver in active
start state
4. Received
frame stored
5. Transmitter
has no more
data to
transmit
6. Receiver
can no longer
receive date
A: Sleep state(non-operational) B: Wake-up state C: Active state (full operational) D: Disable State(No communication ability)
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 119
4.11.13.5 Stream Transmission Mode Frame Transfer
Figure 82. Stream Transmission Mode Frame Transfer (Synchronized Data Flow)
4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)
Figure 83. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)
4.11.13.7 Frame Transmission Mode (Pipelined Data Flow)
Figure 84. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)
4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load
Table 72. DATA and FLAG Timing
Parameter Description 1 Mbit/s 100 Mbit/s
tBit, nom Nominal bit time 1000 ns 10 ns
tRise, min and tFall, min Minimum allowed rise and fall time 2 ns 2 ns
tTxToRxSkew, maxfq Maximum skew between transmitter and receiver package pins 50 ns 0.5 ns
Complete N-bits Frame Complete N-bits Frame
DATA
FLAG
READY
Channel
Description
bits
Payload Data Bits
Complete N-bits Frame Complete N-bits Frame
DATA
FLAG
READY
Channel
Description
bits
Payload Data Bits
Frame
start bit
Complete N-bits Frame Complete N-bits Frame
DATA
FLAG
READY
Channel
Description
bits
Payload Data Bits
Frame
start bit
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
120 Freescale Semiconductor
Electrical Characteristics
4.11.13.9 DATA and FLAG Signal Timing
Figure 85. DATA and FLAG Signal Timing
4.11.14 PCIe PHY Parameters
The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0
standard.
4.11.14.1 PCIE_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 200 Ω. 1% precision resistor
on PCIE_REXT pads to ground. It is used for termination impedance calibration.
4.11.15 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external
pin.
Figure 86 depicts the timing of the PWM, and Table 73 lists the PWM timing parameters.
tEageSepTx, min Minimum allowed separation of signal transitions at transmitter package
pins, including all timing defects, for example, jitter and skew, inside the
transmitter.
400 ns 4 ns
tEageSepRx, min Minimum separation of signal transitions, measured at the receiver
package pins, including all timing defects, for example, jitter and skew,
inside the receiver.
350 ns 3.5 ns
Table 72. DATA and FLAG Timing (continued)
Parameter Description 1 Mbit/s 100 Mbit/s
DATA
(TX)
FLAG
(TX)
DATA
(RX)
FLAG
(RX)
50%
50%50%
50%
50%
50%
80%
80%
20%
20%20%20%
80%
80%
tEdgeSepTx
t
TxToRx Skew tEdgeSepRx
t
Bit
t
Rise
t
Fall
Note1
Note1 Note2
Note2
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 121
Figure 86. PWM Timing
4.11.16 SATA PHY Parameters
This section describes SATA PHY electrical specifications.
4.11.16.1 Transmitter and Receiver Characteristics
The SATA PHY meets or exceeds the electrical compliance requirements defined in the SATA
specifications.
NOTE
The tables in the following sections indicate any exceptions to the SATA
specification or aspects of the SATA PHY that exceed the standard, as well
as provide information about parameters not defined in the standard.
The following subsections provide values obtained from a combination of simulations and silicon
characterization.
Table 73. PWM Output Timing Parameters
ID Parameter Min Max Unit
PWM Module Clock Frequency 0 ipg_clk MHz
P1 PWM output pulse width high 15 ns
P2 PWM output pulse width low 15 ns
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
122 Freescale Semiconductor
Electrical Characteristics
4.11.16.1.1 SATA PHY Transmitter Characteristics
Table 74 provides specifications for SATA PHY transmitter characteristics.
4.11.16.1.2 SATA PHY Receiver Characteristics
Table 75 provides specifications for SATA PHY receiver characteristics.
4.11.16.2 SATA_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 191 Ω.1% precision resistor
on SATA_REXT pad to ground.
Resistor calibration consists of learning which state of the internal Resistor Calibration register causes an
internal, digitally trimmed calibration resistor to best match the impedance applied to the SATA_REXT
pin. The calibration register value is then supplied to all Tx and Rx termination resistors.
During the calibration process (for a few tens of microseconds), up to 0.3 mW can be dissipated in the
external SATA_REXT resistor. At other times, no power is dissipated by the SATA_REXT resistor.
4.11.17 SCAN JTAG Controller (SJC) Timing Parameters
Figure 87 depicts the SJC test clock input timing. Figure 88 depicts the SJC boundary scan timing.
Figure 89 depicts the SJC test access port. Signal parameters are listed in Table 76.
Figure 87. Test Clock Input Timing Diagram
Table 74. SATA2 PHY Transmitter Characteristics
Parameters Symbol Min Typ Max Unit
Transmit common mode voltage VCTM 0.4 0.6 V
Transmitter pre-emphasis accuracy (measured
change in de-emphasized bit)
–0.5 0.5 dB
Table 75. SATA PHY Receiver Characteristics
Parameters Symbol Min Typ Max Unit
Minimum Rx eye height (differential peak-to-peak) VMIN_RX_EYE_HEIGHT 175 mV
Tolerance PPM –400 400 ppm
TCK
(Input) VM VM
VIH
VIL
SJ1
SJ2 SJ2
SJ3
SJ3
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 123
Figure 88. Boundary Scan (JTAG) Timing Diagram
Figure 89. Test Access Port Timing Diagram
TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
TCK
(Input)
TDI
(Input)
TDO
(Output)
TDO
(Output)
TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
TMS
SJ8 SJ9
SJ10
SJ11
SJ10
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
124 Freescale Semiconductor
Electrical Characteristics
Figure 90. TRST Timing Diagram
4.11.18 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 77 and Figure 91 and Figure 92 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SRCK) for SPDIF in Rx
mode and the timing of the modulating Tx clock (STCLK) for SPDIF in Tx mode.
Table 76. JTAG Timing
ID Parameter1,2
All Frequencies
Unit
Min Max
SJ0 TCK frequency of operation 1/(3xTDC)1
1TDC = target frequency of SJC
0.001 22 MHz
SJ1 TCK cycle time in crystal mode 45 ns
SJ2 TCK clock pulse width measured at VM2
2VM = mid-point voltage
22.5 ns
SJ3 TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 5 ns
SJ5 Boundary scan input data hold time 24 ns
SJ6 TCK low to output data valid 40 ns
SJ7 TCK low to output high impedance 40 ns
SJ8 TMS, TDI data set-up time 5 ns
SJ9 TMS, TDI data hold time 25 ns
SJ10 TCK low to TDO data valid 44 ns
SJ11 TCK low to TDO high impedance 44 ns
SJ12 TRST assert time 100 ns
SJ13 TRST set-up time to TCK low 40 ns
TCK
(Input)
TRST
(Input)
SJ13
SJ12
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 125
Figure 91. SRCK Timing Diagram
Figure 92. STCLK Timing Diagram
Table 77. SPDIF Timing Parameters
Parameter Symbol
Timing Parameter Range
Unit
Min Max
SPDIFIN Skew: asynchronous inputs, no specs apply 0.7 ns
SPDIFOUT output (Load = 50pf)
•Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
SPDIFOUT1 output (Load = 30pf)
•Skew
Transition rising
Transition falling
1.5
13.6
18.0
ns
Modulating Rx clock (SRCK) period srckp 40.0 ns
SRCK high period srckph 16.0 ns
SRCK low period srckpl 16.0 ns
Modulating Tx clock (STCLK) period stclkp 40.0 ns
STCLK high period stclkph 16.0 ns
STCLK low period stclkpl 16.0 ns
SRCK
(Output)
VMVM
srckp
srckph
srckpl
STCLK
(Input)
VMVM
stclkp
stclkph
stclkpl
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
126 Freescale Semiconductor
Electrical Characteristics
4.11.19 SSI Timing Parameters
This section describes the timing parameters of the SSI module. The connectivity of the serial
synchronous interfaces are summarized in Table 78.
NOTE
The terms WL and BL used in the timing diagrams and tables refer to
Word Length (WL) and Bit Length (BL).
The SSI timing diagrams use generic signal names wherein the names
used in the i.MX 6Dual/6Quad reference manual are channel specific
signal names. For example, a channel clock referenced in the IOMUXC
chapter as AUD3_TXC appears in the timing diagram as RGMII_TXC.
Table 78. AUDMUX Port Allocation
Port Signal Nomenclature Type and Access
AUDMUX port 1 SSI 1 Internal
AUDMUX port 2 SSI 2 Internal
AUDMUX port 3 AUD3 External – AUD3 I/O
AUDMUX port 4 AUD4 External – EIM or CSPI1 I/O through IOMUXC
AUDMUX port 5 AUD5 External – EIM or SD1 I/O through IOMUXC
AUDMUX port 6 AUD6 External – EIM or DISP2 through IOMUXC
AUDMUX port 7 SSI 3 Internal
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 127
4.11.19.1 SSI Transmitter Timing with Internal Clock
Figure 93 depicts the SSI transmitter internal clock timing and Table 79 lists the timing parameters for
the SSI transmitter internal clock.
.
Figure 93. SSI Transmitter Internal Clock Timing Diagram
Table 79. SSI Transmitter Timing with Internal Clock
ID Parameter Min Max Unit
Internal Clock Operation
SS1 (Tx/Rx) CK clock period 81.4 ns
SS2 (Tx/Rx) CK clock high period 36.0 ns
SS4 (Tx/Rx) CK clock low period 36.0 ns
SS6 (Tx) CK high to FS (bl) high 15.0 ns
SS8 (Tx) CK high to FS (bl) low 15.0 ns
SS10 (Tx) CK high to FS (wl) high 15.0 ns
SS12 (Tx) CK high to FS (wl) low 15.0 ns
SS14 (Tx/Rx) Internal FS rise time 6.0 ns
SS15 (Tx/Rx) Internal FS fall time 6.0 ns
SS16 (Tx) CK high to STXD valid from high impedance 15.0 ns
SS17 (Tx) CK high to STXD high/low 15.0 ns
SS18 (Tx) CK high to STXD high impedance 15.0 ns
SS19
SS1
SS2 SS4
SS3SS5
SS6 SS8
SS10 SS12
SS14
SS18
SS15
SS17
SS16
SS43
SS42
Note: SRXD input in synchronous mode only
RGMII_TXC
(Output)
TXFS (wl)
(Output)
TXFS (bl)
(Output)
RGMII_RXD
(Input)
RGMII_TXD
(Output)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
128 Freescale Semiconductor
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms, WL and BL, refer to Word Length (WL) and Bit Length
(BL).
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
Synchronous Internal Clock Operation
SS42 SRXD setup before (Tx) CK falling 10.0 ns
SS43 SRXD hold after (Tx) CK falling 0.0 ns
Table 79. SSI Transmitter Timing with Internal Clock (continued)
ID Parameter Min Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 129
4.11.19.2 SSI Receiver Timing with Internal Clock
Figure 94 depicts the SSI receiver internal clock timing and Table 80 lists the timing parameters for the
receiver timing with the internal clock.
Figure 94. SSI Receiver Internal Clock Timing Diagram
Table 80. SSI Receiver Timing with Internal Clock
ID Parameter Min Max Unit
Internal Clock Operation
SS1 (Tx/Rx) CK clock period 81.4 ns
SS2 (Tx/Rx) CK clock high period 36.0 ns
SS3 (Tx/Rx) CK clock rise time 6.0 ns
SS4 (Tx/Rx) CK clock low period 36.0 ns
SS5 (Tx/Rx) CK clock fall time 6.0 ns
SS7 (Rx) CK high to FS (bl) high 15.0 ns
SS9 (Rx) CK high to FS (bl) low 15.0 ns
SS11 (Rx) CK high to FS (wl) high 15.0 ns
SS13 (Rx) CK high to FS (wl) low 15.0 ns
SS20 SRXD setup time before (Rx) CK low 10.0 ns
SS21 SRXD hold time after (Rx) CK low 0.0 ns
Oversampling Clock Operation
SS50
SS48
SS1
SS4SS2
SS51
SS20
SS21
SS49
SS7 SS9
SS11 SS13
SS47
SS3
SS5
RGMII_TXC
(Output)
TXFS (bl)
(Output)
TXFS (wl)
(Output)
RGMII_RXD
(Input)
RGMII_RXC
(Output)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
130 Freescale Semiconductor
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
The terms, WL and BL, refer to Word Length (WL) and Bit Length
(BL).
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
SS47 Oversampling clock period 15.04 ns
SS48 Oversampling clock high period 6.0 ns
SS49 Oversampling clock rise time 3.0 ns
SS50 Oversampling clock low period 6.0 ns
SS51 Oversampling clock fall time 3.0 ns
Table 80. SSI Receiver Timing with Internal Clock (continued)
ID Parameter Min Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 131
4.11.19.3 SSI Transmitter Timing with External Clock
Figure 95 depicts the SSI transmitter external clock timing and Table 81 lists the timing parameters for
the transmitter timing with the external clock.
Figure 95. SSI Transmitter External Clock Timing Diagram
Table 81. SSI Transmitter Timing with External Clock
ID Parameter Min Max Unit
External Clock Operation
SS22 (Tx/Rx) CK clock period 81.4 ns
SS23 (Tx/Rx) CK clock high period 36.0 ns
SS24 (Tx/Rx) CK clock rise time 6.0 ns
SS25 (Tx/Rx) CK clock low period 36.0 ns
SS26 (Tx/Rx) CK clock fall time 6.0 ns
SS27 (Tx) CK high to FS (bl) high –10.0 15.0 ns
SS29 (Tx) CK high to FS (bl) low 10.0 ns
SS31 (Tx) CK high to FS (wl) high –10.0 15.0 ns
SS33 (Tx) CK high to FS (wl) low 10.0 ns
SS37 (Tx) CK high to STXD valid from high impedance 15.0 ns
SS38 (Tx) CK high to STXD high/low 15.0 ns
SS45
SS33
SS24
SS26
SS25
SS23
Note: SRXD Input in Synchronous mode only
SS31
SS29
SS27
SS22
SS44
SS39
SS38
SS37
SS46
RGMII_TXC
(Input)
TXFS (bl)
(Input)
TXFS (wl)
(Input)
RGMII_TXD
(Output)
RGMII_RXD
(Input)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
132 Freescale Semiconductor
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
SS39 (Tx) CK high to STXD high impedance 15.0 ns
Synchronous External Clock Operation
SS44 SRXD setup before (Tx) CK falling 10.0 ns
SS45 SRXD hold after (Tx) CK falling 2.0 ns
SS46 SRXD rise/fall time 6.0 ns
Table 81. SSI Transmitter Timing with External Clock (continued)
ID Parameter Min Max Unit
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 133
4.11.19.4 SSI Receiver Timing with External Clock
Figure 96 depicts the SSI receiver external clock timing and Table 82 lists the timing parameters for the
receiver timing with the external clock.
Figure 96. SSI Receiver External Clock Timing Diagram
Table 82. SSI Receiver Timing with External Clock
ID Parameter Min Max Unit
External Clock Operation
SS22 (Tx/Rx) CK clock period 81.4 ns
SS23 (Tx/Rx) CK clock high period 36 ns
SS24 (Tx/Rx) CK clock rise time 6.0 ns
SS25 (Tx/Rx) CK clock low period 36 ns
SS26 (Tx/Rx) CK clock fall time 6.0 ns
SS28 (Rx) CK high to FS (bl) high –10 15.0 ns
SS30 (Rx) CK high to FS (bl) low 10 ns
SS32 (Rx) CK high to FS (wl) high –10 15.0 ns
SS34 (Rx) CK high to FS (wl) low 10 ns
SS35 (Tx/Rx) External FS rise time 6.0 ns
SS36 (Tx/Rx) External FS fall time 6.0 ns
SS40 SRXD setup time before (Rx) CK low 10 ns
SS41 SRXD hold time after (Rx) CK low 2 ns
SS24
SS34
SS35
SS30
SS28
SS26
SS25
SS23
SS40
SS22
SS32
SS36
SS41
RGMII_TXC
(Input)
TXFS (bl)
(Input)
TXFS (wl)
(Input)
RGMII_RXD
(Input)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
134 Freescale Semiconductor
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
STCK/SRCK and/or the frame sync STFS/SRFS shown in the tables
and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
“Tx” and “Rx” refer to the Transmit and Receive sections of the SSI.
The terms, WL and BL, refer to Word Length (WL) and Bit Length
(BL).
For internal Frame Sync operation using external clock, the FS timing is
same as that of Tx Data (for example, during AC97 mode of operation).
4.11.20 UART I/O Configuration and Timing Parameters
4.11.20.1 UART RS-232 I/O Configuration in Different Modes
The i.MX 6Dual/6Quad UART interfaces can serve both as DTE or DCE device. This can be configured
by the DCEDTE control bit (default 0 – DCE mode). Table 83 shows the UART I/O configuration based
on the enabled mode.
Table 83. UART I/O Configuration vs. Mode
Port
DTE Mode DCE Mode
Direction Description Direction Description
RTS Output RTS from DTE to DCE Input RTS from DTE to DCE
CTS Input CTS from DCE to DTE Output CTS from DCE to DTE
DTR Output DTR from DTE to DCE Input DTR from DTE to DCE
DSR Input DSR from DCE to DTE Output DSR from DCE to DTE
DCD Input DCD from DCE to DTE Output DCD from DCE to DTE
RI Input RING from DCE to DTE Output RING from DCE to DTE
TXD_MUX Input Serial data from DCE to DTE Output Serial data from DCE to DTE
RXD_MUX Output Serial data from DTE to DCE Input Serial data from DTE to DCE
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 135
4.11.20.2 UART RS-232 Serial Mode Timing
The following sections describe the electrical information of the UART module in the RS-232 mode.
4.11.20.2.1 UART Transmitter
Figure 97 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit
format. Table 84 lists the UART RS-232 serial mode transmit timing characteristics.
Figure 97. UART RS-232 Serial Mode Transmit Timing Diagram
4.11.20.2.2 UART Receiver
Figure 98 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 85 lists
serial mode receive timing characteristics.
Figure 98. UART RS-232 Serial Mode Receive Timing Diagram
Table 84. RS-232 Serial Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA1 Transmit Bit Time tTbit 1/Fbaud_rate1 – Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (
ipg_perclk
frequency)/16.
2Tref_clk: The period of UART reference clock
ref_clk
(
ipg_perclk
after RFDIV divider).
1/Fbaud_rate + Tref_clk
Table 85. RS-232 Serial Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA2 Receive Bit Time1
1The UART receiver can tolerate 1/(16*Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16*Fbaud_rate).
tRbit 1/Fbaud_rate2 – 1/(16*Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (
ipg_perclk
frequency)/16.
1/Fbaud_rate + 1/(16*Fbaud_rate)—
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
RGMII_TXD
(output) Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA1
UA1 UA1
UA1
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
RGMII_RXD
(input) Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA2 UA2
UA2 UA2
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
136 Freescale Semiconductor
Electrical Characteristics
4.11.20.2.3 UART IrDA Mode Timing
The following subsections give the UART transmit and receive timings in IrDA mode.
UART IrDA Mode Transmitter
Figure 99 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 86 lists
the transmit timing characteristics.
Figure 99. UART IrDA Mode Transmit Timing Diagram
UART IrDA Mode Receiver
Figure 100 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 87 lists
the receive timing characteristics.
Figure 100. UART IrDA Mode Receive Timing Diagram
Table 86. IrDA Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 – Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (
ipg_perclk
frequency)/16.
2Tref_clk: The period of UART reference clock
ref_clk
(
ipg_perclk
after RFDIV divider).
1/Fbaud_rate + Tref_clk
UA4 Transmit IR Pulse Duration tTIRpulse (3/16)*(1/Fbaud_rate) – Tref_clk (3/16)*(1/Fbaud_rate) + T
ref_clk
Table 87. IrDA Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA5 Receive Bit Time1 in IrDA mode
1 The UART receiver can tolerate 1/(16*Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16*Fbaud_rate).
tRIRbit 1/Fbaud_rate2 – 1/(16*Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (
ipg_perclk
frequency)/16.
1/Fbaud_rate + 1/(16*Fbaud_rate)—
UA6 Receive IR Pulse Duration tRIRpulse 1.41 μs (5/16)*(1/Fbaud_rate)—
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
RGMII_TXD
(output)
Bit 3
Start
Bit
STOP
BIT
Possible
Parity
Bit
UA3 UA3 UA3 UA3
UA4
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
RGMII_RXD
(input)
Bit 3
Start
Bit
STOP
BIT
Possible
Parity
Bit
UA5 UA5 UA5 UA5
UA6
Electrical Characteristics
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 137
4.11.21 USB HSIC Timings
This section describes the electrical information of the USB HSIC port.
NOTE
HSIC is a DDR signal. The following timing specification is for both rising
and falling edges.
4.11.21.1 Transmit Timing
Figure 101. USB HSIC Transmit Waveform
4.11.21.2 Receive Timing
Figure 102. USB HSIC Receive Waveform
Table 88. USB HSIC Transmit Parameters
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.166 4.167 ns
Todelay data output delay time 550 1350 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
STROBE
DATA
Transmit
Todelay
Tstrobe
Todelay
STROBE
DATA
Receive
Thold
Tstrobe
Tsetup
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
138 Freescale Semiconductor
Electrical Characteristics
4.11.22 USB PHY Parameters
This section describes the USB-OTG PHY and the USB Host port PHY parameters.
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision
2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB
Revision 2.0 Specification is not applicable to Host port).
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: USB 2.0 Phase Locked SOFs
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0 plus errata and ecn June 4, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
Table 89. USB HSIC Receive Parameters1
1The timings in the table are guaranteed when:
—AC I/O voltage is between 0.9x to 1x of the I/O supply
—DDR_SEL configuration bits of the I/O are set to (10)b
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.166 4.167 ns
Thold data hold time 300 ps Measured at 50% point
Tsetup data setup time 365 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
Boot Mode Configuration
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 139
5 Boot Mode Configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1 Boot Mode Configuration Pins
Table 90 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX
6Dual/6Quad Fuse Map document and the System Boot chapter of the i.MX 6Dual/6Quad reference
manual.
Table 90. Fuses and Associated Pins Used for Boot
Pin Direction at Reset eFuse Name Details
BOOT_MODE1 Input Boot Mode Selection Boot Mode selection
BOOT_MODE0 Input Boot Mode Selection Boot Mode Selection
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
140 Freescale Semiconductor
Boot Mode Configuration
EIM_DA0 Input BOOT_CFG1[0] Boot Options, Pin value overrides fuse
settings for BT_FUSE_SEL = ‘0’. Signal
Configuration as Fuse Override Input at
Power Up. These are special I/O lines that
control the boot up configuration during
product development. In production, the
boot configuration can be controlled by
fuses.
EIM_DA1 Input BOOT_CFG1[1]
EIM_DA2 Input BOOT_CFG1[2]
EIM_DA3 Input BOOT_CFG1[3]
EIM_DA4 Input BOOT_CFG1[4]
EIM_DA5 Input BOOT_CFG1[5]
EIM_DA6 Input BOOT_CFG1[6]
EIM_DA7 Input BOOT_CFG1[7]
EIM_DA8 Input BOOT_CFG2[0]
EIM_DA9 Input BOOT_CFG2[1]
EIM_DA10 Input BOOT_CFG2[2]
EIM_DA11 Input BOOT_CFG2[3]
EIM_DA12 Input BOOT_CFG2[4]
EIM_DA13 Input BOOT_CFG2[5]
EIM_DA14 Input BOOT_CFG2[6]
EIM_DA15 Input BOOT_CFG2[7]
EIM_A16 Input BOOT_CFG3[0]
EIM_A17 Input BOOT_CFG3[1]
EIM_A18 Input BOOT_CFG3[2]
EIM_A19 Input BOOT_CFG3[3]
EIM_A20 Input BOOT_CFG3[4]
EIM_A21 Input BOOT_CFG3[5]
EIM_A22 Input BOOT_CFG3[6]
EIM_A23 Input BOOT_CFG3[7]
EIM_A24 Input BOOT_CFG4[0]
EIM_WAIT Input BOOT_CFG4[1]
EIM_LBA Input BOOT_CFG4[2]
EIM_EB0 Input BOOT_CFG4[3]
EIM_EB1 Input BOOT_CFG4[4]
EIM_RW Input BOOT_CFG4[5]
EIM_EB2 Input BOOT_CFG4[6]
EIM_EB3 Input BOOT_CFG4[7]
Table 90. Fuses and Associated Pins Used for Boot (continued)
Pin Direction at Reset eFuse Name Details
Boot Mode Configuration
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 141
5.2 Boot Devices Interfaces Allocation
Table 91 lists the interfaces that can be used by the boot process in accordance with the specific boot
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,
which are configured during boot when appropriate.
Table 91. Interfaces Allocation During Boot
Interface IP Instance Allocated Pads During Boot Comment
SPI ECSPI-1 EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19,
EIM_D24, EIM_D25
SPI ECSPI-2 CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11,
EIM_LBA, EIM_D24, EIM_D25
SPI ECSPI-3 DISP0_DAT2, DISP0_DAT1, DISP0_DAT0,
DISP0_DAT3, DISP0_DAT4, DISP0_DAT5, DISP0_DAT6
SPI ECSPI-4 EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25,
EIM_D24, EIM_D25
SPI ECSPI-5 SD1_DAT0, SD1_CMD, SD1_CLK, SD1_DAT1,
SD1_DAT2, SD1_DAT3, SD2_DAT3
EIM EIM EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4],
CSI0_DATA_EN, CSI0_VSYNC
Used for NOR, OneNAND boot
Only CS0 is supported
NAND Flash GPMI NANDF_CLE, NANDF_ALE, NANDF_WP_B,
SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0,
NANDF_CS0, NANDF_CS1, NANDF_CS2,
NANDF_CS3, NANDF_D[7:0]
8 bit
Only CS0 is supported
SD/MMC USDHC-1 SD1_CLK, SD1_CMD,SD1_DAT0, SD1_DAT1,
SD1_DAT2, SD1_DAT3, NANDF_D0, NANDF_D1,
NANDF_D2, NANDF_D3, KEY_COL1
1, 4, or 8 bit
SD/MMC USDHC-2 SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1,
SD2_DAT2, SD2_DAT3, NANDF_D5, NANDF_D6,
NANDF_D7, NANDF_D8, KEY_ROW1
1, 4, or 8 bit
SD/MMC USDHC-3 SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1,
SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5,
SD3_DAT6, SD3_DAT7, GPIO_18
1, 4, or 8 bit
SD/MMC USDHC-4 SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1,
SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5,
SD4_DAT6, SD4_DAT7, NANDF_CS1
1, 4, or 8 bit
I2C I2C-1 EIM_D28, EIM_D21
I2C I2C-2 EIM_D16, EIM_EB2
I2C I2C-3 EIM_D18, EIM_D17
SATA SATA_PHY SATA_TXM, SATA_TXP, SATA_RXP, SATA_RXM,
SATA_REXT, SATA_REFCLKM, SATA_REFCLKP
USB USB-OTG
PHY
USB_OTG_DP
USB_OTG_DN
USB_OTG_VBUS
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
142 Freescale Semiconductor
Package Information and Contact Assignments
6 Package Information and Contact Assignments
This section includes the contact assignment information and mechanical package drawing.
6.1 21 x 21 mm Package Information
6.1.1 Case FCPBGA, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix
6.1.1.1 21 x 21 mm Bare Die Package
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 143
Figure 103 shows the top, bottom, and side views of the 21 × 21 mm bare die package.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
144 Freescale Semiconductor
Package Information and Contact Assignments
Figure 103. 21 x 21 mm Bare Die Package Top, Bottom, and Side Views
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 145
6.1.2 21 x 21 mm Ground, Power, Sense, and Reference Contact
Assignments
Table 92 shows the device connection list for ground, power, sense, and reference contact signals.
Table 92. 21 x 21 mm Supplies Contact Assignment
Supply Rail Name Ball(s) Position(s) Remark
CSI_REXT D4
DRAM_VREF AC2
DSI_REXT G4
FA_ANA A5
GND A13, A25, A4, A8, AA10, AA13, AA16, AA19, AA22, AD4, D3,
F8, J15, L10, M15, P15, T15, U8, W17, AA7, AD7, D6, G10,
J18, L12, M18, P18, T17, V19, W18, AB24, AE1, D8, G19, J2,
L15, M8, P8, T19, V8, W19, AB3, AE25, E5, G3, J8, L18, N10,
R12, T8, W10, W3, AD10, B4, E6, H12, K10, L2, N15, R15,
U11, W11, W7, AD13, C1, E7, H15, K12, L5, N18, R17, U12,
W12, W8, AD16, C10, F5, H18, K15, L8, N8, R8, U15, W13,
W9, AD19, C4, F6, H8, K18, M10, P10, T11, U17, W15, Y24,
AD22, C6, F7, J12, K8, M12, P12, T12, U19, W16, Y5
GPANAIO C8
HDMI_REF J1
HDMI_VP L7
HDMI_VPH M7
NVCC_CSI N7 Supply of the camera sensor interface
NVCC_DRAM R18, T18, U18, V10, V11, V12, V13, V14, V15, V16, V17, V18,
V9
Supply of the DDR interface
NVCC_EIM0 K19 Supply of the EIM interface
NVCC_EIM1 L19 Supply of the EIM interface
NVCC_EIM2 M19 Supply of the EIM interface
NVCC_ENET R19 Supply of the ENET interface
NVCC_GPIO P7 Supply of the GPIO interface
NVCC_JTAG J7 Supply of the JTAG tap controller
interface
NVCC_LCD P19 Supply of the LCD interface
NVCC_LVDS2P5 V7 Supply of the LVDS display interface
and DDR pre-drivers. Even if the LVDS
interface is not used, this supply must
remain powered.
NVCC_MIPI K7 Supply of the MIPI interface
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
146 Freescale Semiconductor
Package Information and Contact Assignments
NVCC_NANDF G15 Supply of the RAW NAND Flash
Memories interface
NVCC_PLL_OUT E8
NVCC_RGMII G18 Supply of the ENET interface
NVCC_SD1 G16 Supply of the SD card interface
NVCC_SD2 G17 Supply of the SD card interface
NVCC_SD3 G14 Supply of the SD card interface
PCIE_VP H7
PCIE_REXT A2
PCIE_VPH G7 PCI PHY supply
PCIE_VPTX G8 PCI PHY supply
SATA_REXT C14
SATA_VP G13
SATA_VPH G12
VDD_CACHE_CAP N12 Cache supply input. This input should
be connected to (driven by)
VDD_SOC_CAP. The external
capacitor used for VDD_SOC_CAP is
sufficient for this supply.
VDD_FA B5
VDD_SNVS_CAP G9 Secondary supply for the SNVS
(internal regulator outputrequires
capacitor if internal regulator is used)
VDD_SNVS_IN G11 Primary supply for the SNVS regulator
VDDARM_CAP H13, J13, K13, L13, M13, N13, P13, R13 Secondary supply for the ARM0 and
ARM1 cores (internal regulator
outputrequires capacitor if internal
regulator is used)
VDDARM_IN H14, J14, K14, L14, M14, N14, P14, R14 Primary supply for the ARM0 and
ARM1 core regulator
VDDARM23_CAP H11, J11, K11, L11, M11, N11, P11, R11 Secondary supply for the ARM2 and
ARM3 cores (internal regulator
outputrequires capacitor if internal
regulator is used)
VDDARM23_IN K9, L9, M9, N9, P9, R9, T9, U9 Primary supply for the ARM2 and
ARM3 core regulator
VDDHIGH_CAP H10, J10 Secondary supply for the 2.5 V domain
(internal regulator outputrequires
capacitor if internal regulator is used)
Table 92. 21 x 21 mm Supplies Contact Assignment (continued)
Supply Rail Name Ball(s) Position(s) Remark
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 147
Table 93 displays an alpha-sorted list of the signal assignments including power rails. The table also
includes out of reset pad state.
VDDHIGH_IN H9, J9 Primary supply for the 2.5 V regulator
VDDPU_CAP H17, J17, K17, L17, M17, N17, P17 Secondary supply for the VPU and
GPU (internal regulator output—
requires capacitor if internal regulator
is used)
VDDSOC_CAP R10, T10, T13, T14, U10, U13, U14 Secondary supply for the SoC and PU
(internal regulator outputrequires
capacitor if internal regulator is used)
VDDSOC_IN H16, J16, K16, L16, M16, N16, P16, R16, T16, U16 Primary supply for the SoC and PU
regulators
VDDUSB_CAP F9 Secondary supply for the 3 V domain
(internal regulator outputrequires
capacitor if internal regulator is used)
ZQPAD AE17
Table 93. 21 x 21 mm Functional Contact Assignments
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
BOOT_MODE0 C12 VDD_SNVS_IN GPIO ALT0 src_BOOT_MODE[0] Input PD (100K)
BOOT_MODE1 F12 VDD_SNVS_IN GPIO ALT0 src_BOOT_MODE[1] Input PD (100K)
CLK1_N C7 VDDHIGH_CAP CLK1_N
CLK1_P D7 VDDHIGH_CAP CLK1_P
CLK2_N C5 VDDHIGH_CAP CLK2_N
CLK2_P D5 VDDHIGH_CAP CLK2_P
CSI_CLK0M F4 NVCC_MIPI CSI_CLK0M
CSI_CLK0P F3 NVCC_MIPI CSI_CLK0P
CSI_D0M E4 NVCC_MIPI CSI_D0M
CSI_D0P E3 NVCC_MIPI CSI_D0P
CSI_D1M D1 NVCC_MIPI CSI_D1M
CSI_D1P D2 NVCC_MIPI CSI_D1P
CSI_D2M E1 NVCC_MIPI CSI_D2M
CSI_D2P E2 NVCC_MIPI CSI_D2P
CSI_D3M F2 NVCC_MIPI CSI_D3M
Table 92. 21 x 21 mm Supplies Contact Assignment (continued)
Supply Rail Name Ball(s) Position(s) Remark
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
148 Freescale Semiconductor
Package Information and Contact Assignments
CSI_D3P F1 NVCC_MIPI CSI_D3P
CSI0_DAT10 M1 NVCC_CSI GPIO ALT5 gpio5_GPIO[28] Input PU (100K)
CSI0_DAT11 M3 NVCC_CSI GPIO ALT5 gpio5_GPIO[29] Input PU (100K)
CSI0_DAT12 M2 NVCC_CSI GPIO ALT5 gpio5_GPIO[30] Input PU (100K)
CSI0_DAT13 L1 NVCC_CSI GPIO ALT5 gpio5_GPIO[31] Input PU (100K)
CSI0_DAT14 M4 NVCC_CSI GPIO ALT5 gpio6_GPIO[0] Input PU (100K)
CSI0_DAT15 M5 NVCC_CSI GPIO ALT5 gpio6_GPIO[1] Input PU (100K)
CSI0_DAT16 L4 NVCC_CSI GPIO ALT5 gpio6_GPIO[2] Input PU (100K)
CSI0_DAT17 L3 NVCC_CSI GPIO ALT5 gpio6_GPIO[3] Input PU (100K)
CSI0_DAT18 M6 NVCC_CSI GPIO ALT5 gpio6_GPIO[4] Input PU (100K)
CSI0_DAT19 L6 NVCC_CSI GPIO ALT5 gpio6_GPIO[5] Input PU (100K)
CSI0_DAT4 N1 NVCC_CSI GPIO ALT5 gpio5_GPIO[22] Input PU (100K)
CSI0_DAT5 P2 NVCC_CSI GPIO ALT5 gpio5_GPIO[23] Input PU (100K)
CSI0_DAT6 N4 NVCC_CSI GPIO ALT5 gpio5_GPIO[24] Input PU (100K)
CSI0_DAT7 N3 NVCC_CSI GPIO ALT5 gpio5_GPIO[25] Input PU (100K)
CSI0_DAT8 N6 NVCC_CSI GPIO ALT5 gpio5_GPIO[26] Input PU (100K)
CSI0_DAT9 N5 NVCC_CSI GPIO ALT5 gpio5_GPIO[27] Input PU (100K)
CSI0_DATA_EN P3 NVCC_CSI GPIO ALT5 gpio5_GPIO[20] Input PU (100K)
CSI0_MCLK P4 NVCC_CSI GPIO ALT5 gpio5_GPIO[19] Input PU (100K)
CSI0_PIXCLK P1 NVCC_CSI GPIO ALT5 gpio5_GPIO[18] Input PU (100K)
CSI0_VSYNC N2 NVCC_CSI GPIO ALT5 gpio5_GPIO[21] Input PU (100K)
DI0_DISP_CLK N19 NVCC_LCD GPIO ALT5 gpio4_GPIO[16] Input PU (100K)
DI0_PIN15 N21 NVCC_LCD GPIO ALT5 gpio4_GPIO[17] Input PU (100K)
DI0_PIN2 N25 NVCC_LCD GPIO ALT5 gpio4_GPIO[18] Input PU (100K)
DI0_PIN3 N20 NVCC_LCD GPIO ALT5 gpio4_GPIO[19] Input PU (100K)
DI0_PIN4 P25 NVCC_LCD GPIO ALT5 gpio4_GPIO[20] Input PU (100K)
DISP0_DAT0 P24 NVCC_LCD GPIO ALT5 gpio4_GPIO[21] Input PU (100K)
DISP0_DAT1 P22 NVCC_LCD GPIO ALT5 gpio4_GPIO[22] Input PU (100K)
DISP0_DAT10 R21 NVCC_LCD GPIO ALT5 gpio4_GPIO[31] Input PU (100K)
DISP0_DAT11 T23 NVCC_LCD GPIO ALT5 gpio5_GPIO[5] Input PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 149
DISP0_DAT12 T24 NVCC_LCD GPIO ALT5 gpio5_GPIO[6] Input PU (100K)
DISP0_DAT13 R20 NVCC_LCD GPIO ALT5 gpio5_GPIO[7] Input PU (100K)
DISP0_DAT14 U25 NVCC_LCD GPIO ALT5 gpio5_GPIO[8] Input PU (100K)
DISP0_DAT15 T22 NVCC_LCD GPIO ALT5 gpio5_GPIO[9] Input PU (100K)
DISP0_DAT16 T21 NVCC_LCD GPIO ALT5 gpio5_GPIO[10] Input PU (100K)
DISP0_DAT17 U24 NVCC_LCD GPIO ALT5 gpio5_GPIO[11] Input PU (100K)
DISP0_DAT18 V25 NVCC_LCD GPIO ALT5 gpio5_GPIO[12] Input PU (100K)
DISP0_DAT19 U23 NVCC_LCD GPIO ALT5 gpio5_GPIO[13] Input PU (100K)
DISP0_DAT2 P23 NVCC_LCD GPIO ALT5 gpio4_GPIO[23] Input PU (100K)
DISP0_DAT20 U22 NVCC_LCD GPIO ALT5 gpio5_GPIO[14] Input PU (100K)
DISP0_DAT21 T20 NVCC_LCD GPIO ALT5 gpio5_GPIO[15] Input PU (100K)
DISP0_DAT22 V24 NVCC_LCD GPIO ALT5 gpio5_GPIO[16] Input PU (100K)
DISP0_DAT23 W24 NVCC_LCD GPIO ALT5 gpio5_GPIO[17] Input PU (100K)
DISP0_DAT3 P21 NVCC_LCD GPIO ALT5 gpio4_GPIO[24] Input PU (100K)
DISP0_DAT4 P20 NVCC_LCD GPIO ALT5 gpio4_GPIO[25] Input PU (100K)
DISP0_DAT5 R25 NVCC_LCD GPIO ALT5 gpio4_GPIO[26] Input PU (100K)
DISP0_DAT6 R23 NVCC_LCD GPIO ALT5 gpio4_GPIO[27] Input PU (100K)
DISP0_DAT7 R24 NVCC_LCD GPIO ALT5 gpio4_GPIO[28] Input PU (100K)
DISP0_DAT8 R22 NVCC_LCD GPIO ALT5 gpio4_GPIO[29] Input PU (100K)
DISP0_DAT9 T25 NVCC_LCD GPIO ALT5 gpio4_GPIO[30] Input PU (100K)
DRAM_A0 AC14 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[0] Output 0
DRAM_A1 AB14 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[1] Output 0
DRAM_A10 AA15 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[10] Output 0
DRAM_A11 AC12 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[11] Output 0
DRAM_A12 AD12 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[12] Output 0
DRAM_A13 AC17 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[13] Output 0
DRAM_A14 AA12 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[14] Output 0
DRAM_A15 Y12 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[15] Output 0
DRAM_A2 AA14 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[2] Output 0
DRAM_A3 Y14 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[3] Output 0
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
150 Freescale Semiconductor
Package Information and Contact Assignments
DRAM_A4 W14 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[4] Output 0
DRAM_A5 AE13 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[5] Output 0
DRAM_A6 AC13 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[6] Output 0
DRAM_A7 Y13 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[7] Output 0
DRAM_A8 AB13 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[8] Output 0
DRAM_A9 AE12 NVCC_DRAM DDR ALT0 mmdc_DRAM_A[9] Output 0
DRAM_CAS AE16 NVCC_DRAM DDR ALT0 mmdc_DRAM_CAS Output 0
DRAM_CS0 Y16 NVCC_DRAM DDR ALT0 mmdc_DRAM_CS[0] Output 0
DRAM_CS1 AD17 NVCC_DRAM DDR ALT0 mmdc_DRAM_CS[1] Output 0
DRAM_D0 AD2 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[0] Input PU (100K)
DRAM_D1 AE2 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[1] Input PU (100K)
DRAM_D10 AA6 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[10] Input PU (100K)
DRAM_D11 AE7 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[11] Input PU (100K)
DRAM_D12 AB5 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[12] Input PU (100K)
DRAM_D13 AC5 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[13] Input PU (100K)
DRAM_D14 AB6 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[14] Input PU (100K)
DRAM_D15 AC7 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[15] Input PU (100K)
DRAM_D16 AB7 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[16] Input PU (100K)
DRAM_D17 AA8 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[17] Input PU (100K)
DRAM_D18 AB9 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[18] Input PU (100K)
DRAM_D19 Y9 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[19] Input PU (100K)
DRAM_D2 AC4 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[2] Input PU (100K)
DRAM_D20 Y7 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[20] Input PU (100K)
DRAM_D21 Y8 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[21] Input PU (100K)
DRAM_D22 AC8 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[22] Input PU (100K)
DRAM_D23 AA9 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[23] Input PU (100K)
DRAM_D24 AE9 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[24] Input PU (100K)
DRAM_D25 Y10 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[25] Input PU (100K)
DRAM_D26 AE11 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[26] Input PU (100K)
DRAM_D27 AB11 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[27] Input PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 151
DRAM_D28 AC9 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[28] Input PU (100K)
DRAM_D29 AD9 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[29] Input PU (100K)
DRAM_D3 AA5 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[3] Input PU (100K)
DRAM_D30 AD11 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[30] Input PU (100K)
DRAM_D31 AC11 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[31] Input PU (100K)
DRAM_D32 AA17 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[32] Input PU (100K)
DRAM_D33 AA18 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[33] Input PU (100K)
DRAM_D34 AC18 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[34] Input PU (100K)
DRAM_D35 AE19 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[35] Input PU (100K)
DRAM_D36 Y17 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[36] Input PU (100K)
DRAM_D37 Y18 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[37] Input PU (100K)
DRAM_D38 AB19 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[38] Input PU (100K)
DRAM_D39 AC19 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[39] Input PU (100K)
DRAM_D4 AC1 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[4] Input PU (100K)
DRAM_D40 Y19 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[40] Input PU (100K)
DRAM_D41 AB20 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[41] Input PU (100K)
DRAM_D42 AB21 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[42] Input PU (100K)
DRAM_D43 AD21 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[43] Input PU (100K)
DRAM_D44 Y20 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[44] Input PU (100K)
DRAM_D45 AA20 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[45] Input PU (100K)
DRAM_D46 AE21 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[46] Input PU (100K)
DRAM_D47 AC21 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[47] Input PU (100K)
DRAM_D48 AC22 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[48] Input PU (100K)
DRAM_D49 AE22 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[49] Input PU (100K)
DRAM_D5 AD1 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[5] Input PU (100K)
DRAM_D50 AE24 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[50] Input PU (100K)
DRAM_D51 AC24 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[51] Input PU (100K)
DRAM_D52 AB22 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[52] Input PU (100K)
DRAM_D53 AC23 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[53] Input PU (100K)
DRAM_D54 AD25 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[54] Input PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
152 Freescale Semiconductor
Package Information and Contact Assignments
DRAM_D55 AC25 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[55] Input PU (100K)
DRAM_D56 AB25 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[56] Input PU (100K)
DRAM_D57 AA21 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[57] Input PU (100K)
DRAM_D58 Y25 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[58] Input PU (100K)
DRAM_D59 Y22 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[59] Input PU (100K)
DRAM_D6 AB4 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[6] Input PU (100K)
DRAM_D60 AB23 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[60] Input PU (100K)
DRAM_D61 AA23 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[61] Input PU (100K)
DRAM_D62 Y23 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[62] Input PU (100K)
DRAM_D63 W25 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[63] Input PU (100K)
DRAM_D7 AE4 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[7] Input PU (100K)
DRAM_D8 AD5 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[8] Input PU (100K)
DRAM_D9 AE5 NVCC_DRAM DDR ALT0 mmdc_DRAM_D[9] Input PU (100K)
DRAM_DQM0 AC3 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[0] Output 0
DRAM_DQM1 AC6 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[1] Output 0
DRAM_DQM2 AB8 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[2] Output 0
DRAM_DQM3 AE10 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[3] Output 0
DRAM_DQM4 AB18 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[4] Output 0
DRAM_DQM5 AC20 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[5] Output 0
DRAM_DQM6 AD24 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[6] Output 0
DRAM_DQM7 Y21 NVCC_DRAM DDR ALT0 mmdc_DRAM_DQM[7] Output 0
DRAM_RAS AB15 NVCC_DRAM DDR ALT0 mmdc_DRAM_RAS Output 0
DRAM_RESET Y6 NVCC_DRAM DDR ALT0 mmdc_DRAM_RESET Output 0
DRAM_SDBA0 AC15 NVCC_DRAM DDR ALT0 mmdc_DRAM_SDBA[0] Output 0
DRAM_SDBA1 Y15 NVCC_DRAM DDR ALT0 mmdc_DRAM_SDBA[1] Output 0
DRAM_SDBA2 AB12 NVCC_DRAM DDR ALT0 mmdc_DRAM_SDBA[2] Output 0
DRAM_SDCKE0 Y11 NVCC_DRAM DDR ALT0 mmdc_DRAM_SDCKE[0] Output 0
DRAM_SDCKE1 AA11 NVCC_DRAM DDR ALT0 mmdc_DRAM_SDCKE[1] Output 0
DRAM_SDCLK_0 AD15 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDCLK0 Input Hi-Z
DRAM_SDCLK_0_B AE15 NVCC_DRAM DDRCLK DRAM_SDCLK_0_B
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 153
DRAM_SDCLK_1 AD14 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDCLK1 Input Hi-Z
DRAM_SDCLK_1_B AE14 NVCC_DRAM DDRCLK DRAM_SDCLK_1_B
DRAM_SDODT0 AC16 NVCC_DRAM DDR ALT0 mmdc_DRAM_ODT[0] Output 0
DRAM_SDODT1 AB17 NVCC_DRAM DDR ALT0 mmdc_DRAM_ODT[1] Output 0
DRAM_SDQS0 AE3 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[0] Input Hi-Z
DRAM_SDQS0_B AD3 NVCC_DRAM DDRCLK DRAM_SDQS0_B
DRAM_SDQS1 AD6 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[1] Input Hi-Z
DRAM_SDQS1_B AE6 NVCC_DRAM DDRCLK DRAM_SDQS1_B
DRAM_SDQS2 AD8 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[2] Input Hi-Z
DRAM_SDQS2_B AE8 NVCC_DRAM DDRCLK DRAM_SDQS2_B
DRAM_SDQS3 AC10 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[3] Input Hi-Z
DRAM_SDQS3_B AB10 NVCC_DRAM DDRCLK DRAM_SDQS3_B
DRAM_SDQS4 AD18 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[4] Input Hi-Z
DRAM_SDQS4_B AE18 NVCC_DRAM DDRCLK DRAM_SDQS4_B
DRAM_SDQS5 AD20 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[5] Input Hi-Z
DRAM_SDQS5_B AE20 NVCC_DRAM DDRCLK DRAM_SDQS5_B
DRAM_SDQS6 AD23 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[6] Input Hi-Z
DRAM_SDQS6_B AE23 NVCC_DRAM DDRCLK DRAM_SDQS6_B
DRAM_SDQS7 AA25 NVCC_DRAM DDRCLK ALT0 mmdc_DRAM_SDQS[7] Input Hi-Z
DRAM_SDQS7_B AA24 NVCC_DRAM DDRCLK DRAM_SDQS7_B
DRAM_SDWE AB16 NVCC_DRAM DDR ALT0 mmdc_DRAM_SDWE Output 0
DSI_CLK0M H3 NVCC_MIPI DSI_CLK0M
DSI_CLK0P H4 NVCC_MIPI DSI_CLK0P
DSI_D0M G2 NVCC_MIPI DSI_D0M
DSI_D0P G1 NVCC_MIPI DSI_D0P
DSI_D1M H2 NVCC_MIPI DSI_D1M
DSI_D1P H1 NVCC_MIPI DSI_D1P
EIM_A16 H25 NVCC_EIM1 GPIO ALT0 eim_EIM_A[16] Output 0
EIM_A17 G24 NVCC_EIM1 GPIO ALT0 eim_EIM_A[17] Output 0
EIM_A18 J22 NVCC_EIM1 GPIO ALT0 eim_EIM_A[18] Output 0
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
154 Freescale Semiconductor
Package Information and Contact Assignments
EIM_A19 G25 NVCC_EIM1 GPIO ALT0 eim_EIM_A[19] Output 0
EIM_A20 H22 NVCC_EIM1 GPIO ALT0 eim_EIM_A[20] Output 0
EIM_A21 H23 NVCC_EIM1 GPIO ALT0 eim_EIM_A[21] Output 0
EIM_A22 F24 NVCC_EIM1 GPIO ALT0 eim_EIM_A[22] Output 0
EIM_A23 J21 NVCC_EIM1 GPIO ALT0 eim_EIM_A[23] Output 0
EIM_A24 F25 NVCC_EIM1 GPIO ALT0 eim_EIM_A[24] Output 0
EIM_A25 H19 NVCC_EIM0 GPIO ALT0 eim_EIM_A[25] Output 0
EIM_BCLK N22 NVCC_EIM2 GPIO ALT0 eim_EIM_BCLK Output 0
EIM_CS0 H24 NVCC_EIM1 GPIO ALT0 eim_EIM_CS[0] Output 1
EIM_CS1 J23 NVCC_EIM1 GPIO ALT0 eim_EIM_CS[1] Output 1
EIM_D16 C25 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[16] Input PU (100K)
EIM_D17 F21 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[17] Input PU (100K)
EIM_D18 D24 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[18] Input PU (100K)
EIM_D19 G21 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[19] Input PU (100K)
EIM_D20 G20 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[20] Input PU (100K)
EIM_D21 H20 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[21] Input PU (100K)
EIM_D22 E23 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[22] Input PD (100K)
EIM_D23 D25 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[23] Input PU (100K)
EIM_D24 F22 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[24] Input PU (100K)
EIM_D25 G22 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[25] Input PU (100K)
EIM_D26 E24 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[26] Input PU (100K)
EIM_D27 E25 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[27] Input PU (100K)
EIM_D28 G23 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[28] Input PU (100K)
EIM_D29 J19 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[29] Input PU (100K)
EIM_D30 J20 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[30] Input PU (100K)
EIM_D31 H21 NVCC_EIM0 GPIO ALT5 gpio3_GPIO[31] Input PD (100K)
EIM_DA0 L20 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[0] Input PU (100K)
EIM_DA1 J25 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[1] Input PU (100K)
EIM_DA2 L21 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[2] Input PU (100K)
EIM_DA3 K24 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[3] Input PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 155
EIM_DA4 L22 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[4] Input PU (100K)
EIM_DA5 L23 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[5] Input PU (100K)
EIM_DA6 K25 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[6] Input PU (100K)
EIM_DA7 L25 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[7] Input PU (100K)
EIM_DA8 L24 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[8] Input PU (100K)
EIM_DA9 M21 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[9] Input PU (100K)
EIM_DA10 M22 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[10] Input PU (100K)
EIM_DA11 M20 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[11] Input PU (100K)
EIM_DA12 M24 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[12] Input PU (100K)
EIM_DA13 M23 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[13] Input PU (100K)
EIM_DA14 N23 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[14] Input PU (100K)
EIM_DA15 N24 NVCC_EIM2 GPIO ALT0 eim_EIM_DA_A[15] Input PU (100K)
EIM_EB0 K21 NVCC_EIM2 GPIO ALT0 eim_EIM_EB[0] Output 1
EIM_EB1 K23 NVCC_EIM2 GPIO ALT0 eim_EIM_EB[1] Output 1
EIM_EB2 E22 NVCC_EIM0 GPIO ALT5 gpio2_GPIO[30] Input PU (100K)
EIM_EB3 F23 NVCC_EIM0 GPIO ALT5 gpio2_GPIO[31] Input PU (100K)
EIM_LBA K22 NVCC_EIM1 GPIO ALT0 eim_EIM_LBA Output 1
EIM_OE J24 NVCC_EIM1 GPIO ALT0 eim_EIM_OE Output 1
EIM_RW K20 NVCC_EIM1 GPIO ALT0 eim_EIM_RW Output 1
EIM_WAIT M25 NVCC_EIM2 GPIO ALT0 eim_EIM_WAIT Input PU (100K)
ENET_CRS_DV U21 NVCC_ENET GPIO ALT5 gpio1_GPIO[25] Input PU (100K)
ENET_MDC V20 NVCC_ENET GPIO ALT5 gpio1_GPIO[31] Input PU (100K)
ENET_MDIO V23 NVCC_ENET GPIO ALT5 gpio1_GPIO[22] Input PU (100K)
ENET_REF_CLK V22 NVCC_ENET GPIO ALT5 gpio1_GPIO[23] Input PU (100K)
ENET_RX_ER W23 NVCC_ENET GPIO ALT5 gpio1_GPIO[24] Input PU (100K)
ENET_RXD0 W21 NVCC_ENET GPIO ALT5 gpio1_GPIO[27] Input PU (100K)
ENET_RXD1 W22 NVCC_ENET GPIO ALT5 gpio1_GPIO[26] Input PU (100K)
ENET_TX_EN V21 NVCC_ENET GPIO ALT5 gpio1_GPIO[28] Input PU (100K)
ENET_TXD0 U20 NVCC_ENET GPIO ALT5 gpio1_GPIO[30] Input PU (100K)
ENET_TXD1 W20 NVCC_ENET GPIO ALT5 gpio1_GPIO[29] Input PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
156 Freescale Semiconductor
Package Information and Contact Assignments
GPIO_0 T5 NVCC_GPIO GPIO ALT5 gpio1_GPIO[0] Input PD (100K)
GPIO_1 T4 NVCC_GPIO GPIO ALT5 gpio1_GPIO[1] Input PD (100K)
GPIO_16 R2 NVCC_GPIO GPIO ALT5 gpio7_GPIO[11] Input PU (100K)
GPIO_17 R1 NVCC_GPIO GPIO ALT5 gpio7_GPIO[12] Input PU (100K)
GPIO_18 P6 NVCC_GPIO GPIO ALT5 gpio7_GPIO[13] Input PU (100K)
GPIO_19 P5 NVCC_GPIO GPIO ALT5 gpio4_GPIO[5] Input PU (100K)
GPIO_2 T1 NVCC_GPIO GPIO ALT5 gpio1_GPIO[2] Input PU (100K)
GPIO_3 R7 NVCC_GPIO GPIO ALT5 gpio1_GPIO[3] Input PU (100K)
GPIO_4 R6 NVCC_GPIO GPIO ALT5 gpio1_GPIO[4] Input PU (100K)
GPIO_5 R4 NVCC_GPIO GPIO ALT5 gpio1_GPIO[5] Input PU (100K)
GPIO_6 T3 NVCC_GPIO GPIO ALT5 gpio1_GPIO[6] Input PU (100K)
GPIO_7 R3 NVCC_GPIO GPIO ALT5 gpio1_GPIO[7] Input PU (100K)
GPIO_8 R5 NVCC_GPIO GPIO ALT5 gpio1_GPIO[8] Input PU (100K)
GPIO_9 T2 NVCC_GPIO GPIO ALT5 gpio1_GPIO[9] Input PU (100K)
HDMI_CLKM J5 HDMI_VPH HDMI_VPH_CLKM
HDMI_CLKP J6 HDMI_VPH HDMI_CLKP
HDMI_D0M K5 HDMI_VPH HDMI_D0M
HDMI_D0P K6 HDMI_VPH HDMI_D0P
HDMI_D1M J3 HDMI_VPH HDMI_D1M
HDMI_D1P J4 HDMI_VPH HDMI_D1P
HDMI_D2M K3 HDMI_VPH HDMI_D2M
HDMI_D2P K4 HDMI_VPH HDMI_D2P
HDMI_DDCCEC K2 HDMI_VPH HDMI_DDCCEC
HDMI_HPD K1 HDMI_VPH HDMI_HPD
JTAG_MOD H6 NVCC_JTAG GPIO ALT0 sjc_MOD Input PU (100K)
JTAG_TCK H5 NVCC_JTAG GPIO ALT0 sjc_TCK Input PU (47K)
JTAG_TDI G5 NVCC_JTAG GPIO ALT0 sjc_TDI Input PU (47K)
JTAG_TDO G6 NVCC_JTAG GPIO ALT0 sjc_TDO Output Keeper
JTAG_TMS C3 NVCC_JTAG GPIO ALT0 sjc_TMS Input PU (47K)
JTAG_TRSTB C2 NVCC_JTAG GPIO ALT0 sjc_TRSTB Input PU (47K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 157
KEY_COL0 W5 NVCC_GPIO GPIO ALT5 gpio4_GPIO[6] Input PU (100K)
KEY_COL1 U7 NVCC_GPIO GPIO ALT5 gpio4_GPIO[8] Input PU (100K)
KEY_COL2 W6 NVCC_GPIO GPIO ALT5 gpio4_GPIO[10] Input PU (100K)
KEY_COL3 U5 NVCC_GPIO GPIO ALT5 gpio4_GPIO[12] Input PU (100K)
KEY_COL4 T6 NVCC_GPIO GPIO ALT5 gpio4_GPIO[14] Input PU (100K)
KEY_ROW0 V6 NVCC_GPIO GPIO ALT5 gpio4_GPIO[7] Input PU (100K)
KEY_ROW1 U6 NVCC_GPIO GPIO ALT5 gpio4_GPIO[9] Input PU (100K)
KEY_ROW2 W4 NVCC_GPIO GPIO ALT5 gpio4_GPIO[11] Input PU (100K)
KEY_ROW3 T7 NVCC_GPIO GPIO ALT5 gpio4_GPIO[13] Input PU (100K)
KEY_ROW4 V5 NVCC_GPIO GPIO ALT5 gpio4_GPIO[15] Input PD (100K)
LVDS0_CLK_N V4 NVCC_LVDS2P5 LVDS LVDS0_CLK_N
LVDS0_CLK_P V3 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS0_CLK Input Keeper
LVDS0_TX0_N U2 NVCC_LVDS2P5 LVDS LVDS0_TX0_N
LVDS0_TX0_P U1 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS0_TX0 Input Keeper
LVDS0_TX1_N U4 NVCC_LVDS2P5 LVDS LVDS0_TX1_N
LVDS0_TX1_P U3 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS0_TX1 Input Keeper
LVDS0_TX2_N V2 NVCC_LVDS2P5 LVDS LVDS0_TX2_N
LVDS0_TX2_P V1 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS0_TX2 Input Keeper
LVDS0_TX3_N W2 NVCC_LVDS2P5 LVDS LVDS0_TX3_N
LVDS0_TX3_P W1 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS0_TX3 Input Keeper
LVDS1_CLK_N Y3 NVCC_LVDS2P5 LVDS LVDS1_CLK_N
LVDS1_CLK_P Y4 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS1_CLK Input Keeper
LVDS1_TX0_N Y1 NVCC_LVDS2P5 LVDS LVDS1_TX0_N
LVDS1_TX0_P Y2 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS1_TX0 Input Keeper
LVDS1_TX1_N AA2 NVCC_LVDS2P5 LVDS LVDS1_TX1_N
LVDS1_TX1_P AA1 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS1_TX1 Input Keeper
LVDS1_TX2_N AB1 NVCC_LVDS2P5 LVDS LVDS1_TX2_N
LVDS1_TX2_P AB2 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS1_TX2 Input Keeper
LVDS1_TX3_N AA3 NVCC_LVDS2P5 LVDS LVDS1_TX3_N
LVDS1_TX3_P AA4 NVCC_LVDS2P5 LVDS ALT0 ldb_LVDS1_TX3 Input Keeper
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
158 Freescale Semiconductor
Package Information and Contact Assignments
MLB_CN2A11 VDDHIGH_CAP LVDS MLB_CN
MLB_CP2B11 VDDHIGH_CAP LVDS MLB_CP
MLB_DN2B10 VDDHIGH_CAP LVDS MLB_DN
MLB_DP2A10 VDDHIGH_CAP LVDS MLB_DP
MLB_SN2A9 VDDHIGH_CAP LVDS MLB_SN
MLB_SP2B9 VDDHIGH_CAP LVDS MLB_SP
NANDF_ALE A16 NVCC_NANDF GPIO ALT5 gpio6_GPIO[8] Input PU (100K)
NANDF_CLE C15 NVCC_NANDF GPIO ALT5 gpio6_GPIO[7] Input PU (100K)
NANDF_CS0 F15 NVCC_NANDF GPIO ALT5 gpio6_GPIO[11] Input PU (100K)
NANDF_CS1 C16 NVCC_NANDF GPIO ALT5 gpio6_GPIO[14] Input PU (100K)
NANDF_CS2 A17 NVCC_NANDF GPIO ALT5 gpio6_GPIO[15] Input PU (100K)
NANDF_CS3 D16 NVCC_NANDF GPIO ALT5 gpio6_GPIO[16] Input PU (100K)
NANDF_D0 A18 NVCC_NANDF GPIO ALT5 gpio2_GPIO[0] Input PU (100K)
NANDF_D1 C17 NVCC_NANDF GPIO ALT5 gpio2_GPIO[1] Input PU (100K)
NANDF_D2 F16 NVCC_NANDF GPIO ALT5 gpio2_GPIO[2] Input PU (100K)
NANDF_D3 D17 NVCC_NANDF GPIO ALT5 gpio2_GPIO[3] Input PU (100K)
NANDF_D4 A19 NVCC_NANDF GPIO ALT5 gpio2_GPIO[4] Input PU (100K)
NANDF_D5 B18 NVCC_NANDF GPIO ALT5 gpio2_GPIO[5] Input PU (100K)
NANDF_D6 E17 NVCC_NANDF GPIO ALT5 gpio2_GPIO[6] Input PU (100K)
NANDF_D7 C18 NVCC_NANDF GPIO ALT5 gpio2_GPIO[7] Input PU (100K)
NANDF_RB0 B16 NVCC_NANDF GPIO ALT5 gpio6_GPIO[10] Input PU (100K)
NANDF_WP_B E15 NVCC_NANDF GPIO ALT5 gpio6_GPIO[9] Input PU (100K)
ONOFF D12 VDD_SNVS_IN GPIO src_ONOFF Input PU (100K)
PCIE_RXM B1 PCIE_VPH PCIE_RXM
PCIE_RXP B2 PCIE_VPH PCIE_RXP
PCIE_TXM A3 PCIE_VPH PCIE_TXM
PCIE_TXP B3 PCIE_VPH PCIE_TXP
PMIC_ON_REQ D11 VDD_SNVS_IN GPIO ALT0 snvs_lp_wrapper_SNVS_
WAKEUP_ALARM
Output Open
Drain with
PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 159
PMIC_STBY_REQ F11 VDD_SNVS_IN GPIO ALT0 ccm_PMIC_VSTBY_REQ Output 0
POR_B C11 VDD_SNVS_IN GPIO ALT0 src_POR_B Input PU (100K)
RGMII_RD0 C24 NVCC_RGMII DDR ALT5 gpio6_GPIO[25] Input PU (100K)
RGMII_RD1 B23 NVCC_RGMII DDR ALT5 gpio6_GPIO[27] Input PU (100K)
RGMII_RD2 B24 NVCC_RGMII DDR ALT5 gpio6_GPIO[28] Input PU (100K)
RGMII_RD3 D23 NVCC_RGMII DDR ALT5 gpio6_GPIO[29] Input PU (100K)
RGMII_RX_CTL D22 NVCC_RGMII DDR ALT5 gpio6_GPIO[24] Input PD (100K)
RGMII_RXC B25 NVCC_RGMII DDR ALT5 gpio6_GPIO[30] Input PD (100K)
RGMII_TD0 C22 NVCC_RGMII DDR ALT5 gpio6_GPIO[20] Input PU (100K)
RGMII_TD1 F20 NVCC_RGMII DDR ALT5 gpio6_GPIO[21] Input PU (100K)
RGMII_TD2 E21 NVCC_RGMII DDR ALT5 gpio6_GPIO[22] Input PU (100K)
RGMII_TD3 A24 NVCC_RGMII DDR ALT5 gpio6_GPIO[23] Input PU (100K)
RGMII_TX_CTL C23 NVCC_RGMII DDR ALT5 gpio6_GPIO[26] Input PD (100K)
RGMII_TXC D21 NVCC_RGMII DDR ALT5 gpio6_GPIO[19] Input PD (100K)
RTC_XTALI D9 VDD_SNVS_CAP RTC_XTALI
RTC_XTALO C9 VDD_SNVS_CAP RTC_XTALO
SATA_RXM A14 SATA_VPH SATA_RXM
SATA_RXP B14 SATA_VPH SATA_RXP
SATA_TXM B12 SATA_VPH SATA_TXM
SATA_TXP A12 SATA_VPH SATA_TXP
SD1_CLK D20 NVCC_SD1 GPIO ALT5 gpio1_GPIO[20] Input PU (100K)
SD1_CMD B21 NVCC_SD1 GPIO ALT5 gpio1_GPIO[18] Input PU (100K)
SD1_DAT0 A21 NVCC_SD1 GPIO ALT5 gpio1_GPIO[16] Input PU (100K)
SD1_DAT1 C20 NVCC_SD1 GPIO ALT5 gpio1_GPIO[17] Input PU (100K)
SD1_DAT2 E19 NVCC_SD1 GPIO ALT5 gpio1_GPIO[19] Input PU (100K)
SD1_DAT3 F18 NVCC_SD1 GPIO ALT5 gpio1_GPIO[21] Input PU (100K)
SD2_CLK C21 NVCC_SD2 GPIO ALT5 gpio1_GPIO[10] Input PU (100K)
SD2_CMD F19 NVCC_SD2 GPIO ALT5 gpio1_GPIO[11] Input PU (100K)
SD2_DAT0 A22 NVCC_SD2 GPIO ALT5 gpio1_GPIO[15] Input PU (100K)
SD2_DAT1 E20 NVCC_SD2 GPIO ALT5 gpio1_GPIO[14] Input PU (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
160 Freescale Semiconductor
Package Information and Contact Assignments
SD2_DAT2 A23 NVCC_SD2 GPIO ALT5 gpio1_GPIO[13] Input PU (100K)
SD2_DAT3 B22 NVCC_SD2 GPIO ALT5 gpio1_GPIO[12] Input PU (100K)
SD3_CLK D14 NVCC_SD3 GPIO ALT5 gpio7_GPIO[3] Input PU (100K)
SD3_CMD B13 NVCC_SD3 GPIO ALT5 gpio7_GPIO[2] Input PU (100K)
SD3_DAT0 E14 NVCC_SD3 GPIO ALT5 gpio7_GPIO[4] Input PU (100K)
SD3_DAT1 F14 NVCC_SD3 GPIO ALT5 gpio7_GPIO[5] Input PU (100K)
SD3_DAT2 A15 NVCC_SD3 GPIO ALT5 gpio7_GPIO[6] Input PU (100K)
SD3_DAT3 B15 NVCC_SD3 GPIO ALT5 gpio7_GPIO[7] Input PU (100K)
SD3_DAT4 D13 NVCC_SD3 GPIO ALT5 gpio7_GPIO[1] Input PU (100K)
SD3_DAT5 C13 NVCC_SD3 GPIO ALT5 gpio7_GPIO[0] Input PU (100K)
SD3_DAT6 E13 NVCC_SD3 GPIO ALT5 gpio6_GPIO[18] Input PU (100K)
SD3_DAT7 F13 NVCC_SD3 GPIO ALT5 gpio6_GPIO[17] Input PU (100K)
SD3_RST D15 NVCC_SD3 GPIO ALT5 gpio7_GPIO[8] Input PU (100K)
SD4_CLK E16 NVCC_NANDF GPIO ALT5 gpio7_GPIO[10] Input PU (100K)
SD4_CMD B17 NVCC_NANDF GPIO ALT5 gpio7_GPIO[9] Input PU (100K)
SD4_DAT0 D18 NVCC_NANDF GPIO ALT5 gpio2_GPIO[8] Input PU (100K)
SD4_DAT1 B19 NVCC_NANDF GPIO ALT5 gpio2_GPIO[9] Input PU (100K)
SD4_DAT2 F17 NVCC_NANDF GPIO ALT5 gpio2_GPIO[10] Input PU (100K)
SD4_DAT3 A20 NVCC_NANDF GPIO ALT5 gpio2_GPIO[11] Input PU (100K)
SD4_DAT4 E18 NVCC_NANDF GPIO ALT5 gpio2_PIO[12] Input PU (100K)
SD4_DAT5 C19 NVCC_NANDF GPIO ALT5 gpio2_GPIO[13] Input PU (100K)
SD4_DAT6 B20 NVCC_NANDF GPIO ALT5 gpio2_GPIO[14] Input PU (100K)
SD4_DAT7 D19 NVCC_NANDF GPIO ALT5 gpio2_GPIO[15] Input PU (100K)
TAMPER E11 VDD_SNVS_IN GPIO ALT0 snvs_lp_wrapper_
SNVS_TD1
Input PD (100K)
TEST_MODE E12 VDD_SNVS_IN Reserved—Factory Use
Only
Input PD (100K)
USB_H1_DN F10 VDDUSB_CAP USB_H1_DN
USB_H1_DP E10 VDDUSB_CAP USB_H1_DP
USB_H1_VBUS D10 VDDUSB_CAP USB_H1_VBUS
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 161
For most of the signals, the state during reset is same as the state after reset, given in Out of Reset Condition
column of Table 93. However, there are few signals for which the state during reset is different from the
state after reset. These signals along with their state during reset are given in Table 94.
USB_OTG_CHD_B B8 VDDUSB_CAP USB_OTG_CHD_B
USB_OTG_DN B6 VDDUSB_CAP USB_OTG_DN
USB_OTG_DP A6 VDDUSB_CAP USB_OTG_DP
USB_OTG_VBUS E9 VDDUSB_CAP USB_OTG_VBUS
XTALI A7 NVCC_PLL_OUT XTALI
XTALO B7 NVCC_PLL_OUT XTALO
1The state immediately after reset and before ROM firmware or software has executed.
2MLB is only supported in automotive graded parts. These balls should be considered as not connected in consumer graded
parts.
Table 94. Signals with Differering Before Reset and After Reset States
Ball Name
Before Reset State
Input/Output Value
EIM_A16 Input PD (100K)
EIM_A17 Input PD (100K)
EIM_A18 Input PD (100K)
EIM_A19 Input PD (100K)
EIM_A20 Input PD (100K)
EIM_A21 Input PD (100K)
EIM_A22 Input PD (100K)
EIM_A23 Input PD (100K)
EIM_A24 Input PD (100K)
EIM_A25 Input PD (100K)
EIM_DA0 Input PD (100K)
EIM_DA1 Input PD (100K)
EIM_DA2 Input PD (100K)
EIM_DA3 Input PD (100K)
EIM_DA4 Input PD (100K)
Table 93. 21 x 21 mm Functional Contact Assignments (continued)
Ball Name Ball Power Group Ball
Type
Out of Reset Condition1
Default
Mode
(Reset
Mode)
Default Function Input/Output Value
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
162 Freescale Semiconductor
Package Information and Contact Assignments
6.1.3 21 x 21 mm, 0.8 mm Pitch Ball Map
Table 95 shows the FCPBGA 21 x 21 mm, 0.8 mm pitch ball map.
EIM_DA5 Input PD (100K)
EIM_DA6 Input PD (100K)
EIM_DA7 Input PD (100K)
EIM_DA8 Input PD (100K)
EIM_DA9 Input PD (100K)
EIM_DA10 Input PD (100K)
EIM_DA11 Input PD (100K)
EIM_DA12 Input PD (100K)
EIM_DA13 Input PD (100K)
EIM_DA14 Input PD (100K)
EIM_DA15 Input PD (100K)
EIM_EB0 Input PD (100K)
EIM_EB1 Input PD (100K)
EIM_EB2 Input PD (100K)
EIM_EB3 Input PD (100K)
EIM_LBA Input PD (100K)
EIM_RW Input PD (100K)
EIM_WAIT Input PD (100K)
GPIO_17 Output Drive state unknown (x)
GPIO_19 Output Drive state unknown (x)
KEY_COL0 Output Drive state unknown (x)
Table 95. 21 x 21 mm, 0.8 mm Pitch Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
A
PCIE_REXT
PCIE_TXM
GND
FA_ANA
USB_OTG_DP
XTALI
GND
MLB_SN1
MLB_DP1
MLB_CN1
SATA_TXP
GND
SATA_RXM
SD3_DAT2
NANDF_ALE
NANDF_CS2
NANDF_D0
NANDF_D4
SD4_DAT3
SD1_DAT0
SD2_DAT0
SD2_DAT2
RGMII_TD3
GND
Table 94. Signals with Differering Before Reset and After Reset States (continued)
Ball Name
Before Reset State
Input/Output Value
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 163
B
PCIE_RXM
PCIE_RXP
PCIE_TXP
GND
VDD_FA
USB_OTG_DN
XTALO
USB_OTG_CHD_B
MLB_SP1
MLB_DN1
MLB_CP1
SATA_TXM
SD3_CMD
SATA_RXP
SD3_DAT3
NANDF_RB0
SD4_CMD
NANDF_D5
SD4_DAT1
SD4_DAT6
SD1_CMD
SD2_DAT3
RGMII_RD1
RGMII_RD2
RGMII_RXC
C
GND
JTAG_TRSTB
JTAG_TMS
GND
CLK2_N
GND
CLK1_N
GPANAIO
RTC_XTALO
GND
POR_B
BOOT_MODE0
SD3_DAT5
SATA_REXT
NANDF_CLE
NANDF_CS1
NANDF_D1
NANDF_D7
SD4_DAT5
SD1_DAT1
SD2_CLK
RGMII_TD0
RGMII_TX_CTL
RGMII_RD0
EIM_D16
D
CSI_D1M
CSI_D1P
GND
CSI_REXT
CLK2_P
GND
CLK1_P
GND
RTC_XTALI
USB_H1_VBUS
PMIC_ON_REQ
ONOFF
SD3_DAT4
SD3_CLK
SD3_RST
NANDF_CS3
NANDF_D3
SD4_DAT0
SD4_DAT7
SD1_CLK
RGMII_TXC
RGMII_RX_CTL
RGMII_RD3
EIM_D18
EIM_D23
E
CSI_D2M
CSI_D2P
CSI_D0P
CSI_D0M
GND
GND
GND
NVCC_PLL_OUT
USB_OTG_VBUS
USB_H1_DP
TAMPER
TEST_MODE
SD3_DAT6
SD3_DAT0
NANDF_WP_B
SD4_CLK
NANDF_D6
SD4_DAT4
SD1_DAT2
SD2_DAT1
RGMII_TD2
EIM_EB2
EIM_D22
EIM_D26
EIM_D27
F
CSI_D3P
CSI_D3M
CSI_CLK0P
CSI_CLK0M
GND
GND
GND
GND
VDDUSB_CAP
USB_H1_DN
PMIC_STBY_REQ
BOOT_MODE1
SD3_DAT7
SD3_DAT1
NANDF_CS0
NANDF_D2
SD4_DAT2
SD1_DAT3
SD2_CMD
RGMII_TD1
EIM_D17
EIM_D24
EIM_EB3
EIM_A22
EIM_A24
G
DSI_D0P
DSI_D0M
GND
DSI_REXT
JTAG_TDI
JTAG_TDO
PCIE_VPH
PCIE_VPTX
VDD_SNVS_CAP
GND
VDD_SNVS_IN
SATA_VPH
SATA_VP
NVCC_SD3
NVCC_NANDF
NVCC_SD1
NVCC_SD2
NVCC_RGMII
GND
EIM_D20
EIM_D19
EIM_D25
EIM_D28
EIM_A17
EIM_A19
H
DSI_D1P
DSI_D1M
DSI_CLK0M
DSI_CLK0P
JTAG_TCK
JTAG_MOD
PCIE_VP
GND
VDDHIGH_IN
VDDHIGH_CAP
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
EIM_A25
EIM_D21
EIM_D31
EIM_A20
EIM_A21
EIM_CS0
EIM_A16
Table 95. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
164 Freescale Semiconductor
Package Information and Contact Assignments
J
HDMI_REF
GND
HDMI_D1M
HDMI_D1P
HDMI_CLKM
HDMI_CLKP
NVCC_JTAG
GND
VDDHIGH_IN
VDDHIGH_CAP
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
EIM_D29
EIM_D30
EIM_A23
EIM_A18
EIM_CS1
EIM_OE
EIM_DA1
K
HDMI_HPD
HDMI_DDCCEC
HDMI_D2M
HDMI_D2P
HDMI_D0M
HDMI_D0P
NVCC_MIPI
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM0
EIM_RW
EIM_EB0
EIM_LBA
EIM_EB1
EIM_DA3
EIM_DA6
L
CSI0_DAT13
GND
CSI0_DAT17
CSI0_DAT16
GND
CSI0_DAT19
HDMI_VP
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM1
EIM_DA0
EIM_DA2
EIM_DA4
EIM_DA5
EIM_DA8
EIM_DA7
M
CSI0_DAT10
CSI0_DAT12
CSI0_DAT11
CSI0_DAT14
CSI0_DAT15
CSI0_DAT18
HDMI_VPH
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_EIM2
EIM_DA11
EIM_DA9
EIM_DA10
EIM_DA13
EIM_DA12
EIM_WAIT
N
CSI0_DAT4
CSI0_VSYNC
CSI0_DAT7
CSI0_DAT6
CSI0_DAT9
CSI0_DAT8
NVCC_CSI
GND
VDDARM23_IN
GND
VDDARM23_CAP
VDD_CACHE_CAP
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
DI0_DISP_CLK
DI0_PIN3
DI0_PIN15
EIM_BCLK
EIM_DA14
EIM_DA15
DI0_PIN2
P
CSI0_PIXCLK
CSI0_DAT5
CSI0_DATA_EN
CSI0_MCLK
GPIO_19
GPIO_18
NVCC_GPIO
GND
VDDARM23_IN
GND
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
VDDPU_CAP
GND
NVCC_LCD
DISP0_DAT4
DISP0_DAT3
DISP0_DAT1
DISP0_DAT2
DISP0_DAT0
DI0_PIN4
R
GPIO_17
GPIO_16
GPIO_7
GPIO_5
GPIO_8
GPIO_4
GPIO_3
GND
VDDARM23_IN
VDDSOC_CAP
VDDARM23_CAP
GND
VDDARM_CAP
VDDARM_IN
GND
VDDSOC_IN
GND
NVCC_DRAM
NVCC_ENET
DISP0_DAT13
DISP0_DAT10
DISP0_DAT8
DISP0_DAT6
DISP0_DAT7
DISP0_DAT5
Table 95. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
Package Information and Contact Assignments
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 165
T
GPIO_2
GPIO_9
GPIO_6
GPIO_1
GPIO_0
KEY_COL4
KEY_ROW3
GND
VDDARM23_IN
VDDSOC_CAP
GND
GND
VDDSOC_CAP
VDDSOC_CAP
GND
VDDSOC_IN
GND
NVCC_DRAM
GND
DISP0_DAT21
DISP0_DAT16
DISP0_DAT15
DISP0_DAT11
DISP0_DAT12
DISP0_DAT9
U
LVDS0_TX0_P
LVDS0_TX0_N
LVDS0_TX1_P
LVDS0_TX1_N
KEY_COL3
KEY_ROW1
KEY_COL1
GND
VDDARM23_IN
VDDSOC_CAP
GND
GND
VDDSOC_CAP
VDDSOC_CAP
GND
VDDSOC_IN
GND
NVCC_DRAM
GND
ENET_TXD0
ENET_CRS_DV
DISP0_DAT20
DISP0_DAT19
DISP0_DAT17
DISP0_DAT14
V
LVDS0_TX2_P
LVDS0_TX2_N
LVDS0_CLK_P
LVDS0_CLK_N
KEY_ROW4
KEY_ROW0
NVCC_LVDS2P5
GND
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
NVCC_DRAM
GND
ENET_MDC
ENET_TX_EN
ENET_REF_CLK
ENET_MDIO
DISP0_DAT22
DISP0_DAT18
W
LVDS0_TX3_P
LVDS0_TX3_N
GND
KEY_ROW2
KEY_COL0
KEY_COL2
GND
GND
GND
GND
GND
GND
GND
DRAM_A4
GND
GND
GND
GND
GND
ENET_TXD1
ENET_RXD0
ENET_RXD1
ENET_RX_ER
DISP0_DAT23
DRAM_D63
Y
LVDS1_TX0_N
LVDS1_TX0_P
LVDS1_CLK_N
LVDS1_CLK_P
GND
DRAM_RESET
DRAM_D20
DRAM_D21
DRAM_D19
DRAM_D25
DRAM_SDCKE0
DRAM_A15
DRAM_A7
DRAM_A3
DRAM_SDBA1
DRAM_CS0
DRAM_D36
DRAM_D37
DRAM_D40
DRAM_D44
DRAM_DQM7
DRAM_D59
DRAM_D62
GND
DRAM_D58
AA
LVDS1_TX1_P
LVDS1_TX1_N
LVDS1_TX3_N
LVDS1_TX3_P
DRAM_D3
DRAM_D10
GND
DRAM_D17
DRAM_D23
GND
DRAM_SDCKE1
DRAM_A14
GND
DRAM_A2
DRAM_A10
GND
DRAM_D32
DRAM_D33
GND
DRAM_D45
DRAM_D57
GND
DRAM_D61
DRAM_SDQS7_B
DRAM_SDQS7
AB
LVDS1_TX2_N
LVDS1_TX2_P
GND
DRAM_D6
DRAM_D12
DRAM_D14
DRAM_D16
DRAM_DQM2
DRAM_D18
DRAM_SDQS3_B
DRAM_D27
DRAM_SDBA2
DRAM_A8
DRAM_A1
DRAM_RAS
DRAM_SDWE
DRAM_SDODT1
DRAM_DQM4
DRAM_D38
DRAM_D41
DRAM_D42
DRAM_D52
DRAM_D60
GND
DRAM_D56
AC
DRAM_D4
DRAM_VREF
DRAM_DQM0
DRAM_D2
DRAM_D13
DRAM_DQM1
DRAM_D15
DRAM_D22
DRAM_D28
DRAM_SDQS3
DRAM_D31
DRAM_A11
DRAM_A6
DRAM_A0
DRAM_SDBA0
DRAM_SDODT0
DRAM_A13
DRAM_D34
DRAM_D39
DRAM_DQM5
DRAM_D47
DRAM_D48
DRAM_D53
DRAM_D51
DRAM_D55
Table 95. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
166 Freescale Semiconductor
Package Information and Contact Assignments
AD
DRAM_D5
DRAM_D0
DRAM_SDQS0_B
GND
DRAM_D8
DRAM_SDQS1
GND
DRAM_SDQS2
DRAM_D29
GND
DRAM_D30
DRAM_A12
GND
DRAM_SDCLK_1
DRAM_SDCLK_0
GND
DRAM_CS1
DRAM_SDQS4
GND
DRAM_SDQS5
DRAM_D43
GND
DRAM_SDQS6
DRAM_DQM6
DRAM_D54
AE
GND
DRAM_D1
DRAM_SDQS0
DRAM_D7
DRAM_D9
DRAM_SDQS1_B
DRAM_D11
DRAM_SDQS2_B
DRAM_D24
DRAM_DQM3
DRAM_D26
DRAM_A9
DRAM_A5
DRAM_SDCLK_1_B
DRAM_SDCLK_0_B
DRAM_CAS
ZQPAD
DRAM_SDQS4_B
DRAM_D35
DRAM_SDQS5_B
DRAM_D46
DRAM_D49
DRAM_SDQS6_B
DRAM_D50
GND
1MLB is only supported in automotive graded parts. These balls should be considered as not connected in consumer graded
parts.
Table 95. 21 x 21 mm, 0.8 mm Pitch Ball Map (continued)
Revision History
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
Freescale Semiconductor 167
7 Revision History
Table 98 provides a revision history for this datasheet.
Table 98. i.MX 6Dual/6Quad Datasheet Document Revision History
Rev.
Number Date Substantive Change(s)
Rev. 1 11/2012 Made the following changes throughout the document:
—Changed “WEIM” to “EIM” and “weim” to “eim”
—Changed “TXC” to “RGMII_TXC” and “RXC” to “RGMII_RXC”
—Changed “TXD” to “RGMII_TXD” and “RXD” to “RGMII_RXD”
—Changed “TXD[n:0]” to “RGMII_TXDn (n = 0 to 3)” and “RXD[n:0]” to “RGMII_RXDn (n = 0 to 3)”
—Changed “TX_CTL” to “RGMII_TX_CTL” and “RX_CTL” to “RGMII_RX_CTL
Updated Table 1, "Example Consumer Grade Orderable Part Numbers," on page 4.
Updated Figure 1, "Part Number Nomenclature—i.MX 6Quad and i.MX 6Dual," on page 5.
Removed the figure, “Part Number Nomenclature—i.MX 6SoloLite.
•In Section 1.2, “Features:”
—Added a new sub-bullet for FlexCAN under the Miscellaneous IPs and interfaces bullet
—Added a footnote on the bottom of page 7 to specify performance limitation of 1 Gbps ENET
Updated Figure 2, "i.MX 6Dual/6Quad Consumer Grade System Block Diagram," on page 10 to add the
FlexCAN feature.
•In Table 2, "i.MX 6Dual/6Quad Modules List," on page 11:
—Updated ENET description to specify performance limitation of 1 Gbps ENET
—Added a new row to specify the FlexCAN feature
—Updated TEMPMON description
Updated Section 3.1, “Special Signal Considerations.
Updated Section 3.2, “Recommended Connections for Unused Analog Interfaces.
Updated Table 5, "FCPBGA Package Thermal Resistance Data," on page 21.
•In Table 8, "On-Chip LDOs and their On-Chip Loads," on page 25, added a footnote on
VDD_CACHE_CAP.
Updated Table 10, "Maximal Supply Currents," on page 26.
Updated Table 11, "Stop Mode Current and Power Consumption," on page 28.
Updated Section 4.1.8, “SATA Typical Power Consumption.
Updated Section 4.1.9, PCIe 2.0 Maximum Power Consumption.
Updated Section 4.1.10, “HDMI Maximum Power Consumption.
•In Table 21, "OSC32K Main Characteristics," on page 38, added 100 kΩ as ESR parameter max value.
Added a Note at the end of Section 4.2.1, “Power-Up Sequence.”
Updated Section 4.2.3, “Power Supplies Usage.
Updated Table 36, "EIM Signal Cross Reference," on page 51.
Updated Table 37, "EIM Internal Module Multiplexing," on page 51.
Updated Table 39, "EIM Asynchronous Timing Parameters Table Relative Chip Select," on page 59.
•In Table 49, "ECSPI Master Mode Timing Parameters," on page 77, updated CS5 min value.
Updated Section 4.11.5, “Ethernet Controller (ENET) AC Electrical Specifications.
Added Section 4.11.6, “Flexible Controller Area Network (FlexCAN) AC Electrical Specifications.
Removed figures, “TMDSCLKIN/PCLK Signal Definitions,” “Digital Interface Input Signals Timing
Definition,” and “Digital Interface Switching Time Definition.
Updated Figure 62, "PREPCLK Frequencies," on page 96.
Updated Table 62, "Switching Characteristics," on page 96.
Updated Table 66, "Video Signal Cross-Reference," on page 103.
Removed the section, “Clock Multiplier Switching Characteristics.
Updated Table 71, "Electrical and Timing Information," on page 114.
Updated Section 4.11.15, “Pulse Width Modulator (PWM) Timing Parameters.
Added a new bullet to the bullet list of Section 4.11.22, “USB PHY Parameters.
•In Table 93, "21 x 21 mm Functional Contact Assignments," on page 147, removed the row showing the
details of ball name, ZQPAD.
i.MX 6Dual/6Quad Applications Processors for Consumer Products, Rev. 1
168 Freescale Semiconductor
Revision History
Rev. 0 09/2012 Initial public release.
Table 98. i.MX 6Dual/6Quad Datasheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Document Number: IMX6DQCEC
Rev. 1
11/2012
How to Reach Us:
Home Page:
freescale.com
Web Support:
freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the
information in this document.
Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their
respective owners. ARM is the registered trademark of ARM Limited. ARM CortexTM-A9
is a trademark of ARM Limited.
© 2012 Freescale Semiconductor, Inc. All rights reserved.