This is information on a product in full production.
May 2016 DocID025056 Rev 4 1/50
LIS2DH12
MEMS digital output motion sensor:
ultra-low-power high-performance 3-axis "femto" accelerometer
Datasheet - production data
Features
Wide supply voltage, 1.71 V to 3.6 V
Independent IO supply (1.8 V) and supply
voltage compatible
Ultra-low power consumption down to 2 μA
2g/±4g/8g/16g selectable full scales
I2C/SPI digital output interface
2 independent programmable interrupt
generators for free-fall and motion detection
6D/4D orientation detection
“Sleep-to-wake” and “return-to-sleep” functions
Free-fall detection
Motion detection
Embedded temperature sensor
Embedded FIFO
ECOPACK®, RoHS and “Green” compliant
Applications
Motion-activated functions
Display orientation
Shake control
Pedometer
Gaming and virtual reality input devices
Impact recognition and logging
Description
The LIS2DH12 is an ultra-low-power high-
performance three-axis linear accelerometer
belonging to the “femto” family with digital I2C/SPI
serial interface standard output.
The LIS2DH12 has user-selectable full scales of
2g/±4g/8g/16g and it is capable of measuring
accelerations with output data rates from 1 Hz to
5.3 kHz.
The self-test capability allows the user to check
the functionality of the sensor in the final
application.
The device may be configured to generate
interrupt signals by detecting two independent
inertial wake-up/free-fall events as well as by the
position of the device itself.
The LIS2DH12 is available in a small thin plastic
land grid array package (LGA) and is guaranteed
to operate over an extended temperature range
from -40 °C to +85 °C.
LGA-12
(2.0x2.0x1 mm)
Table 1. Device summary
Order code Temp.
range [C] Package Packaging
LIS2DH12TR -40 to +85 LGA-12 Tape and
reel
www.st.com
Contents LIS2DH12
2/50 DocID025056 Rev 4
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2 Mechanical and electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Communication interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.1 SPI - serial peripheral interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4.2 I2C - inter-IC control interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Terminology and functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.2 Zero-g level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.3 High resolution, normal mode, low-power mode . . . . . . . . . . . . . . . . . . 16
2.6.4 Self-test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.5 6D / 4D orientation detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6.6 “Sleep-to-wake” and “Return-to-sleep” . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Sensing element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.8 IC interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.9 Factory calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.10 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.11 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Application hints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Soldering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Digital main blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.1 Bypass mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
DocID025056 Rev 4 3/50
LIS2DH12 Contents
50
4.1.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Stream mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.4 Stream-to-FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1.5 Retrieving data from FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5 Digital interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 I2C serial interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.1 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.2 SPI bus interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.2.1 SPI read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.2 SPI write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.3 SPI read in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6 Register mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7 Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.1 STATUS_REG_AUX (07h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.2 OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh) . . . . . . . . . . . . . . . . . . . . . . 32
7.3 WHO_AM_I (0Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.4 TEMP_CFG_REG (1Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
7.5 CTRL_REG1 (20h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.6 CTRL_REG2 (21h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.7 CTRL_REG3 (22h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7.8 CTRL_REG4 (23h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.9 CTRL_REG5 (24h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.10 CTRL_REG6 (25h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.11 REFERENCE/DATACAPTURE (26h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.12 STATUS_REG (27h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.13 OUT_X_L (28h), OUT_X_H (29h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.14 OUT_Y_L (2Ah), OUT_Y_H (2Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.15 OUT_Z_L (2Ch), OUT_Z_H (2Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.16 FIFO_CTRL_REG (2Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.17 FIFO_SRC_REG (2Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.18 INT1_CFG (30h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.19 INT1_SRC (31h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Contents LIS2DH12
4/50 DocID025056 Rev 4
7.20 INT1_THS (32h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.21 INT1_DURATION (33h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.22 INT2_CFG (34h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.23 INT2_SRC (35h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.24 INT2_THS (36h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.25 INT2_DURATION (37h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.26 CLICK_CFG (38h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.27 CLICK_SRC (39h) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.28 CLICK_THS (3Ah) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.29 TIME_LIMIT (3Bh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.30 TIME_LATENCY (3Ch) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.31 TIME_WINDOW (3Dh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.32 Act_THS (3Eh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.33 Act_DUR (3Fh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1 LGA-12 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.2 LGA-12 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DocID025056 Rev 4 5/50
LIS2DH12 List of tables
50
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Mechanical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 4. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 5. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 6. SPI slave timing values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 7. I2C slave timing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 8. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 9. Operating mode selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 10. Turn-on time for operating mode transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 11. Current consumption of operating modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 12. Serial interface pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 13. I2C terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Table 14. SAD+read/write patterns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 15. Transfer when master is writing one byte to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 16. Transfer when master is writing multiple bytes to slave . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 17. Transfer when master is receiving (reading) one byte of data from slave . . . . . . . . . . . . . 25
Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave . . . . . . . . . 25
Table 19. Register address map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 20. STATUS_REG_AUX register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 21. STATUS_REG_AUX description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 22. WHO_AM_I register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 23. TEMP_CFG_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 24. TEMP_CFG_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 25. CTRL_REG1 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 26. CTRL_REG1 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 27. Data rate configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 28. CTRL_REG2 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 29. CTRL_REG2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 30. High-pass filter mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 31. CTRL_REG3 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 32. CTRL_REG3 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 33. CTRL_REG4 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 34. CTRL_REG4 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 35. Self-test mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 36. CTRL_REG5 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 37. CTRL_REG5 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 38. CTRL_REG6 register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 39. CTRL_REG6 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 40. REFERENCE/DATACAPTURE register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 41. REFERENCE/DATACAPTURE description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 42. STATUS_REG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 43. STATUS_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 44. FIFO_CTRL_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 45. FIFO_CTRL_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 46. FIFO mode configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 47. FIFO_SRC_REG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 48. FIFO_SRC_REG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
List of tables LIS2DH12
6/50 DocID025056 Rev 4
Table 49. INT1_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 50. INT1_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 51. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 52. INT1_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 53. INT1_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 54. INT1_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 55. INT1_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 56. INT1_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 57. INT1_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 58. INT2_CFG register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 59. INT2_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 60. Interrupt mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 61. INT2_SRC register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 62. INT2_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 63. INT2_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 64. INT2_THS description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 65. INT2_DURATION register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 66. INT2_DURATION description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 67. CLICK_CFG register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 68. CLICK_CFG description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 69. CLICK_SRC register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 70. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 71. CLICK_THS register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 72. CLICK_SRC description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 73. TIME_LIMIT register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 74. TIME_LIMIT description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 75. TIME_LATENCY register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 76. TIME_LATENCY description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 77. TIME_WINDOW register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 78. TIME_WINDOW description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 79. Act_THS register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 80. Act_THS description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 81. Act_DUR register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 82. Act_DUR description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 83. Reel dimensions for carrier tape of LGA-12 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 84. Document revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DocID025056 Rev 4 7/50
LIS2DH12 List of figures
50
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 2. Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. SPI slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 4. I2C slave timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. LIS2DH12 electrical connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 6. Read and write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 7. SPI read protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 8. Multiple byte SPI read protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 9. SPI write protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 10. Multiple byte SPI write protocol (2-byte example). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 11. SPI read protocol in 3-wire mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 12. LGA-12: package outline and mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 13. Carrier tape information for LGA-12 package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 14. LGA-12 package orientation in carrier tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 15. Reel information for carrier tape of LGA-12 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Block diagram and pin description LIS2DH12
8/50 DocID025056 Rev 4
1 Block diagram and pin description
1.1 Block diagram
Figure 1. Block diagram
1.2 Pin description
Figure 2. Pin connections
CHARGE
AMPLIFIER
Y+
Z+
Y-
Z-
a
X+
X-
I2C
SPI
CS
SCL/SPC
SDA/SDI/SDO
SDO/SA0
CONTROL LOGIC
&
INTERRUPT GEN.
INT 1
CLOCK
TRIMMING
CIRCUITS
Temperature
SELF TEST
CONTROL
A/D
CONVERTER
INT 2
MUX
32 Level
FIFO
LOGIC
Sensor
AM10218V2
(TOP VIEW)
DIRECTION OF THE
DETECTABLE
ACCELERATIONS
Y
1
X
Z
Vdd_IO
SC
L/SPC
SDA/SDI/SDO
CS
SDO/SA0
RES
GND
INT1
INT2
RES
Vdd
RES
(BOTTOM VIEW)
Pin 1 indicator
4
1
5
7
11
8
RES
RES
12 14
GND
SC
L/SPC
SDA/SDI/SDO
CS
SDO/SA0
GND
RES
INT 1
Vdd_IO
(BOTTOM VIEW)
4
1
5
6
GND
11
INT 2
7
10
Vdd
12
DocID025056 Rev 4 9/50
LIS2DH12 Block diagram and pin description
50
Table 2. Pin description
Pin# Name Function
1SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
2CS
SPI enable
I2C/SPI mode selection:
1: SPI idle mode / I2C communication enabled
0: SPI communication mode / I2C disabled
3SDO
SA0
SPI serial data output (SDO)
I2C less significant bit of the device address (SA0)
4
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
5 Res Connect to GND
6 GND 0 V supply
7 GND 0 V supply
8 GND 0 V supply
9 Vdd Power supply
10 Vdd_IO Power supply for I/O pins
11 INT2 Interrupt pin 2
12 INT1 Interrupt pin 1
Mechanical and electrical specifications LIS2DH12
10/50 DocID025056 Rev 4
2 Mechanical and electrical specifications
2.1 Mechanical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(a)
a. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
Table 3. Mechanical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
FS Measurement range(2)
FS bit set to 00 ±2.0
g
FS bit set to 01 ±4.0
FS bit set to 10 ±8.0
FS bit set to 11 ±16.0
So Sensitivity
FS bit set to 00;
High-resolution mode 1
mg/digit
FS bit set to 00;
Normal mode 4
FS bit set to 00;
Low-power mode 16
FS bit set to 01;
High-resolution mode 2
mg/digit
FS bit set to 01;
Normal mode 8
FS bit set to 01;
Low-power mode 32
FS bit set to 10;
High-resolution mode 4
mg/digit
FS bit set to 10;
Normal mode 16
FS bit set to 10;
Low-power mode 64
FS bit set to 11;
High-resolution mode 12
mg/digit
FS bit set to 11;
Normal mode 48
FS bit set to 11;
Low-power mode 192
TCSo Sensitivity change vs.
temperature FS bit set to 00 ±0.01 %/°C
TyOff Typical zero-g level
offset accuracy(3) FS bit set to 00 ±40 mg
DocID025056 Rev 4 11/50
LIS2DH12 Mechanical and electrical specifications
50
2.2 Temperature sensor characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(b)
TCOff Zero-g level change
vs. temperature Max delta from 25 °C ±0.5 mg/°C
Vst Self-test
output change(4) (5) (6)
FS bit set to 00
X-axis; Normal mode 17 360 LSb
FS bit set to 00
Y-axis; Normal mode 17 360 LSb
FS bit set to 00
Z-axis; Normal mode 17 360 LSb
Top Operating
temperature range -40 +85 °C
1. Typical specifications are not guaranteed.
2. Verified by wafer level test and measurement of initial offset and sensitivity.
3. Typical zero-g level offset value after factory calibration test at socket level.
4. The sign of “Self-test output change” is defined by the ST bits in CTRL_REG4 (23h), for all axes.
5.
“Self-test output change” is defined as the absolute value of:
OUTPUT[LSb](Self test enabled)
- OUTPUT[LSb](Self test disabled). 1LSb = 4 mg at 10-bit representation, ±2 g full scale
6. After enabling the self-test, correct data is obtained after two samples (low-power mode / normal mode) or after eight
samples (high-resolution mode).
Table 3. Mechanical characteristics (continued)
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
b. The product is factory calibrated at 2.5 V. Temperature sensor operation is guaranteed in the range 2 V - 3.6 V.
Table 4. Temperature sensor characteristics
Symbol Parameter Min. Typ.(1)
1. Typical specifications are not guaranteed.
Max. Unit
TSDr Temperature sensor output
change vs. temperature 1 digit/°C(2)
2. 8-bit resolution.
TODR Temperature refresh rate ODR(3)
3. Refer to Table 27.
Hz
Top Operating temperature range -40 +85 °C
Mechanical and electrical specifications LIS2DH12
12/50 DocID025056 Rev 4
2.3 Electrical characteristics
@ Vdd = 2.5 V, T = 25 °C unless otherwise noted(c)
c. The product is factory calibrated at 2.5 V. The operational power supply range is from 1.71 V to 3.6 V.
Table 5. Electrical characteristics
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
Vdd Supply voltage 1.71 2.5 3.6 V
Vdd_IO I/O pins supply voltage(2) 1.71 Vdd+0.1 V
Idd Current consumption
in normal mode 50 Hz ODR 11 μA
Idd Current consumption
in normal mode 1 Hz ODR 2 μA
IddLP Current consumption
in low-power mode 50 Hz ODR 6 μA
IddPdn Current consumption
in power-down mode 0.5 μA
VIH Digital high-level input voltage 0.8*Vdd_IO V
VIL Digital low-level input voltage 0.2*Vdd_IO V
VOH High-level output voltage 0.9*Vdd_IO V
VOL Low-level output voltage 0.1*Vdd_IO V
Top Operating temperature range -40 +85 °C
1. Typical specification are not guaranteed.
2. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses, in this condition the
measurement chain is powered off.
DocID025056 Rev 4 13/50
LIS2DH12 Mechanical and electrical specifications
50
2.4 Communication interface characteristics
2.4.1 SPI - serial peripheral interface
Subject to general operating conditions for Vdd and Top.
Figure 3. SPI slave timing diagram
1. When no communication is ongoing, data on SDO is driven by internal pull-up resistors.
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both input and output
ports.
Table 6. SPI slave timing values
Symbol Parameter
Value (1)
Unit
Min Max
tc(SPC) SPI clock cycle 100 ns
fc(SPC) SPI clock frequency 10 MHz
tsu(CS) CS setup time 5
ns
th(CS) CS hold time 20
tsu(SI) SDI input setup time 5
th(SI) SDI input hold time 15
tv(SO) SDO valid output time 50
th(SO) SDO output hold time 5
tdis(SO) SDO output disable time 50
1. Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not
tested in production.
SPC
CS
SD I
SD O
t
su(CS)
t
v(SO)
t
h(SO)
t
h(SI)
t
su(SI)
t
h(CS)
t
dis(SO)
t
c(SPC)
MSB IN
MSB OUT LSB OUT
LSB IN
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
Mechanical and electrical specifications LIS2DH12
14/50 DocID025056 Rev 4
2.4.2 I2C - inter-IC control interface
Subject to general operating conditions for Vdd and top.
Figure 4. I2C slave timing diagram
Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO, for both ports.
Table 7. I2C slave timing values
Symbol Parameter
I2C standard mode (1) I2C fast mode (1)
Unit
Min Max Min Max
f(SCL) SCL clock frequency 0 100 0 400 kHz
tw(SCLL) SCL clock low time 4.7 1.3
μs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100 ns
th(SDA) SDA data hold time 0 3.45 0 0.9 μs
th(ST) START condition hold time 4 0.6
μs
tsu(SR) Repeated START condition
setup time 4.7 0.6
tsu(SP) STOP condition setup time 4 0.6
tw(SP:SR) Bus free time between STOP
and START condition 4.7 1.3
1. Data based on standard I2C protocol requirement, not tested in production.
SDA
SCL
t
su(SP)
t
w(SCLL)
su(SDA)
t
su(SR)
t
h(ST)
t
w(SCLH)
h(SDA)
t
w(SP:SR)
START
REPEA TED
STA RT
STOP
STA RT
DocID025056 Rev 4 15/50
LIS2DH12 Mechanical and electrical specifications
50
2.5 Absolute maximum ratings
Stresses above those listed as “absolute maximum ratings” may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
Note: Supply voltage on any pin should never exceed 4.8 V.
Table 8. Absolute maximum ratings
Symbol Ratings Maximum value Unit
Vdd Supply voltage -0.3 to 4.8 V
Vdd_IO Supply voltage on I/O pins -0.3 to 4.8 V
Vin Input voltage on any control pin
(CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0) -0.3 to Vdd_IO +0.3 V
APOW Acceleration (any axis, powered, Vdd = 2.5 V)
3000 g for 0.5 ms
10000 g for 0.2 ms
AUNP Acceleration (any axis, unpowered)
3000 g for 0.5 ms
10000 g for 0.2 ms
TOP Operating temperature range -40 to +85 °C
TSTG Storage temperature range -40 to +125 °C
ESD Electrostatic discharge protection (HBM) 2 kV
This device is sensitive to mechanical shock, improper handling can cause
permanent damage to the part.
This device is sensitive to electrostatic discharge (ESD), improper handling can
cause permanent damage to the part.
Mechanical and electrical specifications LIS2DH12
16/50 DocID025056 Rev 4
2.6 Terminology and functionality
Terminology
2.6.1 Sensitivity
Sensitivity describes the gain of the sensor and can be determined by applying 1 g
acceleration to it. As the sensor can measure DC accelerations, this can be done easily by
pointing the axis of interest towards the center of the Earth, noting the output value, rotating
the sensor by 180 degrees (pointing to the sky) and noting the output value again. By doing
so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the
smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This
value changes very little over temperature and time. The sensitivity tolerance describes the
range of sensitivities of a large population of sensors.
2.6.2 Zero-g level
The zero-g level offset (TyOff) describes the deviation of an actual output signal from the
ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal
surface will measure 0 g for the X-axis and 0 g for the Y-axis whereas the Z-axis will
measure 1 g. The output is ideally in the middle of the dynamic range of the sensor (content
of OUT registers 00h, data expressed as two’s complement number). A deviation from the
ideal value in this case is called zero-g offset. Offset is to some extent a result of stress to
the MEMS sensor and therefore the offset can slightly change after mounting the sensor on
a printed circuit board or exposing it to extensive mechanical stress. Offset changes little
over temperature, see Table 3 “Zero-g level change vs. temperature” (TCOff). The zero-g
level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a
population of sensors.
Functionality
2.6.3 High resolution, normal mode, low-power mode
The LIS2DH12 provides three different operating modes: high-resolution mode, normal
mode and low-power mode.
The table below summarizes how to select the different operating modes.
Table 9. Operating mode selection
Operating mode CTRL_REG1[3]
(LPen bit)
CTRL_REG4[3]
(HR bit) BW [Hz] Turn-on
time [ms]
So @ ±2g
[mg/digit]
Low-power mode
(8-bit data output) 1 0 ODR/2 1 16
Normal mode
(10-bit data output) 0 0 ODR/2 1.6 4
High-resolution mode
(12-bit data output) 0 1 ODR/9 7/ODR 1
Not allowed 1 1 -- -- --
DocID025056 Rev 4 17/50
LIS2DH12 Mechanical and electrical specifications
50
The turn-on time to transition to another operating mode is given in Table 10.
2.6.4 Self-test
The self-test allows the user to check the sensor functionality without moving it. When the
self-test is enabled, an actuation force is applied to the sensor, simulating a definite input
acceleration. In this case the sensor outputs will exhibit a change in their DC levels which
are related to the selected full scale through the device sensitivity. When the self-test is
activated, the device output level is given by the algebraic sum of the signals produced by
the acceleration acting on the sensor and by the electrostatic test-force. If the output signals
change within the amplitude specified inside Table 3, then the sensor is working properly
and the parameters of the interface chip are within the defined specifications.
2.6.5 6D / 4D orientation detection
The LIS2DH12 includes 6D / 4D orientation detection.
Table 10. Turn-on time for operating mode transition
Operating mode change Turn-on time
[ms]
12-bit mode to 8-bit mode 1/ODR
12-bit mode to 10-bit mode 1/ODR
10-bit mode to 8-bit mode 1/ODR
10-bit mode to 12-bit mode 7/ODR
8-bit mode to 10-bit mode 1/ODR
8-bit mode to 12-bit mode 7/ODR
Table 11. Current consumption of operating modes
Operating mode [Hz]
Low-power mode
(8-bit data output)
[μA]
Normal mode
(10-bit data output)
[μA]
High resolution
(12-bit data output)
[μA]
1222
10 3 4 4
25 4 6 6
50 6 11 11
100 10 20 20
200 18 38 38
400 36 73 73
1344 -- 185 185
1620 100 -- --
5376 185 -- --
Mechanical and electrical specifications LIS2DH12
18/50 DocID025056 Rev 4
6D / 4D orientation recognition
In this configuration the interrupt is generated when the device is stable in a known
direction. In 4D configuration, detection of the position of the Z-axis is disabled.
2.6.6 “Sleep-to-wake” and “Return-to-sleep”
The LIS2DH12 can be programmed to automatically switch to low-power mode upon
recognition of a determined event.
Once the event condition is over, the device returns back to the preset normal or high-
resolution mode.
To enable this function the desired threshold value must be stored inside the Act_THS (3Eh)
register while the duration value is written inside the Act_DUR (3Fh) register.
When the acceleration falls below the threshold value, the device automatically switches to
low-power mode (10Hz ODR).
During this condition, the ODR[3:0] bits and the LPen bit inside CTRL_REG1 (20h) and the
HR bit in CTRL_REG3 (22h) are not considered.
As soon as the acceleration rises above threshold, the module restores the operating mode
and ODRs as determined by the CTRL_REG1 (20h) and CTRL_REG3 (22h) settings.
2.7 Sensing element
A proprietary process is used to create a surface micromachined accelerometer. The
technology processes suspended silicon structures which are attached to the substrate in a
few points called anchors and are free to move in the direction of the sensed acceleration.
To be compatible with traditional packaging techniques, a cap is placed on top of the
sensing element to avoid blocking the moving parts during the molding phase of the plastic
encapsulation.
When an acceleration is applied to the sensor, the proof mass displaces from its nominal
position, causing an imbalance in the capacitive half-bridge. This imbalance is measured
using charge integration in response to a voltage pulse applied to the capacitor.
At steady state the nominal value of the capacitors are a few pF and when an acceleration is
applied, the maximum variation of the capacitive load is in the fF range.
2.8 IC interface
The complete measurement chain is composed of a low-noise capacitive amplifier which
converts the capacitive unbalance of the MEMS sensor into an analog voltage that will be
available to the user through an analog-to-digital converter.
The acceleration data may be accessed through an I2C/SPI interface, thus making the
device particularly suitable for direct interfacing with a microcontroller.
The LIS2DH12 features a data-ready signal (DRDY) which indicates when a new set of
measured acceleration data is available, thus simplifying data synchronization in the digital
system that uses the device.
The LIS2DH12 may also be configured to generate an inertial wake-up and free-fall interrupt
signal according to a programmed acceleration event along the enabled axes. Both free-fall
and wake-up can be available simultaneously on two different pins.
DocID025056 Rev 4 19/50
LIS2DH12 Mechanical and electrical specifications
50
2.9 Factory calibration
The IC interface is factory calibrated for sensitivity (So) and zero-g level (TyOff).
The trim values are stored inside the device in non-volatile memory. Any time the device is
turned on, these values are downloaded into the registers to be used during active
operation. This allows using the device without further calibration.
2.10 FIFO
The LIS2DH12 contains a 10-bit, 32-level FIFO. Buffered output allows the following
operation modes: FIFO, Stream, Stream-to-FIFO and FIFO bypass. When FIFO bypass
mode is activated, FIFO is not operating and remains empty. In FIFO mode, measurement
data from acceleration detection on the x, y, and z-axes are stored in the FIFO buffer.
2.11 Temperature sensor
The LIS2DH12 is supplied with an internal temperature sensor. Temperature data can be
enabled by setting the TEMP_EN[1:0] bits to ‘1’ in the TEMP_CFG_REG (1Fh) register.
To retrieve the temperature sensor data the BDU bit in CTRL_REG4 (23h) must be set to ‘1’.
Both the OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh) registers must be read.
Temperature data is stored inside OUT_TEMP_H as two’s complement data in 8-bit format
left-justified.
Application hints LIS2DH12
20/50 DocID025056 Rev 4
3 Application hints
Figure 5. LIS2DH12 electrical connections
The device core is supplied through the Vdd line while the I/O pads are supplied through the
Vdd_IO line. Power supply decoupling capacitors (100 nF ceramic, 10 μF aluminum) should
be placed as near as possible to pin 9 of the device (common design practice).
All the voltage and ground supplies must be present at the same time to have proper
behavior of the IC (refer to Figure 5). It is possible to remove Vdd while maintaining Vdd_IO
without blocking the communication bus, in this condition the measurement chain is
powered off.
The functionality of the device and the measured acceleration data is selectable and
accessible through the I2C or SPI interfaces. When using the I2C, CS must be tied high.
The functions, the threshold and the timing of the two interrupt pins (INT1 and INT2) can be
completely programmed by the user through the I2C/SPI interface.
3.1 Soldering information
The LGA package is compliant with the ECOPACK®, RoHS and “Green” standard.
It is qualified for soldering heat resistance according to JEDEC J-STD-020.
Leave “Pin 1 Indicator” unconnected during soldering.
Land pattern and soldering recommendations are available at www.st.com.
Vdd_IO
Digital signal from/to signal controller. Signal levels are dened by proper selection of Vdd_IO
10μF
Vdd
100nF
GND
RES
SC
L/SPC
SDA/SDI/SDO
CS
SDO/SA0 GND
GND
INT 2
Vdd_IO
4
1
6
5
GND
12
INT 1
7
10
Vdd
100nF
11
DocID025056 Rev 4 21/50
LIS2DH12 Digital main blocks
50
4 Digital main blocks
4.1 FIFO
The LIS2DH12 embeds a 32-level FIFO for each of the three output channels, X, Y and Z.
This allows consistent power saving for the system, since the host processor does not need
to continuously poll data from the sensor, but it can wake up only when needed and burst
the significant data out from the FIFO.
In order to enable the FIFO buffer, the FIFO_EN bit in CTRL_REG5 (24h) must be set to ‘1’.
This buffer can work according to the following different modes: Bypass mode, FIFO mode,
Stream mode and Stream-to-FIFO mode. Each mode is selected by the FM [1:0] bits in
FIFO_CTRL_REG (2Eh). Programmable FIFO watermark level, FIFO empty or FIFO
overrun events can be enabled to generate dedicated interrupts on the INT1 pin
(configuration through CTRL_REG3 (22h)).
In the FIFO_SRC_REG (2Fh) register the EMPTY bit is equal to ‘1’ when all FIFO samples
are ready and FIFO is empty.
In the FIFO_SRC_REG (2Fh) register the WTM bit goes to ‘1’ if new data is written in the
buffer and FIFO_SRC_REG (2Fh) (FSS [4:0]) is greater than or equal to FIFO_CTRL_REG
(2Eh) (FTH [4:0]). FIFO_SRC_REG (2Fh) (WTM) goes to ‘0’ if reading an X, Y, Z data slot
from FIFO and FIFO_SRC_REG (2Fh) (FSS [4:0]) is less than or equal to
FIFO_CTRL_REG (2Eh) (FTH [4:0]).
In the FIFO_SRC_REG (2Fh) register the OVRN_FIFO bit is equal to ‘1’ if the FIFO slot is
overwritten.
4.1.1 Bypass mode
In Bypass mode the FIFO is not operational and for this reason it remains empty. For each
channel only the first address is used. The remaining FIFO levels are empty.
Bypass mode must be used in order to reset the FIFO buffer when a different mode is
operating (i.e. FIFO mode).
4.1.2 FIFO mode
In FIFO mode, the buffer continues filling data from the X, Y and Z accelerometer channels
until it is full (a set of 32 samples stored). When the FIFO is full, it stops collecting data from
the input channels and the FIFO content remains unchanged.
An overrun interrupt can be enabled, I1_OVERRUN = '1' in the CTRL_REG3 (22h) register,
in order to be raised when the FIFO stops collecting data. When the overrun interrupt
occurs, the first data has been overwritten and the FIFO stops collecting data from the input
channels.
After the last read it is necessary to transit from Bypass mode in order to reset the FIFO
content. After this reset command, it is possible to restart FIFO mode just by selecting the
FIFO mode configuration (FM[1:0] bits) in register FIFO_CTRL_REG (2Eh).
Digital main blocks LIS2DH12
22/50 DocID025056 Rev 4
4.1.3 Stream mode
In Stream mode the FIFO continues filling data from the X, Y, and Z accelerometer channels
until the buffer is full (a set of 32 samples stored) at which point the FIFO buffer index
restarts from the beginning and older data is replaced by the current data. The oldest values
continue to be overwritten until a read operation frees the FIFO slots.
An overrun interrupt can be enabled, I1_OVERRUN = '1' in the CTRL_REG3 (22h) register,
in order to read the entire contents of the FIFO at once. If, in the application, it is mandatory
not to lose data and it is not possible to read at least one sample for each axis within one
ODR period, a watermark interrupt can be enabled in order to read partially the FIFO and
leave memory slots free for incoming data.
Setting the FTH [4:0] bit in the FIFO_CTRL_REG (2Eh) register to an N value, the number
of X, Y and Z data samples that should be read at the rise of the watermark interrupt is up to
(N+1).
4.1.4 Stream-to-FIFO mode
In Stream-to-FIFO mode, data from the X, Y and Z accelerometer channels are collected in
a combination of Stream mode and FIFO mode. The FIFO buffer starts operating in Stream
mode and switches to FIFO mode when the selected interrupt occurs.
The FIFO operating mode changes according to the INT1 pin value if the TR bit is set to ‘0’
in the FIFO_CTRL_REG (2Eh) register or the INT2 pin value if the TR bit is set to‘1’ in the
FIFO_CTRL_REG (2Eh) register.
When the interrupt pin is selected and the interrupt event is configured on the corresponding
pin, the FIFO operates in Stream mode if the pin value is equal to ‘0’ and it operates in FIFO
mode if the pin value is equal to ‘1’. Switching modes is dynamically performed according to
the pin value.
Stream-to-FIFO can be used in order to analyze the sampling history that generates an
interrupt. The standard operation is to read the contents of FIFO when the FIFO mode is
triggered and the FIFO buffer is full and stopped.
4.1.5 Retrieving data from FIFO
FIFO data is read from OUT_X_L (28h), OUT_X_H (29h), OUT_Y_L (2Ah), OUT_Y_H
(2Bh) and OUT_Z_L (2Ch), OUT_Z_H (2Dh). When the FIFO is in Stream, Stream-to-FIFO
or FIFO mode, a read operation to the OUT_X_L (28h), OUT_X_H (29h), OUT_Y_L (2Ah),
OUT_Y_H (2Bh) or OUT_Z_L (2Ch), OUT_Z_H (2Dh) registers provides the data stored in
the FIFO. Each time data is read from the FIFO, the oldest X, Y and Z data are placed in the
OUT_X_L (28h), OUT_X_H (29h), OUT_Y_L (2Ah), OUT_Y_H (2Bh) and OUT_Z_L (2Ch),
OUT_Z_H (2Dh) registers and both single read and read_burst operations can be used.
The address to be read is automatically updated by the device and it rolls back to 0x28
when register 0x2D is reached. In order to read all FIFO levels in a multiple byte read,192
bytes (6 output registers of 32 levels) have to be read.
DocID025056 Rev 4 23/50
LIS2DH12 Digital interfaces
50
5 Digital interfaces
The registers embedded inside the LIS2DH12 may be accessed through both the I2C and
SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire
interface mode.
The serial interfaces are mapped to the same pads. To select/exploit the I2C interface, the
CS line must be tied high (i.e. connected to Vdd_IO).
5.1 I2C serial interface
The LIS2DH12 I2C is a bus slave. The I2C is employed to write data into registers whose
content can also be read back.
The relevant I2C terminology is given in the table below.
There are two signals associated with the I2C bus: the serial clock line (SCL) and the serial
data line (SDA). The latter is a bidirectional line used for sending and receiving data to/from
the interface. Both the lines must be connected to Vdd_IO through an external pull-up
resistor. When the bus is free, both the lines are high.
The I2C interface is compliant with fast mode (400 kHz) I2C standards as well as with the
normal mode.
Table 12. Serial interface pin description
Pin name Pin description
CS
SPI enable
I2C/SPI mode selection:
1: SPI idle mode / I2C communication enabled
0: SPI communication mode / I2C disabled
SCL
SPC
I2C serial clock (SCL)
SPI serial port clock (SPC)
SDA
SDI
SDO
I2C serial data (SDA)
SPI serial data input (SDI)
3-wire interface serial data output (SDO)
SA0
SDO
I2C less significant bit of the device address (SA0)
SPI serial data output (SDO)
Table 13. I2C terminology
Term Description
Transmitter The device which sends data to the bus
Receiver The device which receives data from the bus
Master The device which initiates a transfer, generates clock signals and terminates a
transfer
Slave The device addressed by the master
Digital interfaces LIS2DH12
24/50 DocID025056 Rev 4
5.1.1 I2C operation
The transaction on the bus is started through a START (ST) signal. A START condition is
defined as a HIGH-to-LOW transition on the data line while the SCL line is held HIGH. After
this has been transmitted by the master, the bus is considered busy. The next byte of data
transmitted after the start condition contains the address of the slave in the first 7 bits and
the eighth bit tells whether the master is receiving data from the slave or transmitting data to
the slave. When an address is sent, each device in the system compares the first seven bits
after a start condition with its address. If they match, the device considers itself addressed
by the master.
The Slave ADdress (SAD) associated to the LIS2DH12 is 001100xb. The SDO/SA0 pad can
be used to modify the less significant bit of the device address. If the SA0 pad is connected
to the voltage supply, LSb is ‘1’ (address 0011001b), else if the SA0 pad is connected to
ground, the LSb value is ‘0’ (address 0011000b). This solution permits to connect and
address two different accelerometers to the same I2C lines.
Data transfer with acknowledge is mandatory. The transmitter must release the SDA line
during the acknowledge pulse. The receiver must then pull the data line LOW so that it
remains stable low during the HIGH period of the acknowledge clock pulse. A receiver
which has been addressed is obliged to generate an acknowledge after each byte of data
received.
The I2C embedded inside the LIS2DH12 behaves like a slave device and the following
protocol must be adhered to. After the start condition (ST) a slave address is sent, once a
slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted: the
7 LSb represent the actual register address while the MSB enables address auto increment.
If the MSb of the SUB field is ‘1’, the SUB (register address) is automatically increased to
allow multiple data read/writes.
The slave address is completed with a Read/Write bit. If the bit was ‘1’ (Read), a repeated
START (SR) condition must be issued after the two sub-address bytes; if the bit is ‘0’ (Write)
the master will transmit to the slave with direction unchanged. Table 14 explains how the
SAD+read/write bit pattern is composed, listing all the possible configurations.
Table 14. SAD+read/write patterns
Command SAD[6:1] SAD[0] = SA0 R/W SAD+R/W
Read 001100 0 1 00110001 (31h)
Write 001100 0 0 00110000 (30h)
Read 001100 1 1 00110011 (33h)
Write 001100 1 0 00110010 (32h)
Table 15. Transfer when master is writing one byte to slave
Master ST SAD + W SUB DATA SP
Slave SAK SAK SAK
DocID025056 Rev 4 25/50
LIS2DH12 Digital interfaces
50
Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number
of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit
(MSb) first. If a receiver can’t receive another complete byte of data until it has performed
some other function, it can hold the clock line, SCL low to force the transmitter into a wait
state. Data transfer only continues when the receiver is ready for another byte and releases
the data line. If a slave receiver doesn’t acknowledge the slave address (i.e. it is not able to
receive because it is performing some real-time function) the data line must be left HIGH by
the slave. The master can then abort the transfer. A low-to-high transition on the SDA line
while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be
terminated by the generation of a STOP (SP) condition.
In order to read multiple bytes, it is necessary to assert the most significant bit of the sub-
address field. In other words, SUB(7) must be equal to 1 while SUB(6-0) represents the
address of the first register to be read.
In the presented communication format MAK is Master acknowledge and NMAK is No
Master Acknowledge.
Table 16. Transfer when master is writing multiple bytes to slave
Master ST SAD + W SUB DATA DATA SP
Slave SAK SAK SAK SAK
Table 17. Transfer when master is receiving (reading) one byte of data from slave
Master ST SAD + W SUB SR SAD + R NMAK SP
Slave SAK SAK SAK DATA
Table 18. Transfer when master is receiving (reading) multiple bytes of data from slave
Master ST SAD+W SUB SR SAD+R MAK MAK NMAK SP
Slave SAK SAK SAK DATA DATA DATA
Digital interfaces LIS2DH12
26/50 DocID025056 Rev 4
5.2 SPI bus interface
The LIS2DH12 SPI is a bus slave. The SPI allows writing to and reading from the registers
of the device.
The serial interface interacts with the application using 4 wires: CS, SPC, SDI and SDO.
Figure 6. Read and write protocol
CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of
the transmission and goes back high at the end. SPC is the serial port clock and it is
controlled by the SPI master. It is stopped high when CS is high (no transmission). SDI and
SDO are respectively the serial port data input and output. These lines are driven at the
falling edge of SPC and should be captured at the rising edge of SPC.
Both the read register and write register commands are completed in 16 clock pulses or in
multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling
edges of SPC. The first bit (bit 0) starts at the first falling edge of SPC after the falling edge
of CS while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the
rising edge of CS.
bit 0: RW bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0)
from the device is read. In the latter case, the chip will drive SDO at the start of bit 8.
bit 1: MS bit. When 0, the address will remain unchanged in multiple read/write commands.
When 1, the address is auto incremented in multiple read/write commands.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
In multiple read/write commands further blocks of 8 clock periods will be added. When the
MS bit is ‘0’, the address used to read/write data remains the same for every block. When
the MS bit is ‘1’, the address used to read/write data is increased at every block.
The function and the behavior of SDI and SDO remain unchanged.
&6
63&
6',
6'2
5:
$' $' $' $' $' $'
', ', ', ', ', ', ', ',
'2 '2 '2 '2 '2 '2 '2 '2
06
DocID025056 Rev 4 27/50
LIS2DH12 Digital interfaces
50
5.2.1 SPI read
Figure 7. SPI read protocol
The SPI read command is performed with 16 clock pulses. A multiple byte read command is
performed by adding blocks of 8 clock pulses to the previous one.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address, when 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb
first).
bit 16-... : data DO(...-8). Further data in multiple byte reads.
Figure 8. Multiple byte SPI read protocol (2-byte example)
&6
63&
6',
6'2
5:
'2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
06
&6
63&
6',
6'2
5:
'2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
'2'2'2'2'2'2'2 '2
06
Digital interfaces LIS2DH12
28/50 DocID025056 Rev 4
5.2.2 SPI write
Figure 9. SPI write protocol
The SPI write command is performed with 16 clock pulses. A multiple byte write command
is performed by adding blocks of 8 clock pulses to the previous one.
bit 0: WRITE bit. The value is 0.
bit 1: MS bit. When 0, does not increment the address, when 1, increments the address in
multiple writes.
bit 2 -7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb
first).
bit 16-... : data DI(...-8). Further data in multiple byte writes.
Figure 10. Multiple byte SPI write protocol (2-byte example)
&6
63&
6',
5: ', ', ', ', ', ', ', ',
$' $' $' $' $' $'06
&6
63&
6',
5:
$' $' $' $' $' $'
', ', ', ', ', ', ', ', ',',',',',',', ',
06
DocID025056 Rev 4 29/50
LIS2DH12 Digital interfaces
50
5.2.3 SPI read in 3-wire mode
3-wire mode is entered by setting the SIM bit (SPI serial interface mode selection) to ‘1’ in
CTRL_REG4 (23h).
Figure 11. SPI read protocol in 3-wire mode
The SPI read command is performed with 16 clock pulses.
bit 0: READ bit. The value is 1.
bit 1: MS bit. When 0, does not increment the address; when 1, increments the address in
multiple reads.
bit 2-7: address AD(5:0). This is the address field of the indexed register.
bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).
The multiple read command is also available in 3-wire mode.
&6
63&
6',2
5: '2 '2 '2 '2 '2 '2 '2 '2
$' $' $' $' $' $'
06
Register mapping LIS2DH12
30/50 DocID025056 Rev 4
6 Register mapping
The table given below provides a listing of the 8-bit registers embedded in the device and
the corresponding addresses.
Table 19. Register address map
Name Type
Register address
Default Comment
Hex Binary
Reserved - 00 - 06 Reserved
STATUS_REG_AUX r 07 000 0111 Output
Reserved - 08-0B Reserved
OUT_TEMP_L r 0C 000 1100 Output
OUT_TEMP_H r 0D 000 1101 Output
Reserved - 0E 000 1110 Reserved
WHO_AM_I r 0F 000 1111 00110011 Dummy register
Reserved - 10 - 1E Reserved
TEMP_CFG_REG rw 1F 001 1111 00000000
CTRL_REG1 rw 20 010 0000 00000111
CTRL_REG2 rw 21 010 0001 00000000
CTRL_REG3 rw 22 010 0010 00000000
CTRL_REG4 rw 23 010 0011 00000000
CTRL_REG5 rw 24 010 0100 00000000
CTRL_REG6 rw 25 010 0101 00000000
REFERENCE/DATACAPTURE rw 26 010 0110 00000000
STATUS_REG r 27 010 0111 00000000
OUT_X_L r 28 010 1000 Output
OUT_X_H r 29 010 1001 Output
OUT_Y_L r 2A 010 1010 Output
OUT_Y_H r 2B 010 1011 Output
OUT_Z_L r 2C 010 1100 Output
OUT_Z_H r 2D 010 1101 Output
FIFO_CTRL_REG rw 2E 010 1110 00000000
FIFO_SRC_REG r 2F 010 1111 Output
INT1_CFG rw 30 011 0000 00000000
INT1_SRC r 31 011 0001 00000000
INT1_THS rw 32 011 0010 00000000
INT1_DURATION rw 33 011 0011 00000000
DocID025056 Rev 4 31/50
LIS2DH12 Register mapping
50
Registers marked as Reserved or not listed in the table above must not be changed. Writing
to those registers may cause permanent damage to the device.
The content of the registers that are loaded at boot should not be changed. They contain the
factory calibration values. Their content is automatically restored when the device is
powered up.
The boot procedure is complete about 5 milliseconds after device power-up.
INT2_CFG rw 34 011 0100 00000000
INT2_SRC r 35 011 0101 Output
INT2_THS rw 36 011 0110 00000000
INT2_DURATION rw 37 011 0111 00000000
CLICK_CFG rw 38 011 1000 00000000
CLICK_SRC r 39 011 1001 Output
CLICK_THS rw 3A 011 1010 00000000
TIME_LIMIT rw 3B 011 1011 00000000
TIME_LATENCY rw 3C 011 1100 00000000
TIME_WINDOW rw 3D 011 1101 00000000
Act_THS rw 3E 011 1110 00000000
Act_DUR rw 3F 011 1111 00000000
Table 19. Register address map (continued)
Name Type
Register address
Default Comment
Hex Binary
Register description LIS2DH12
32/50 DocID025056 Rev 4
7 Register description
7.1 STATUS_REG_AUX (07h)
7.2 OUT_TEMP_L (0Ch), OUT_TEMP_H (0Dh)
Temperature sensor data. Refer to Section 2.11: Temperature sensor for details on how to
enable and read the temperature sensor output data.
7.3 WHO_AM_I (0Fh)
Device identification register.
7.4 TEMP_CFG_REG (1Fh)
Table 20. STATUS_REG_AUX register
-- TOR -- -- -- TDA -- --
Table 21. STATUS_REG_AUX description
TOR Temperature data overrun. Default value: 0
(0: no overrun has occurred;
1: new temperature data has overwritten the previous data)
TDA Temperature new data available. Default value: 0
(0: new temperature data is not yet available;
1: new temperature data is available)
Table 22. WHO_AM_I register
00110011
Table 23. TEMP_CFG_REG register
TEMP_EN1 TEMP_EN0 0 0 0 0 0 0
Table 24. TEMP_CFG_REG description
TEMP_EN[1:0] Temperature sensor (T) enable. Default value: 00
(00: T disabled; 11: T enabled)
DocID025056 Rev 4 33/50
LIS2DH12 Register description
50
7.5 CTRL_REG1 (20h)
ODR[3:0] is used to set the power mode and ODR selection. The following table indicates
the frequency of each combination of ODR[3:0].
Table 25. CTRL_REG1 register
ODR3 ODR2 ODR1 ODR0 LPen Zen Yen Xen
Table 26. CTRL_REG1 description
ODR[3:0] Data rate selection. Default value: 0000
(0000: power-down mode; others: refer to Table 27)
LPen
Low-power mode enable. Default value: 0
(0: normal mode, 1: low-power mode)
(Refer to section 2.6.3: High resolution, normal mode, low-power mode)
Zen Z-axis enable. Default value: 1
(0: Z-axis disabled; 1: Z-axis enabled)
Yen Y-axis enable. Default value: 1
(0: Y-axis disabled; 1: Y-axis enabled)
Xen X-axis enable. Default value: 1
(0: X-axis disabled; 1: X-axis enabled)
Table 27. Data rate configuration
ODR3 ODR2 ODR1 ODR0 Power mode selection
0 0 0 0 Power-down mode
0 0 0 1 HR / Normal / Low-power mode (1 Hz)
0 0 1 0 HR / Normal / Low-power mode (10 Hz)
0 0 1 1 HR / Normal / Low-power mode (25 Hz)
0 1 0 0 HR / Normal / Low-power mode (50 Hz)
0 1 0 1 HR / Normal / Low-power mode (100 Hz)
0 1 1 0 HR / Normal / Low-power mode (200 Hz)
0 1 1 1 HR/ Normal / Low-power mode (400 Hz)
1 0 0 0 Low-power mode (1.620 kHz)
1 0 0 1 HR/ Normal (1.344 kHz);
Low-power mode (5.376 kHz)
Register description LIS2DH12
34/50 DocID025056 Rev 4
7.6 CTRL_REG2 (21h)
7.7 CTRL_REG3 (22h)
Table 28. CTRL_REG2 register
HPM1 HPM0 HPCF2 HPCF1 FDS HPCLICK HPIS2 HPIS1
Table 29. CTRL_REG2 description
HPM[1:0] High-pass filter mode selection. Default value: 00
Refer to Table 30 for filter mode configuration
HPCF[2:1] High-pass filter cutoff frequency selection
FDS Filtered data selection. Default value: 0
(0: internal filter bypassed; 1: data from internal filter sent to output register and FIFO)
HPCLICK High-pass filter enable for CLICK function.
(0: filter bypassed; 1: filter enabled)
HPIS2 High-pass filter enable for AOI function on Interrupt 2.
(0: filter bypassed; 1: filter enabled)
HPIS1 High-pass filter enable for AOI function on Interrupt 1.
(0: filter bypassed; 1: filter enabled)
Table 30. High-pass filter mode configuration
HPM1 HPM0 High-pass filter mode
0 0 Normal mode (reset by reading REFERENCE/DATACAPTURE (26h) register)
0 1 Reference signal for filtering
1 0 Normal mode
1 1 Autoreset on interrupt event
Table 31. CTRL_REG3 register
I1_CLICK I1_AOI1 I1_AOI2 I1_DRDY1 I1_DRDY2 I1_WTM I1_OVERRUN --
Table 32. CTRL_REG3 description
I1_CLICK CLICK interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
I1_AOI1 AOI1 interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
I1_AOI2 AOI2 interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
I1_DRDY1 DRDY1 interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
I1_DRDY2 DRDY2 interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
I1_WTM FIFO watermark interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
I1_OVERRUN FIFO overrun interrupt on INT1 pin. Default value 0.
(0: disable; 1: enable)
DocID025056 Rev 4 35/50
LIS2DH12 Register description
50
7.8 CTRL_REG4 (23h)
7.9 CTRL_REG5 (24h)
Table 33. CTRL_REG4 register
BDU BLE(1)
1. The BLE function can be activated only in high-resolution mode
FS1 FS0 HR ST1 ST0 SIM
Table 34. CTRL_REG4 description
BDU Block data update. Default value: 0
(0: continuous update; 1: output registers not updated until MSB and LSB
have been read)
BLE Big/Little Endian data selection. Default value: 0
(0: data LSb at lower address; 1: data MSb at lower address)
The BLE function can be activated only in high-resolution mode
FS[1:0] Full-scale selection. Default value: 00
(00: ±2g; 01: ±4g; 10: ±8g; 11: ±16g)
HR Operating mode selection (refer to section 2.6.3: High resolution, normal
mode, low-power mode)
ST[1:0] Self-test enable. Default value: 00
(00: self-test disabled; other: see Table 35)
SIM SPI serial interface mode selection. Default value: 0
(0: 4-wire interface; 1: 3-wire interface).
Table 35. Self-test mode configuration
ST1 ST0 Self-test mode
0 0 Normal mode
0 1 Self test 0
1 0 Self test 1
11--
Table 36. CTRL_REG5 register
BOOT FIFO_EN -- -- LIR_INT1 D4D_INT1 LIR_INT2 D4D_INT2
Register description LIS2DH12
36/50 DocID025056 Rev 4
7.10 CTRL_REG6 (25h)
7.11 REFERENCE/DATACAPTURE (26h)
Table 37. CTRL_REG5 description
BOOT Reboot memory content. Default value: 0
(0: normal mode; 1: reboot memory content)
FIFO_EN FIFO enable. Default value: 0
(0: FIFO disabled; 1: FIFO enabled)
LIR_INT1 Latch interrupt request on INT1_SRC (31h), with INT1_SRC (31h) register cleared
by reading INT1_SRC (31h) itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT1 4D enable: 4D detection is enabled on INT1 pin when 6D bit on INT1_CFG (30h) is
set to 1.
LIR_INT2 Latch interrupt request on INT2_SRC (35h) register, with INT2_SRC (35h) register
cleared by reading INT2_SRC (35h) itself. Default value: 0.
(0: interrupt request not latched; 1: interrupt request latched)
D4D_INT2 4D enable: 4D detection is enabled on INT2 pin when 6D bit on INT2_CFG (34h) is
set to 1.
Table 38. CTRL_REG6 register
I2_CLICKen I2_INT1 I2_INT2 BOOT_I2 P2_ACT - - H_LACTIVE -
Table 39. CTRL_REG6 description
I2_CLICKen Click interrupt on INT2 pin. Default value: 0
(0: disabled; 1: enabled)
I2_INT1 Interrupt 1 function enable on INT2 pin. Default value: 0
(0: function disabled; 1: function enabled)
I2_INT2 Interrupt 2 function enable on INT2 pin. Default value: 0
(0: function disabled; 1: function enabled)
BOOT_I2 Boot on INT2 pin enable. Default value: 0
(0: disabled; 1:enabled)
P2_ACT Activity interrupt enable on INT2 pin. Default value: 0.
(0: disabled; 1:enabled)
H_LACTIVE interrupt active. Default value: 0.
(0: interrupt active-high; 1: interrupt active-low)
Table 40. REFERENCE/DATACAPTURE register
Ref7 Ref6 Ref5 Ref4 Ref3 Ref2 Ref1 Ref0
Table 41. REFERENCE/DATACAPTURE description
Ref [7:0] Reference value for interrupt generation. Default value: 0
DocID025056 Rev 4 37/50
LIS2DH12 Register description
50
7.12 STATUS_REG (27h)
7.13 OUT_X_L (28h), OUT_X_H (29h)
X-axis acceleration data. The value is expressed as two’s complement left-justified.
Please refer to Section 2.6.3: High resolution, normal mode, low-power mode.
7.14 OUT_Y_L (2Ah), OUT_Y_H (2Bh)
Y-axis acceleration data. The value is expressed as two’s complement left-justified.
Please refer to Section 2.6.3: High resolution, normal mode, low-power mode.
7.15 OUT_Z_L (2Ch), OUT_Z_H (2Dh)
Z-axis acceleration data. The value is expressed as two’s complement left-justified.
Please refer to Section 2.6.3: High resolution, normal mode, low-power mode.
Table 42. STATUS_REG register
ZYXOR ZOR YOR XOR ZYXDA ZDA YDA XDA
Table 43. STATUS_REG description
ZYXOR X-, Y- and Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: a new set of data has overwritten the previous set)
ZOR Z-axis data overrun. Default value: 0
(0: no overrun has occurred; 1: new data for the Z-axis has overwritten the previous data)
YOR Y-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the Y-axis has overwritten the previous data)
XOR X-axis data overrun. Default value: 0
(0: no overrun has occurred;
1: new data for the X-axis has overwritten the previous data)
ZYXDA X-, Y- and Z-axis new data available. Default value: 0
(0: a new set of data is not yet available; 1: a new set of data is available)
ZDA Z-axis new data available. Default value: 0
(0: new data for the Z-axis is not yet available;
1: new data for the Z-axis is available)
YDA Y-axis new data available. Default value: 0
(0: new data for the Y-axis is not yet available;
1: new data for the Y-axis is available)
Register description LIS2DH12
38/50 DocID025056 Rev 4
7.16 FIFO_CTRL_REG (2Eh)
7.17 FIFO_SRC_REG (2Fh)
Table 48. FIFO_SRC_REG description
Table 44. FIFO_CTRL_REG register
FM1 FM0 TR FTH4 FTH3 FTH2 FTH1 FTH0
Table 45. FIFO_CTRL_REG description
FM[1:0] FIFO mode selection. Default value: 00 (see Table 46)
TR Trigger selection. Default value: 0
0: trigger event allows triggering signal on INT1
1: trigger event allows triggering signal on INT2
FTH[4:0] Default value: 00000
Table 46. FIFO mode configuration
FM1 FM0 FIFO mode
0 0 Bypass mode
0 1 FIFO mode
1 0 Stream mode
1 1 Stream-to-FIFO mode
Table 47. FIFO_SRC_REG register
WTM OVRN_FIFO EMPTY FSS4 FSS3 FSS2 FSS1 FSS0
WTM WTM bit is set high when FIFO content exceeds watermark level
OVRN_FIFO OVRN bit is set high when FIFO buffer is full; this means that the FIFO buffer
contains 32 unread samples. At the following ODR a new sample set replaces the
oldest FIFO value. The OVRN bit is set to 0 when the first sample set has been
read
EMPTY EMPTY flag is set high when all FIFO samples have been read and FIFO is empty
FSS [4:0] FSS [4:0] field always contains the current number of unread samples stored in the
FIFO buffer. When FIFO is enabled, this value increases at ODR frequency until
the buffer is full, whereas, it decreases every time one sample set is retrieved from
FIFO
DocID025056 Rev 4 39/50
LIS2DH12 Register description
50
7.18 INT1_CFG (30h)
The content of this register is loaded at boot.
A write operation to this address is possible only after system boot.
The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation
moves from an unknown zone to a known zone. The interrupt signal remains for a duration
ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is
inside a known zone. The interrupt signal remains while the orientation is inside the zone.
Table 49. INT1_CFG register
AOI 6D ZHIE/
ZUPE
ZLIE/
ZDOWNE
YHIE/
YUPE
YLIE/
YDOWNE
XHIE/
XUPE
XLIE/
XDOWNE
Table 50. INT1_CFG description
AOI And/Or combination of interrupt events. Default value: 0. Refer to Table 51
6D 6-direction detection function enabled. Default value: 0. Refer to Table 51
ZHIE/
ZUPE
Enable interrupt generation on Z high event or on direction recognition. Default
value: 0 (0: disable interrupt request;1: enable interrupt request)
ZLIE/
ZDOWNE
Enable interrupt generation on Z low event or on direction recognition. Default value:
0 (0: disable interrupt request;1: enable interrupt request)
YHIE/
YUPE
Enable interrupt generation on Y high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
YLIE/
YDOWNE
Enable interrupt generation on Y low event or on direction recognition. Default value:
0 (0: disable interrupt request; 1: enable interrupt request.)
XHIE/
XUPE
Enable interrupt generation on X high event or on direction recognition. Default
value: 0 (0: disable interrupt request; 1: enable interrupt request.)
XLIE/XDOW
NE
Enable interrupt generation on X low event or on direction recognition. Default value:
0 (0: disable interrupt request; 1: enable interrupt request.)
Table 51. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Register description LIS2DH12
40/50 DocID025056 Rev 4
7.19 INT1_SRC (31h)
Interrupt 1 source register. Read-only register.
Reading at this address clears the INT1_SRC (31h) IA bit (and the interrupt signal on the
INT1 pin) and allows the refresh of data in the INT1_SRC (31h) register if the latched option
was chosen.
7.20 INT1_THS (32h)
Table 52. INT1_SRC register
0 IA ZHZLYHYLXHXL
Table 53. INT1_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
Table 54. INT1_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 55. INT1_THS description
THS[6:0]
Interrupt 1 threshold. Default value: 000 0000
1 LSb = 16 mg @ FS = 2 g
1 LSb = 32 mg @ FS = 4 g
1 LSb = 62 mg @ FS = 8 g
1 LSb = 186 mg @ FS = 16 g
DocID025056 Rev 4 41/50
LIS2DH12 Register description
50
7.21 INT1_DURATION (33h)
The D[6:0] bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
steps and maximum values depend on the ODR chosen.
Duration time is measured in N/ODR, where N is the content of the duration register.
7.22 INT2_CFG (34h)
The content of this register is loaded at boot.
A write operation to this address is possible only after system boot.
Table 56. INT1_DURATION register
0 D6D5D4D3D2D1D0
Table 57. INT1_DURATION description
D[6:0] Duration value. Default value: 000 0000
1 LSb = 1/ODR
Table 58. INT2_CFG register
AOI 6D ZHIE ZLIE YHIE YLIE XHIE XLIE
Table 59. INT2_CFG description
AOI AND/OR combination of interrupt events. Default value: 0
(see Table 60)
6D 6-direction detection function enabled. Default value: 0. Refer to Table 60.
ZHIE
Enable interrupt generation on Z high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
ZLIE
Enable interrupt generation on Z low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
YHIE
Enable interrupt generation on Y high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
YLIE
Enable interrupt generation on Y low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
XHIE
Enable interrupt generation on X high event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value higher than preset threshold)
XLIE
Enable interrupt generation on X low event. Default value: 0
(0: disable interrupt request;
1: enable interrupt request on measured accel. value lower than preset threshold)
Register description LIS2DH12
42/50 DocID025056 Rev 4
The difference between AOI-6D = ‘01’ and AOI-6D = ‘11’.
AOI-6D = ‘01’ is movement recognition. An interrupt is generated when the orientation
moves from an unknown zone to a known zone. The interrupt signal remains for a duration
ODR.
AOI-6D = ‘11’ is direction recognition. An interrupt is generated when the orientation is
inside a known zone. The interrupt signal remains while the orientation is inside the zone.
7.23 INT2_SRC (35h)
Interrupt 2 source register. Read-only register.
Reading at this address clears the INT2_SRC (35h) IA bit (and the interrupt signal on the
INT2 pin) and allows the refresh of data in the INT2_SRC (35h) register if the latched option
was chosen.
Table 60. Interrupt mode
AOI 6D Interrupt mode
0 0 OR combination of interrupt events
0 1 6-direction movement recognition
1 0 AND combination of interrupt events
1 1 6-direction position recognition
Table 61. INT2_SRC register
0 IA ZHZLYHYLXHXL
Table 62. INT2_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
ZH Z high. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
ZL Z low. Default value: 0
(0: no interrupt; 1: Z low event has occurred)
YH Y high. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
YL Y low. Default value: 0
(0: no interrupt, 1: Y low event has occurred)
XH X high. Default value: 0
(0: no interrupt, 1: X high event has occurred)
XL X low. Default value: 0
(0: no interrupt, 1: X low event has occurred)
DocID025056 Rev 4 43/50
LIS2DH12 Register description
50
7.24 INT2_THS (36h)
7.25 INT2_DURATION (37h)
The D[6:0] bits set the minimum duration of the Interrupt 2 event to be recognized. Duration
time steps and maximum values depend on the ODR chosen.
7.26 CLICK_CFG (38h)
Table 63. INT2_THS register
0 THS6 THS5 THS4 THS3 THS2 THS1 THS0
Table 64. INT2_THS description
THS[6:0]
Interrupt 2 threshold. Default value: 000 0000
1 LSb = 16 mg @ FS = 2 g
1 LSb = 32 mg @ FS = 4 g
1 LSb = 62 mg @ FS = 8 g
1 LSb = 186 mg @ FS = 16 g
Table 65. INT2_DURATION register
0 D6D5D4D3D2D1D0
Table 66. INT2_DURATION description
D[6:0] Duration value. Default value: 000 0000
1 LSb = 1/ODR(1)
1. Duration time is measured in N/ODR, where N is the content of the duration register.
Table 67. CLICK_CFG register
-- -- ZD ZS YD YS XD XS
Table 68. CLICK_CFG description
ZD Enable interrupt double-click on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
ZS Enable interrupt single-click on Z-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YD Enable interrupt double-click on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
YS Enable interrupt single-click on Y-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Register description LIS2DH12
44/50 DocID025056 Rev 4
7.27 CLICK_SRC (39h)
7.28 CLICK_THS (3Ah)
7.29 TIME_LIMIT (3Bh)
XD Enable interrupt double-click on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
XS Enable interrupt single-click on X-axis. Default value: 0
(0: disable interrupt request; 1: enable interrupt request on measured accel. value
higher than preset threshold)
Table 68. CLICK_CFG description (continued)
Table 69. CLICK_SRC register
IA DClick SClick Sign Z Y X
Table 70. CLICK_SRC description
IA Interrupt active. Default value: 0
(0: no interrupt has been generated; 1: one or more interrupts have been generated)
DClick Double-click enable. Default value: 0 (0: double-click detection disabled,
1: double-click detection enabled)
SClick Single-click enable. Default value: 0 (0: single-click detection disabled, 1: single-click
detection enabled)
Sign Click sign. 0: positive detection, 1: negative detection
Z Z click detection. Default value: 0
(0: no interrupt, 1: Z high event has occurred)
Y Y click detection. Default value: 0
(0: no interrupt, 1: Y high event has occurred)
X X click detection. Default value: 0
(0: no interrupt, 1: X high event has occurred)
Table 71. CLICK_THS register
- Ths6 Ths5 Ths4 Ths3 Ths2 Ths1 Ths0
Table 72. CLICK_SRC description
Ths[6:0] Click threshold. Default value: 000 0000
Table 73. TIME_LIMIT register
- TLI6 TLI5 TLI4 TLI3 TLI2 TLI1 TLI0
Table 74. TIME_LIMIT description
TLI[6:0] Click time limit. Default value: 000 0000
DocID025056 Rev 4 45/50
LIS2DH12 Register description
50
7.30 TIME_LATENCY (3Ch)
7.31 TIME_WINDOW (3Dh)
7.32 Act_THS (3Eh)
7.33 Act_DUR (3Fh)
Table 75. TIME_LATENCY register
TLA7 TLA6 TLA5 TLA4 TLA3 TLA2 TLA1 TLA0
Table 76. TIME_LATENCY description
TLA[7:0] Click time latency. Default value: 0000 0000
Table 77. TIME_WINDOW register
TW7 TW6 TW5 TW4 TW3 TW2 TW1 TW0
Table 78. TIME_WINDOW description
TW[7:0] Click time window
Table 79. Act_THS register
-- Acth6 Acth5 Acth4 Acth3 Acth2 Acth1 Acth0
Table 80. Act_THS description
Acth[6:0] Sleep-to-wake, return-to-sleep activation threshold in low-power mode
1 LSb = 16 mg @ FS = 2 g
1 LSb = 32 mg @ FS = 4 g
1 LSb = 62 mg @ FS = 8 g
1 LSb = 186 mg @ FS = 16 g
Table 81. Act_DUR register
ActD7 ActD6 ActD5 ActD4 ActD3 ActD2 ActD1 ActD0
Table 82. Act_DUR description
ActD[7:0] Sleep-to-wake, return-to-sleep duration
1 LSb = (8*1[LSb]+1)/ODR
Package information LIS2DH12
46/50 DocID025056 Rev 4
8 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
8.1 LGA-12 package information
Figure 12. LGA-12: package outline and mechanical data
Land Grid Array Package
Outline and
mechanical data
LGA-12
(2.0x2.0x1 mm)
Dimensions (mm)
Ref. Min. Typ. Max.
A1 1
A2 0.785
A3 0.200
D1 1.850 2.000 2.150
E1 1.850 2.000 2.150
L1 1.500
N1 0.500
T1 0.275
T2 0.250
P2 0.075
r 45°
M 0.100
K 0.050
8365767_A
DocID025056 Rev 4 47/50
LIS2DH12 Package information
50
8.2 LGA-12 packing information
Figure 13. Carrier tape information for LGA-12 package
Figure 14. LGA-12 package orientation in carrier tape
Package information LIS2DH12
48/50 DocID025056 Rev 4
Figure 15. Reel information for carrier tape of LGA-12 package
Table 83. Reel dimensions for carrier tape of LGA-12 package
Reel dimensions (mm)
A (max) 330
B (min) 1.5
C 13 ±0.25
D (min) 20.2
N (min) 60
G 12.4 +2/-0
T (max) 18.4
$'
%
)X O O UDG L X V 7DSHVORW
LQFRUHIRU
WDSHVWDUW
PPPLQZLGWK
*PHDVXUHGDWKXE
&
1
PPPLQ
$FFHVVKROHDW
VORWORFDWLRQ
7
DocID025056 Rev 4 49/50
LIS2DH12 Revision history
50
9 Revision history
Table 84. Document revision history
Date Revision Changes
06-Aug-2013 1 Initial release
23-Oct-2015 2 Added Section 8.2: LGA-12 packing information
02-Dec-2015 3
Corrected orientation of X and Y axes in Figure 2: Pin connections
Corrected chamfer of pin 1 in Figure 5: LIS2DH12 electrical
connections
Updated default values in Table 19: Register address map
Modified register 0Eh to “Reserved” in Table 19 and removed from
Section 7: Register description
Corrected typo in Table 83: Reel dimensions for carrier tape of LGA-
12 package
23-May-2016 4 Updated Table 1: Device summary
Updated APOW and AUNP in Table 8: Absolute maximum ratings
LIS2DH12
50/50 DocID025056 Rev 4
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2016 STMicroelectronics – All rights reserved
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
LIS2DH12TR