06/24/11
IRFH5406PbF
HEXFET® Power MOSFET
Notes through are on page 8
Features and Benefits
www.irf.com 1
Features Benefits
PQFN 5X6 mm
Applications
Secondary Side Synchronous Rectification
Inverters for DC Motors
DC-DC Brick Applications
Boost Converters
Low RDSon (< 14.4 m
Ω
)
Lower Conduction Losses
Low Thermal Resistance to PCB (< 2.7°C/W)
Enables better thermal dissipation
100% Rg tested
Increased Reliability
results in
Increased Power Density
Industry-Standard Pinout
Multi-Vendor Compatibility
Compatible with Existing Surface Mount Techniques
Easier Manufacturing
RoHS Compliant Containing no Lead, no Bromide and no Halogen
Environmentally Friendlier
MSL1, Industrial Qualification
Increased Reliability
Note
Form
Quantity
IRFH5406TRPBF
PQFN 5mm x 6mm
Tape and Reel
4000
IRFH5406TR2PBF
PQFN 5mm x 6mm
Tape and Reel
400
Orderable part number Package Type
Standard Pack
Absolute Maximum Ratings
Parameter Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 70°C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C(Bottom)
= 25°C
Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C(Bottom)
= 100°C
Continuous Drain Current, V
GS
@ 10V
I
DM
Pulsed Drain Current
c
P
D
@T
A
= 25°C
Power Dissipation
g
P
D
@ T
C(Bottom)
= 25°C
Power Dissipation
g
Linear Derating Factor
g
W/°C
T
J
Operating Junction and
T
STG
Storage Temperature Range
V
W
A
°C
Max.
11
25
160
± 20
60
9
40
-55 to + 150
3.6
0.029
46
V
DS
60 V
R
DS(on) max
(@V
GS
= 10V)
14.4 mΩ
Q
g (typical)
21 nC
R
G (typical)
1.1 Ω
I
D
(@T
c(Bottom)
= 25°C)
40 A
PD-96299A
IRFH5406PbF
2www.irf.com
S
D
G
Thermal Resistance
Parameter Typ. Max. Units
R
θJC
(Bottom)
Junction-to-Case
f
––– 2.7
R
θJC
(Top)
Junction-to-Case
f
––– 15 °C/W
R
θJA
Junction-to-Ambient
g
––– 35
R
θJA
(<10s)
Junction-to-Ambient
g
––– 22
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 60 ––– ––– V
ΔΒ
V
DSS
/
Δ
T
J
Breakdown Voltage Temp. Coefficient ––– 0.07 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 11.4 14.4 m
Ω
V
GS(th)
Gate Threshold Voltage 2.0 ––– 4.0 V
Δ
V
GS(th)
Gate Threshold Voltage Coefficient ––– -8.6 ––– mV/°C
I
DSS
Drain-to-Source Leakage Current ––– ––– 20
––– ––– 250
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 27 ––– ––– S
Q
g
Total Gate Charge ––– 21 32
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 3.6 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 1.9 –––
Q
gd
Gate-to-Drain Charge ––– 6.5 –––
Q
godr
Gate Charge Overdrive ––– 9 –––
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)
––– 8.4 –––
Q
oss
Output Charge ––– 7.4 ––– nC
R
G
Gate Resistance ––– 1.1 –––
Ω
t
d(on)
Turn-On Delay Time ––– 5.4 –––
t
r
Rise Time ––– 8.7 –––
t
d(off)
Turn-Off Delay Time ––– 12 –––
t
f
Fall Time ––– 3.5 –––
C
iss
Input Capacitance ––– 1256 –––
C
oss
Output Capacitance ––– 206 –––
C
rss
Reverse Transfer Capacitance ––– 92 –––
Avalanche Characteristics
Parameter Units
E
AS
Single Pulse Avalanche Energy
d
mJ
I
AR
Avalanche Current
c
A
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode)
I
SM
Pulsed Source Current
(Body Diode)
c
V
SD
Diode Forward Voltage ––– ––– 1.3 V
t
rr
Reverse Recovery Time ––– 20 30 ns
Q
rr
Reverse Recovery Charge ––– 74 111 nC
t
on
Forward Turn-On Time Time is dominated by parasitic Inductance
MOSFET symbol
nA
ns
A
pF
nC
V
DS
= 30V
–––
V
GS
= 20V
V
GS
= -20V
––– ––– 160
––– ––– 40
Conditions
V
GS
= 0V, I
D
= 250uA
Reference to 25°C, I
D
= 1.0mA
V
GS
= 10V, I
D
= 24A
e
Conditions
Max.
45
24
ƒ = 1.0MHz
T
J
= 25°C, I
F
= 24A, V
DD
= 30V
di/dt = 500A/μs
e
T
J
= 25°C, I
S
= 24A, V
GS
= 0V
e
showing the
integral reverse
p-n junction diode.
–––
R
G
=1.7Ω
V
DS
= 25V, I
D
= 24A
V
DS
= 60V, V
GS
= 0V, T
J
= 125°C
μA
I
D
= 24A
I
D
= 24A
V
GS
= 0V
V
DS
= 25V
V
DS
= V
GS
, I
D
= 50μA
V
GS
= 10V
Typ.
V
DS
= 60V, V
GS
= 0V
V
DS
= 16V, V
GS
= 0V
V
DD
= 30V, V
GS
= 10V
IRFH5406PbF
www.irf.com 3
Fig 4. Normalized On-Resistance Vs. Temperature
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 6. Typical Gate Charge Vs.Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.Drain-to-Source Voltage
2345678910
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 150°C
VDS = 25V
60μs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 24A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.00V
5.50V
5.00V
4.50V
4.00V
BOTTOM 3.75V
60μs PULSE WIDTH
Tj = 25°C
3.75V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.00V
5.50V
5.00V
4.50V
4.00V
BOTTOM 3.75V
60μs PULSE WIDTH
Tj = 150°C
3.75V
0 5 10 15 20 25 30
QG, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
VDS= 48V
VDS= 30V
VDS= 12V
ID= 24A
IRFH5406PbF
4www.irf.com
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current Vs.
Case (Bottom) Temperature
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 10. Threshold Voltage Vs. Temperature
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VSD, Source-to-Drain Voltage (V)
1.0
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
25 50 75 100 125 150
TC , Case Temperature (°C)
0
5
10
15
20
25
30
35
40
45
ID, Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
VGS(th), Gate threshold Voltage (V)
ID = 1.0A
ID = 1.0mA
ID = 250μA
ID = 50μA
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.10 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY RDS(on)
Tc = 25°C
Tj = 150°C
Single Pulse
100μsec
1msec
10msec
IRFH5406PbF
www.irf.com 5
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
Fig 14b. Unclamped Inductive Waveforms
Fig 14a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 15a. Switching Time Test Circuit Fig 15b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
46810 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
5
10
15
20
25
30
35
RDS(on), Drain-to -Source On Resistance (mΩ)
ID = 24A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
50
100
150
200
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 3.1A
6.7A
BOTTOM 24A
IRFH5406PbF
6www.irf.com
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Fig 17. Gate Charge Test Circuit Fig 18. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
1K
VCC
DUT
0
L
S
IRFH5406PbF
www.irf.com 7
PQFN 5x6 Outline "B" Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
PQFN 5x6 Outline "B" Part Marking
XXXX
XYWWX
XXXXX
INTERNATIONAL
RECTIFIER LOGO
PART NUMBER
(“4 or 5 digits”)
MARKING CODE
(Per Marking Spec)
ASSEMBLY
SITE CODE
(Per SCOP 200-002)
DATE CODE
PIN 1
IDENTIFIER LOT CODE
(Eng Mode - Min last 4 digits of EATI#)
(Prod Mode - 4 digits of SPN code)
IRFH5406PbF
8www.irf.com
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
 Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
 Applicable version of JEDEC standard at the time of product release.
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.156mH, RG = 50Ω, IAS = 24A.
Pulse width 400μs; duty cycle 2%.
Rθ is measured at TJ of approximately 90°C.
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
IR WORLD HEADQUARTERS: 101N.Sepulveda Blvd, El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.06/2011
Data and specifications subject to change without notice.
MS L 1
(per JE DEC J-S T D-020D††† )
RoHS compliant Yes
PQFN 5mm x 6mm
Qualification information
Moisture Sensitivity Level
Qualification level Industrial††
(per JE DEC JES D47F ††guidelines )
PQFN 5x6 Outline "B" Tape and Reel