o1 pel 3475081 0018309 & i 3875081 G E SOLID STATE Standard Power MOSFETs OTE 18309 DT 39-13 IRF350, IRF351, IRF352, IRF353 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 0 13 A and 15 A, 350 V- 400 V ros(on) = 0.8Q and0.4Q Features: The IRF350, IRF351, IRF352 and IRF353 are n-channel enhancement-mode sillcon-gate power field-effect SOA Is power-dissipation limited Nanosecond switching speeds Linear transfer characteristics High input impedance File Number 1826 $s 92CS-33741 Majority carrier device TERMINAL DIAGRAM transistors designed for applications such as switching regulators, switching converters, motor drivers, relay SOURCE drivers, and drivers for high-power bipolar switching transistors requiring high speed and !ow gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA metal GATE package. TERMINAL DESIGNATION DRAIN (FLANGE) 92CS-37601 JEDEC TO-204AA Absolute Maximum Ratings N-CHANNEL ENHANCEMENT MODE Parameter (RF350 IRF351 (RF382 IRF353 Units Vos Drain - Source Voltage 400 350 400 350 Vv VoGr Drain - Gate Voitage (Rag = 20 k0) oO 400 350 400 350 v Ip @Tc = 25C Continuous Drain Current 15 15 13 43 A Ip @ Tc = 100C Continuous Drain Current 9.0 9.0 8.0 8.0 A lom Pulsed Drain Currant @ 60 60 52 52 A Vas Gate - Source Voltage +20 v Pp @ Te = 25C Max. Power Dissipation 160 (See Fig. 14) Ww Linear Derating Factor 1.2 (See Fig. 14) WIK ILM Inductive Current, Clampad {See Fig, 15 and 16) L = tO0gnH A 60 | 60 I 52 | 62 tog Storage Tornperature Range 8610 150 c Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s} CO01 DEM 38750481 0018310 2 i ' 3875081 G E SOLID STATE 01E 18310 op 7 397/32 . Standard Power MOSFETs IRF350, IRF351, IRF352, IRF353 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions BVpsg Drain - Source Braakdown Voltage IRF350 400 _ _ Vv Ves = OV IRF352 IRF351 - IRF353 350 - - v Ip = 250pA Vesithy Gate Threshald Voltage ALL 2.0 - 4.0 v Vos = Vos. 'p = 250nA Igss Gate-Source Leakage Forward ALL - ~ 100 nA Veg = 20V Iggg Gate-Source Leakage Ravarse ALL - |-100 nA Vas = -20V ipss Zero Gate Voltage Drain Current ALL - - 260 pA Vos = Max. Rating, Vgg = OV - - | 1000 pA Vos = Max. Rating x 0.8, Vag = OV, Te = 125C Ipton) On-State Drain Currant @ IRF350 16 - - A IRFO51 Vos? 'pton) *P Vgg = 10V DS ? Dion} "DS(on} max." GS iRF362 | 4 _ _ A (RF353 Ros(on) Static Drain-Source On-State IRF350 _ Resistance IRF351 0.26 | 0.3 8 Vee = 10V1 B.OA F352 [ fog loa | a Gs Ship = &. IRF353 Ofs Forward Transconductance @) ALL 8.0 10 - Sivi Vos > 'pion) * Boston) max. Ip = 8-0A Ciss input Capacitance ALL - 2000/ 3000 oF Vag = OV, Vpg = 25, f = 1.0 MHz Coss _ Output Capacitance _ ALL ~~ 400 | 600 pF See Fig. 10 Cres Reverse Transfer Capacitance ALL = 100 }| 200 pF tdton) _Turn-On Delay Time ALL - - 35 ns Yop = 180V, Ip = 8.0A,2, = 4.79 tr Rise Time ALL - - 65 ns See Fig. 17 tajotf) Turn-Off Delay Time ALL = = 150 ns (MOSFET switching times are essentially tf Fall Time ALL _ _ 76 ns independent of operating temperature.) Q Total Gate Charge Ves = 10V, Ip = 18A, Vig = 0.8 Max. Rating. 8 - 7 1 Gs D os (Gate-Source Plus Gate-Drain) ALL 8 20 nc See Fig. 18 for test circuit. (Gate charge is essentially Ogs Gate-Source Charge ALL _ 38 _ ac independent of operating temperature.) Qga Gate-Drain ("Miller") Charge ALL _ 4i - nc lo internal Drain Inductance ALL - 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances. and center of die, c ls Internal Source inductance ALL - 12.5 - nH Measured from the source pin, 6 mm (0.25 in.) from header and source bonding pad. a Thermal Resistance Rthuc Junction-to-Case ALL = _ | 0.83 Kiw Rincg _Case-to-Sink ALL _ 0.1 - Kfw Mounting surface flat, smooth, and greased, RihgA Junction-to-Ambient ALL - - 30 KW Free Air Operation Source-Drain Diode Ratings and Characteristics Ig Continuous Source Current IRF350 _ _ 18 A Modified MOSFET symbol (Body Diode} (RF351 showing the integral IRF352 reverse P-N junction rectifier. mesa {| ~ | ~ | 13 { A * ism Pulse Source Current fRF360 _ _ (Body Diode] @ iRF351 80 | A ; IRF352 mrses {| | ~ | 52 [ A Vsp Diode Forward Voltage IRF3EO _ ~ | t6 Vv Tc = 25C, Ig = 15A, Vag = OV ieee | ~ | - [18 v Te = 25C, Ig = 134, Vag = OV tr Reverse Recovery Time ALL - _{1000; ns Ty = 150C, Ip = 15A, dicidt = TOOA/us Gar __ Reverse Recovered Charge ALL - 6.6 - pe Ty = 150C, ip = 15A, dip/dt = 100A/ps ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on spoed is substantially controlled byis + Lp. @Ty = 25C to 150C. @Pulse Test: Pulse width < 300yus, Duty Cycle < 2%. Repetitive Rating: Pulse width limited J by max. junction temperature. See Transient Thermat Impedance Curve (Fig. 5}, 253oh DE Eff s37sca2 Oo1aabi 4 of 3875081 G E SOLID STATE _ O1E 18311 oT "37-/3 Standard Power MOSFETs IRF350, IRF351, IRF352, IRF353 00 us PULSE 80 us PULSE TEST Vos > Ipten) X Rostan) max. 25 Tye+ Ty 2806 Ig, DRAIN CURRENT (AMPERES) Ty = -850C ip, ORAIN CURRENT (AMPERES) o 50 100 150 200 250 300 . a 1 2 3 4 5 6 7 a Vp, DAAIN-TO-SOURCE VOLTAGE (VOLTS! Vos, GATE TO SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics Fig. 2 Typical Transfer Characteristics us PULSE a @ Fd ec a w S = = = 5 = a = 5 > eo eo 2 S 2 z g 4 3 Te = 25C ~ Ty= 180C MAX. Ringe = 083 K/W b SINGLE PULSE bitte. 0 1 2 3 4 5 10 2 5 10 20 s0 100 200 500 Vps. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vps. ORAIN-TO SOURCE VOLTAGE (VOLTS} Fig. 3 Typical Saturation Characteristics Fig. 4 Maximum Safe Operating Area e & a 2 = S FE ta v5 = 05 Be we ar a2 02 a a8 #2 01 pnt oz 12 =z 0.05 7 Ms 1, OUTY FACTOR, O= ot = PULSE (TRANSIENT Q 2 = 002 THERMAL IMPEDANCE) 2, PER UNIT BASE = Rinje = 083 DEG. CW, a a 3. Tym - Te = Pom Zthctl. N01 . 2 5 10-2 2 6 10-1 2 5 to 2 5 10 -05 2 5 fot 2 5 103 ot ty, SQUARE WAVE PULSE DURATION (SECONDS) | a Fig. 5- Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Durationon def) sa7soa1 oorasi2 & 3875081 G E SOLID STATE ~ O1 18312 DDT ~3S9-/3 Standard Power MOSFETs IRF350, IRF351, IRF352, IRF353 J = 180C Ty = 1509C Sts, TRANSCONDUCTANCE (SIEMENS) Vos > Ipton) x Rasion) max. Ipg, REVERSE DRAIN CURRENT (AMPERES) 80 us PULSE TEST Q 4 8 2 16 20 a 1 2 3 4 Ip, DRAIN CURRENT (AMPERES) Vp, SOURGE-TO-ORAIN VOLTAGE {VOLTS) Fig. 6 Typical Transconductance Vs. Drain Current Fig. 7 Typical Source-Drain Diode Forward Voltage 22 125 115 a {NORMALIZED} o eo an DRAIN TO-SOURCE ON RESISTANCE 08s BV pss, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) RDS (an). o a 075 02 -40 0 40 a0 120 160 -40 Q 40 80 120 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) Fig. 8 Breakdown Voltage Vs. Temperature Fig. 9 Normalized On-Resistance Vs. Temperature 4000 20 Vos <0 2200 f= 1 MHe a 5 Vos = 2 1s = Vas = 200 = 3 rood = 2400 < = 320V g 3 2 > < a 5 ; A g 1 2 Ciss = Cys + Cyd, Cds SHORTED = = 1600 Cres * Coa 3 A Cos , So oa = Ss Bb ton" Ci Gg a Cgs + Cog 3S 5 a oa > Ip= IBA FOR TEST CIRCUIT SEE FIGURE 18 0 10 20 0 40 so 0 28 56 84 112 40 Vpg, ORAIN-TO SOURCE VOLTAGE (VOLTS) Og. TOTAL GATE CHARGE (nC) Fig. 10 Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 Typical Gate Charge Vs. Gate-to-Source Voltage _O 2553875081 G E SOLID STATE Standard Power MOSFETs IRF350, IRF351, [RF352, IRF353 _ O41 06 | ] 07 \ A 05 06 Vgs = 20V J ; L 0.3 02 Ros{on) MEASURED WITH CURRENT PULSE OF 2.0 ps DURATION, INITIAL Ty = 26C. (HEATING EFFECT OF 2.0 ps PULSE IS MINIMAL.} Roston}. DRAIN-TO-SOUACE ON RESISTANCE [OHMS) 0 10 20 RU 40 60 60 Ip, DRAIN CURRENT {AMPERES} Fig. 12 Typical On-Resistance Vs. Drain Current Pp, POWER DISSIPATION (WATTS} 0 20 40 60 80 100 120 140 Tc, CASE TEMPERATURE (SC) Fig. 14 Power Vs. Temperature Derating Curve ADJUST R, TO OBTAIN SPECIFIED Ip Ves DUT. Fruse | GENERATOR SOURCE Iq | IMPEDANCE L___ td Fig. 17 Switching Time Test Circuit 70 BATTERY O1E 18313 0 T-39-|3 DEM 3875081 0014313 4 20 {p, ORAIN CURRENT (AMPERES) 0 26 50 16 100 125 150 Tc, CASE TEMPERATURE (C} Fig. 13 Maximum Drain Current Vs. Case Temperature VARY tp TO OBTAIN REQUIRED PEAK 1 wv Vgg = 10 ftp Fig. 15 Clamped Inductive Test Circuit Me 1 = 0.5 BVpss Ec = 075 BVpsg Fig. 16 Clamped Inductive Waveforms o *Yos - CURRENT uSOLATED REGULATOR SUPPLY) SAME TYPE 1 o2ut a Vos CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit 256 ss